
A Language and Protocol to Support

Intelligent Agent Interoperability�

Tim Finin

University of Maryland

Baltimore MD

�nin@cs.umbc.edu

Rich Fritzson

Paramax Systems Corp.

Paoli PA

fritzson@prc.unisys.com

Don McKay

Paramax Systems Corp.

Paoli PA

mckay@prc.unisys.com

April 1992

Abstract

We describe a language and protocol intended to support interoperability among intelligent
agents in a distributed application. Examples of applications envisioned include intelligent
multi-agent design systems as well as intelligent planning, scheduling and replanning agents
supporting distributed transportation planning and scheduling applications. The language,
KQML for Knowledge Query and Manipulation Language, is part of a larger DARPA-sponsored
Knowledge Sharing Initiative focused on developing techniques and tools to promote the sharing
on knowledge in intelligent systems. We will de�ne the concepts which underlie KQML and
attempt to specify its scope and provide a model for how it will be used.

A version of this paper will appear in the Proceedings of the CE & CALS Washington `92 Conference,

June 1992. Address comments to Tim Finin, Computer Science, University of Maryland Baltimore

County, Baltimore MD 21228. �nin@cs.umbc.edu. 410-455-3522 -3969 (fax).

1 Introduction

Many computer systems are now structured as collections of independent processes, frequently on
distributed hosts linked by a network. Database processes, real-time processes and distributed AI
systems are a few examples. Although this architecture is becoming increasingly popular, there
are no standards for many of the important protocols needed to support this architecture. Nor are
there standard models for programming in an environment where some of the data is supplied by
asynchronous processes running on remote machines and some of the results are needed by other
similarly distant processes.

While there are many ad hoc techniques for accomplishing what is needed, it is important that
standard methods are adopted as early as is reasonable in order to facilitate the use of these new
architectures. Among the issues which need to be dealt with are:

� What language does a process use to formulate a query? In what language is the reply made?

� What protocol does a process use to send a query and produce an answer?

�This work was supported in part by DARPA and Rome Laboratory under USAF contract F30602-91-C-0040 and
by the Air Force O�ce of Scienti�c Research under contract F49620-92-J-0174.

Language & Protocol for Intelligent Agent Interoperability Finin, Fritzson and McKay

Loom
Prolog

SpiceClips

Classic

???

LoomProlog

Spice
Clips

Classic

???

Mediator Mediator

Figure 1: Not only do systems operate and communicate in di�erent ontologies and languages, but they follow

di�erent protocols for communicating. This makes communication di�cult, since each application has to deal with

it independently. Having a multitude of protocols makes a hard problemworse. The introduction of communication

facilitator agents simpli�es the communication problem.

� What is an e�ective way to present a communication protocol to users of various programming
disciplines such as procedural languages, backward chaining engines, forward chaining engines,
classi�ers, etc?

� How does a process know to which process to send queries? How can it �nd out? What
protocol does it use in �nding out?

This paper discusses the problem and describes the design of a simple knowledge transfer protocol
that addresses some of the issues. This is part of a related e�ort to develop an new style of interface
for knowledge-based systems based on the KQML [?] speci�cations being explored by the DARPA
Knowledge Sharing Initiative [?].

The problem of coordinating many agents who must communicate with one another is a di�cult
one. These problems are compounded when we are trying to coordinate a multitude of \intelligent
agents" for several reasons. The �rst diagram in Figure 1 shows a hypothetical situation in which
agents implemented in di�erent AI systems need to share knowledge.

We divide this problem into two general aspects: problems having to do with the mechanics
of establishing reliable communication with the right agent and problems involving the mutual
understanding and utility of the content of the communication. We believe that this problem
decomposition enhances the scalability of our our approach. To solve the �rst set of problems we
introduce additional agents { communication facilitators { to help with the process. Our approach
to address the second set of problems employs two ideas. The �rst is to use a simple model for
what can be said from one agent to another and to establish some simple standards, conventions
and protocols for saying it. The second idea is to provide for a class of communication mediators

whose role is to e�ect the semantic and ontologic transformation which are required to map one
agents knowledge into another's.

The second diagram in Figure 1 shows our hypothetical situation with the introduction of
facilitators and mediators. It might seem that we have complicated the situation and made the
problem worse since we have more than doubled the number of agents and show each facilitator
talking to every other facilitator. However, we have simpli�ed things considerably since:

� Facilitators and Mediators communicate among themselves using well-de�ned protocols which
are independent of the language or languages which the agents use to exchange knowledge.

April, 1992 2

Language & Protocol for Intelligent Agent Interoperability Finin, Fritzson and McKay

� Communication between processes is handled by facilitators and (optionally) mediators, of-
oading most of the details from the agents.

� Each application system only has to know how to communicate with a facilitator to transmit
messages to another system. These messages can be expressed in in any knowledge represen-
tation language that the two communication agents �nd convenient. The use of mediators
provides additional translation and mapping services to allow applications to interoperate.

The Knowledge Query and Manipulation Language (KQML) is a language and a protocol to sup-
port the high level communication among intelligent agents. It can be used as a language for an
application program to interact with an intelligent system or for two or more intelligent systems to
interact cooperatively in problem solving.

SKTP, a Simple Knowledge Transfer Protocol, supports KQML interactions and is de�ned as a
protocol stack with at least three layers: content, message and communication. Additional layers
will appear below these three to supply reliable communication streams between the processes.
The content layer contains an expression in some language which encodes the knowledge to be
conveyed. The message layer adds additional attributes which describe attributes of the content
layer such as the language it is expressed in, the ontology it assumes and the kind of speech act it
represents (e.g., an assertion or a query). The �nal communication layer adds still more attributes
which describe the lower level communication parameters, such as the identity of the sender and
recipient and whether or not the communication is meant to by synchronous or asynchronous.

2 Knowledge Query and Manipulation Language

The Knowledge Query and Manipulation Language (KQML) is a language and an associated proto-
col to support the high level communication among intelligent agents. It can be used as a language
for an application program to interact with an intelligent system or for two or more intelligent
systems to interact cooperatively in problem solving. We argue that KQML should be de�ned as
more than a language with a syntax and semantics, but must also include a protocol which governs
the use of the language (e.g., a pragmatic component).

2.1 Design Issues and Assumption

Architectural assumptions. Agents will typically be separate processes which may be running
in the same address space or on separate machines. The processes will have a reliable information
transport mechanism (e.g. TCP/IP streams) connecting them. We need a protocol that is simple
and e�cient to use to connect a few pre-de�ned agents on a single machine or on several machines
on the same local area network. We also need the protocol to be an appropriate one to scale up to
a scenario in which we have a large number (i.e. hundreds or even thousands) of communicating
agents scattered across the global Internet and who are dynamically coming on and o� line.

Communication Modes. KQML will support several modes of communication among agents
along several independent dimensions. Along one dimension, it supports interactions which di�er
in the number of agents involved { from a single agent to a single agent (i.e., point-to-point), as
well as messages from one agent to a set of agents (i.e., multicasting). Along another dimension,
it permits one to specify the recipient agents either explicitly (e.g., by Internet address and port
number), by symbolic address (e.g., to \to the theTRANSCOMMapServer" or even by a declarative
description form of broadcast (e.g., \to any KIF-speaking agents interested in airport locations"). A

April, 1992 3

Language & Protocol for Intelligent Agent Interoperability Finin, Fritzson and McKay

�nal dimension involves synchronicity { the protocol must support blocking as well as non-blocking
communication.

Syntactic assumptions. The actual representation of information at the most underlying level,
is not of great importance; current implementations utilize Lisp s-expressions transmitted between
processes in the form of ascii streams. The forms at the content layer depend on the content-
language being used and may be represented as strings, if necessary. The forms at the message and
communication layer will be ascii representations of lists with a symbol as the �rst element and
whose remaining elements use the Common Lisp keyword argument convention. However, newly
emerging standards, such as those from the Object Management Group, may provide an entirely
new basis for representing the content of the messages.

Security. Security is an issue in any distributed environment. We will need to develop conventions
and procedures for authentication which will allow an agent to verify that another agent is who it
purports to be.

Transactions. Interactions among knowledge-based systems have a di�erent kind of transaction
processing which will require something other than the now standard two-phase commit. That is
because interacting agents may use information and knowledge gained from one information source
for longer periods of time than read/write locks support. In one way, knowledge-based systems are
similar to other advanced systems such as software engineering or CAD/CAM design environments
(see Computing Surveys, 1991). Further, interactions among knowledge-based systems may better
be cast in terms of belief spaces and/or logics of belief than in terms of low level transactions. The
development of a good model to support transactions among intelligent agents is a research topic
for the KQML group to consider sometime in the future. Developing a workable solution which is
incrementally implementable may prove key to the ultimate success of the KQML e�ort.

Protocol Approach. KQML should be de�ned as more than a language with a syntax and
semantics, but must also include a protocol which governs the use of the language (i.e., a pragmatic
component). Using a protocol approach is common in modern communication and distributed
processing. The �rst diagram in Figure 2 shows a simpli�ed version of the standard protocol
stack for network communication over an Internet. At the top of the stack is the application-level
protocol, in this case SMTP (Simple Mail Transfer Protocol) and at the bottom is the low level
protocol in which data is actually exchanged. From a mailer's point of view, it is communicating
with another mailer using the SMTP protocol. It need not know any of the details of the protocols
which support its communication.

We are developing a similar approach to support communication among intelligent agents {
de�ning a protocol stack for transferring knowledge across the Internet. The second diagram in
Figure 2 shows a simple protocol stack we are using for the model of KQML. We assume that
the KQML protocol stack is an application protocol layer of the standard OSI model and thus
assume reliable communication. SKTP, a Simple Knowledge Transfer Protocol, supports KQML
interactions and is de�ned as a protocol stack with at least three layers: content, message and
communication. These layers are built upon some reliable network transport mechanism.

2.2 KQML Layers

KQML expressions consist of a content expression encapsulated in a message wrapper which is
in turn encapsulated in a communication wrapper, as shown in Figure 3. Thus the language is

April, 1992 4

Language & Protocol for Intelligent Agent Interoperability Finin, Fritzson and McKay

Ethernet

Internet Protocol

Transport Control

SMTP HELO

TCP HELO

IP TCP HELO

E IP TCP HELO Ethernet

Internet Protocol

Transport Control

SMTP

Stream

Fac−to−Fac
Protocol

App−to−Fac
Protocol

(e.g. LOOM, Prolog)

Application Language

Stream

Fac−to−Fac
Protocol

App−to−Fac
Protocol

(e.g. LOOM, Prolog)

Application Language
(location x:airport long lat)

Deliver
 From:
 Address:
 Msg:
 Protocol:

MSG
 Type: {query}
 Language: Prolog
 Content:
 To: "application"
 Topic:

(location x:airport long lat)

MSG
 Type: {query}
 Language: Prolog
 Content:
 From: "appliation"
 To:

(location x:airport long lat)

Figure 2: Modern Internet communication is governed by a \protocol stack" with distinct, well-de�ned layers.

Communication between intelligent agents should also be governed by a protocol stack with distinct, well-de�ned

layers.

thought of as being divided into three layers: content, message and communication. The content
layer contains an expression in some language which encodes the knowledge to be conveyed. The
format of this expression is unimportant to KQML; it can carry any type of content. However,
there are emerging standards for Knowledge Representation (e.g. Interlingua, KIF [?], etc) and
standards for persistent objects pointers (e.g. the OMG Object Request Broker) which may prove
to be very valuable in the near future.

Because the content is opaque to KQML, the message layer adds a set of features which de-
scribe the content, e.g. the language it is expressed in, the ontology it assumes and the kind of
speech act it represents (e.g., an assertion or a query). These features make it possible for the
protocol implementation to analyze, route and properly deliver messages even though their content
is inaccessible.

The �nal communication level adds a second layer of features to the message which describe the
lower level communication parameters, such as the identity of the sender and recipient and whether
the communication is meant to be synchronous or asynchronous. These are used by the network
layer which provides reliable transfer of bytes between processes on a network.

Communication

Message

Content

Mechanics of communication: sender,
recipient, unique id, synchonicity, etc.

Logic of Communication: speech act
type, qualifications, etc.

Content of communication as an
expression in some agreed upon
KR language (e.g., KIF).

Figure 3: KQML expressions can be thought of as consisting of a content expression encapsulated in a message

wrapper which is in turn encapsulated in a communication wrapper.

April, 1992 5

Language & Protocol for Intelligent Agent Interoperability Finin, Fritzson and McKay

2.3 KQML Content Layer

KQML makes no commitments about the content layer. One should be able to use it with any
number of content languages, such as KIF [?] or LOOM [?]. All the two intelligent agents need
to do is to agree on a language to use for communication. This does not preclude the use of or
diminish the need for an interlingua such as KIF to support knowledge sharing. It does allow two
agents who are using the same internal language to use it as the communication language in the
protocol.

2.4 KQML Message Layer

The message layer is used to encode a message that one application would like to have transmitted to
another application. These messages are of two general types | content messages and declaration
messages. A \content" message contains a description of a piece of knowledge being o�ered or
sought. \Declaration" messages are used to announce the presence of an agent, register its name
and provide descriptions of the general types of information that the agent will send and would like
to receive and the actual content baring messages sent between agents.

The message layer can also be thought of as a \speech act layer". One of the most important
attributes to specify about the content is what kind of \speech act" it represents { an assertion, a
query, a response, an error message, etc.

2.4.1 Content Messages

A content message is used to describe a query, assertion or other speech act involving some sentence
in the content language. It is represented as a list whose �rst element is the atom MSG and whose
remaining elements are alternating attribute-value pairs using the Common Lisp keyword argument
format. Possible keyword arguments are:

:TYPE - <Speech Act>. The speech act type of the message (e.g., query, assert, retract, etc.).

:QUALIFIERS - <keyword list>. A keyword tagged list of quali�ers appropriate to the
message type.

:CONTENT-LANGUAGE -<language name>. A term naming the language in which the
CONTENT �eld is expressed.

:CONTENT-ONTOLOGY - <ontology name>. A term or list of terms chosen from a
standard list naming the ontologies assumed.

:CONTENT-TOPIC - <topic name>. A term or list of terms describing the topic of the
knowledge within the given ontology.

:CONTENT - <content language sentence>. The actual knowledge to by conveyed expressed
as a sentence in the content-language.

The following example message is a query expressed in KIF for which exactly one answer is
sought.

(MSG

:TYPE query

:QUALIFIERS (:number-answers 1)

:CONTENT-LANGUAGE kif

:CONTENT-ONTOLOGY (blocksWorld)

:CONTENT-TOPIC (physical-properties)

:CONTENT (color snow ?C))

April, 1992 6

Language & Protocol for Intelligent Agent Interoperability Finin, Fritzson and McKay

2.4.2 Declaration Messages

A declaration message is used to provide meta-information about the content messages that the
agent will generate and would like to receive. These declarations can be used to register a service
(e.g., \I'll answer questions about the physical properties of blocks") and to register a need for a
service (e.g., \I want to be keep current on the location of every block").

Syntactically, a declaration is a list whose �rst element is the atom DCL and whose remaining
elements are alternating attribute-value pairs using the Common Lisp keyword argument format.
Possible keyword arguments are:

:TYPE - <Speech act>. The speech act type of the embedded (MSG ...) expression (e.g.,
assert, query).

:DIRECTION - <OneOf(import, export)>. Speci�es whether the information is to be im-
ported or exported.

:COMM - <Oneof(block, nonblock)>. Speci�es whether the service is being o�ered or sought
in a blocking or nonblocking communication mode.

:MSG - <Message>. A (MSG ...) expression which speci�es the content level information that
is to be imported or exported.

The following example announces that agent a001 is willing to export assertions expressed in
KIF about the color properties of things in a blocks world ontology.

(DCL

:TYPE assert

:DIRECTION export

:MSG (MSG

:TYPE assert

:CONTENT-LANGUAGE KIF

:CONTENT-ONTOLOGY (blocksWorld)

:CONTENT-TOPIC (physical-properties)

:CONTENT (color ?X ?Y)))

2.5 KQML Communication Layer

At the communication layer, agents exchange packages. A package is a wrapper around a message
which speci�es some communication attributes, such as a speci�cation of the sender and recipients.
A package is represented as a list whose �st element is the atom PACKAGE and whose remaining
elements are alternating attribute-value pairs using the Common Lisp keyword argument format.
Possible keyword arguments are:

:TYPE - <Message type>. This is the type of the embedded message, i.e. either a content
message or a declaration message.

:FROM - <Agent ID>. The unique identi�er of the sending agent.

:TO - <Agent ID>. The unique identi�er or identi�ers of the recipient agent(s).

:ID - <Package ID>. A unique identi�er for this message. This should be generated at this
layer (e.g. by the facilitator agent if one is being used) and is used to refer to the message
later.

:COMM - <Oneof(block, nonblock)>. Speci�es whether or not the communication is to be
carried out in a blocking or nonblocking mode.

:IN-RESPONSE-TO - <Package ID>. A list of one or more package IDs which refer to
earlier messages that this package is in response to.

:CONTENT - <Message>. An (DCL ...) or (MSG ...) expression.

April, 1992 7

Language & Protocol for Intelligent Agent Interoperability Finin, Fritzson and McKay

In the following example, application ap001 is sending a synchronous query to application ap002:

(PACKAGE

:FROM ap001

:TO ap002

:ID DVL-f001-111791.10122291

:COMM block

:CONTENT

(MSG

:TYPE query

:QUALIFIERS (:NUMBER-ANSWERS 1)

:CONTENT-LANGUAGE KIF

:CONTENT (color snow _C)))

2.6 KQML Performatives

Message types play an important part in this protocol. They appear at the message level in both
content and declaration messages and are akin to a \speech act" type in the theory of natural
language communication. Message types determine what one can \do" or \perform" with the
sentences in the content language.

The de�nition of the various KQML performatives described in [?] is based on the following
model of a knowledge base: A knowledge base (KB) is a set of sentences in a language L, which can
be the object language of the knowledge base, or a set of sentences of another language for which
a computable mapping into L exists. Candidates for languages other than the object language of
a KB are, for example, the Interlingua, or, if the object language for a KB are graphs, a linear
notation describing these graphs. Since KQML is not assumed to be a superset of the Interlingua,
it must to identify sentences of the KB by way of quoted sentences of a language that can be
translated into the object language of the KB. This language is called the content language.

3 SKTP

SKTP is a design for an implementation of the KQML protocol stack. The design follows the lay-
ered organization of the protocol. One section of the code handles the encapsulation and labeling of
content expressions (implementing the message layer). Another section determines the destination
of the messages and arranges (via some standard transport mechanism) for their delivery and the
return of any immediate responses. An important feature of SKTP is its tight integration with the
implementation language of an application. This provides a nearly seamless interface between the
application and the communication protocols, signi�cantly reducing the di�culty of programming
communicating agents and allowing a much tighter collaboration between processes than has been
easily achievable before.

A preliminary implementation of SKTP has been written in Common Lisp and currently links
applications written in a dialect of Prolog. We are designing interfaces to additional languages and
systems.

There are four protocol layers shown in Figure 2. Each has a matching component in the
implementation design shown in Figure 4. The overall communication is between applications

written in an application language. Applications exchange expressions which have some meaning.
This is the content layer. Expressions are selected for transmission to remote sites and wrapped
in messages. This is the message layer and is implemented in Figure 4 by the module labeled
Facilitator Interface Library (FIL).

April, 1992 8

Language & Protocol for Intelligent Agent Interoperability Finin, Fritzson and McKay

`

F
A
C
I
L
I
T
A
T
O
R

Internet
F

I

L

Application

Application Language

F

I

L

Application

Application LanguageF
A
C
I
L
I
T
A
T
O
R

Figure 4: The implemented SKTP architecture has a component for each of the major protocol layers in KQML.

Messages might not have unambiguously speci�ed destinations; they may have multiple destina-
tions; they may require special handling. The layer which handles this \routing" of messages is the
communication layer and is implemented by a separate agent called a facilitator. The underlying
stream which carries the structured data between facilitators is, of course, the TCP/IP protocols
provided by the Internet.

Each application is associated with a facilitator. Figure 5 shows an imagined collection of
application communicating via SKTP over an Internet. While the diagram looks complex, the
important gain made by the communication layer (implemented by the facilitators) is that all
network communication is made using the same protocol, instead of a di�erent protocol for each
pairing of systems.

3.1 Facilitator Interface Library

The Facilitator Interface Library (FIL) is the code which connects the varying worlds of di�erent
AI languages and systems to the communication world of KQML. The FIL performs three functions

� It interprets a set of declarations which describe the internal knowledge base transactions
(e.g. de�nitions, queries, assertions) should be imported from or exported to remote systems.

� It contains code which monitors those internal transactions and arranges for the appropriate
expressions to be transmitted as messages to a facilitator which will route them appropriately.

� It contains code which provides access points for a facilitator to deliver messages to the
application (e.g. queries to be answered, assertions to be stored, etc.)

Because the FIL is tightly integrated with the application system, it is partly implemented in the
underlying implementation language. For example, in our current prototype we have applications
written in a dialect of Prolog which is implemented in Common Lisp. The FIL for these applications
is written partly in Prolog and partly in Common Lisp.

Declarations. When using SKTP, an application program does not need to be modi�ed to make
\calls" on communication primitives. Instead, it is written as though the information that it needs
was available locally (or, if it is primarily a supplier of information, as though there was no need
to communicate). The program is augmented by a set of declarations which describe the internal
transactions (assertions, queries, etc.) that are to be exported to remote sites and what types of
transactions it is willing to process from remote sites. Declarations describe the following attributes
of expression:

� Whether the expression is to be exported (sent to a remote site) or imported (accepted from
a remote site)

� The type of the expression (e.g. assertion, query, de�nition, etc.)

April, 1992 9

Language & Protocol for Intelligent Agent Interoperability Finin, Fritzson and McKay

F
F

F

F

F

F

F

F

F

F

SOCAP
planner

 FMERGE
configurator

 PFE
simulator

 DART
plan editor

 DRPI
knowledge
 server

IDI KRSL

DB DB DB KB KB KB

Internet

 Plan
Simulator

Case−Based
 Scheduler

 Map
Display
 AgentIDI

D
B

D
B

D
B

 Special
Transcom
Database
Front End

 Plan
Evaluator

KQML

KQML

KQML

KQML

KQML
KQML

KQML

KQML

KQML

KQML

Figure 5: A network of processes communicating using the SKTP architecture is envisioned as a part of the

DRPI testbed. Communication among the processes is handled by communication facilitators.

LOOM

LO
O

M
 F

IL

 LOOM
SYSTEM
 CODE

G
E
N
E
R
I
C

F
A
C
I
L
I
T
A
T
O
R

 Special
LOOM−ish
 Protocol

Standard
 Protocol

Standard
 Protocol

Content
Messages Communications

Figure 6: The Facilitator Interface Library or FIL is the code which connects an AI language or system such

as LOOM to a generic Facilitator agent.

April, 1992 10

Language & Protocol for Intelligent Agent Interoperability Finin, Fritzson and McKay

� A characterization of the expressions of this type which are to be selected. For example, in a
relational system, the description might contain the name of the relation and the number of
arguments, or in an object-oriented system it might be the class of the object.

Declarations which describe exports have to result in code which monitors the internal ow of
expressions, selects appropriate ones for encapsulation, and is prepared to insert any replies into
the the applications internal ow as though they originated locally.

Programming Models. The basic idea of this approach is to completely hide the communication
primitives from the application programmer. This is why the FIL will frequently need to be partly
written in the underlying implementation language: it needs access to the internal routines of the
language itself to help determine when expressions need to be transmitted and which expressions
should be selected.

While this is a di�cult job for the implementor of the FIL, it has a couple of signi�cant
advantages. The �rst is that it makes application programming much easier. The application
programmer doesn't have to think about communication issues while writing the application, just
prepare a set of declarations to go with it. The declarations themselves are written at a higher
level of abstraction than communication code and so are easier to write. The second advantage is
that it relieves the implementor of the FIL from having to design and implement a creative and
clever way to integrate the communication primitives with the non procedural languages used in
AI systems.

Tighter Collaboration. This approach also makes it possible for applications to collaborate
at a much tighter level of coupling than the simple \pipe" model of communication which is the
only model currently used in the current testbeds we are using1. For example, in the current
SKTP implementation, if an application's internal processes require a particular goal to be satis�ed
remotely, the system will transmit that goal to a particular remote system and the answers will be
seamlessly integrated into the local system's inferencing cycle. The system answering the remote
query may also generate additional remote queries (possibly back to the originating system). All
of this is transparent to the originating application which operates as though all the necessary
information was being provided locally. Because the library intercepts internal transactions, two
processes can actively collaborate, in parallel, on a single goal, without explicitly programming that
collaboration. This greatly elevates the state-of-the-practice for collaboration among separately
written processes.

Exporting Messages. Declarations which state the the application is going to be exporting
expressions require that the FIL contain code which will monitor the generation of these expressions,
and act on appropriate ones.

When an application declares that it needs to export some of its queries to remote agents, the
FIL creates code which monitors the internal generation of queries, queries which are normally
generated for use by an internal inference engine, looking for ones which match the declared de-
scription. Queries which match the declarations are encapsulated as messages and passed to a
facilitator. Depending on the application, the language, and the designer of the FIL, the FIL might
wait for answers, or it might not; it might merge the answers from remote sites with local answers,
or replace the local answers outright. These and other design decisions are made by the designer
of the FIL and may be passed on as declaration options to the application programmer.

1The DARPA/Rome Planning Inititive (DRPI) and the Palo Alto Collaborative Testbed (PACT) [?].

April, 1992 11

Language & Protocol for Intelligent Agent Interoperability Finin, Fritzson and McKay

Similar considerations apply for declarations which state that the application is going to be
exporting assertions. The primary di�erence is where in the implementation the FIL has to look
for the expressions and what to do with any replies that are received.

Importing Messages. If an application is willing to answer queries for remote agents, or it is
interested in receiving assertions from remote agents, it declares this in the same way as it would
declare a need to export expressions. However, in this case the FIL has to establish a set of properly
advertised functions or entry points to which a facilitator can deliver the queries or assertions.

The actual implementation of this connection depends on the design of the facilitator and the
type of connection it has with its FILs. In various implementations the facilitator might be part of
the same lisp image, or it might be a separate process connected by shared memory or some type
of interprocess communication channel. Naturally the kind of \advertisement" needed to let the
facilitator know how to deliver messages would depend on the type of connection between the two
modules.

3.2 Facilitators

Facilitators bridge the gap between KQML messages and the Internet world of host names and
TCP/IP streams. Using the metaphor of the Internet protocol stack, they are theKQML equivalent
of Internet routers.

Facilitator accept messages from FILs and rely on the information in the message's �elds to
determine the appropriate destinations for the message. In some cases an application may identify a
particular site as being the target of a message, either by host name (e.g. To: louise.v.paramax.com)
or more symbolically (e.g. to: whichever machine is currently advertising itself as \geosys server
A"). In other cases, the application may not know what an appropriate site is; the facilitator must
rely on values of other message �elds and a knowledge of what other sites are available in order to
decide where to route the message.

Routing. Among the �elds of the a KQML messages are:

� language - The language in which the encapsulated expression is written.

� type - \query", \assertion", \de�nition", etc.

� ontology - The general \framework" or \context" which the sender of the messages assumes
and which the receiver must share.

� topic - The speci�c subject matter of the message. This �eld can only be interpreted in the
context of a given ontology.

The declarations written for a program must provide su�cient information to allow the FIL to
provide values for these �elds. The facilitator uses them to search a database of remote agents
who have declared that they are suitable targets for these messages. For example, if a facilitator
receives (from a FIL) a message which is described as being:

� Type: query

� Language: relational

� Ontology: DRPI-93

� Topic: Airports:Location

April, 1992 12

Language & Protocol for Intelligent Agent Interoperability Finin, Fritzson and McKay

it must look for one or more systems, somewhere on its connected network, which have advertised
that they are willing to import queries of this type and answer them (By having matching \im-
port" declarations.). It does this by searching a database of declarations looking for entries which
match those of the question. When it �nds them, it delivers the message to facilitators which are
\representing" them and, waits for either an acknowledgment of receipt or actual replies.

While this process does not seem di�cult on the surface, there are several problems which will
require extensive work, especially as the number of agents available on a network increases and as
the complexity of the information being exchanged increases.

Ontology and Topic Matching. The task of matching the declared ontology and topic of a
message against a database of similar declarations is not well de�ned. While it is not di�cult to
develop simple examples and simple implementations to handle them it is also not di�cult to create
complex examples with no obvious implementation strategy.

Consider the case of a small and simply structure ontology which is divided into a small and
shallow class hierarchy, such as travel, divided into fewer than ten possible subclasses such as air,
rail, car, etc. Queries may be tagged as having one of these classes as their topic; knowledge bases
can choose to advertise that they are willing to answer queries about one or more of these classes.
As long as all of the participants understand which queries are about which topic and abide by
the rules implicit in the simple ontology, the problem of matching messages with remote systems
is reduced to simple string matching.

However, if the ontology is not quite as trivial, for example if it is described by a class hierarchy
of moderate depth, such as the animal kingdom, then the problem is not so trivial. For example, if
a knowledge base advertises that it is willing to IMPORT QUERIES about the class of mammals

and a facilitator has a client trying to EXPORT a QUERY about cows, making the match is more
di�cult. The routing task must be relatively simple in order to keep the facilitators relatively small
and fast. The design of ontologies to be used for this purpose must be made with these problems
and constraints in mind.

Database of Knowledge Based Services. The second problem to be overcome is how a
database of currently available applications is to be maintained. Actually gathering the data is
not di�cult. An assumption of this design is that all applications provide their FILs with declara-
tions of the queries they can import and the assertions they can export, and that their associated
facilitators will transmit these announcements over the network. The question is where and how
should the database be implemented; there are several alternatives.

The database can take a variety of forms. It may be replicated in every facilitator, it may be
centralized on an advertised machine, it may be stored in a distributed form across the network.
Implementation strategies are based on the requirements of a particular environment.

For small sets of machines, a replicated implementation may be easiest. That is, each machine
maintains its own complete copy of the list of network services. Maintenance of this list has to
be performed in realtime; whenever a service begins or ends operation it has to be added to or
removed from the list. With a small number of machines the overhead for each machine is not too
great.

However, for even modest collections of machines (e.g., more than ten or twenty) the burden of
broadcasting service announcements to every known machine, and the burden of processing such
announcements from every known machine becomes noticeable, making a centralized approach is
more suitable. One machine could serve as a repository for a single database. All processes would
send both assertions of services they are making available and queries for needed services to this

April, 1992 13

Language & Protocol for Intelligent Agent Interoperability Finin, Fritzson and McKay

single machine.
In a very large network, e.g. a large campus network or the Internet itself, any central server

will be both a bottleneck and a single point of failure. On this scale, a distributed approach is
needed. A good example of this is the Internet distributed name service.

3.3 Implementation

Prototype versions of the components described above have been implemented. We have imple-
mented

� A facilitator interface library for an implementation of the language Prolog.

� A facilitator which runs as a separate process within the same Common Lisp image as the
Prolog language.

� A TCP/IP based communication package which links multiple Common Lisp images on dif-
ferent machines.

An implementation of a Facilitator Interface Library for Prolog has to handle the following events:

� A declaration by the local application of its communication status (what it needs and what
it can provide)

� An assertion by the local application which needs to be transmitted to a remote application.

� A query by the local application which needs to be transmitted to a remote application.

� An assertion by a remote application which has been received by the local facilitator

� A query by a remote application which has been received by the local facilitator and needs
to be answered

Declarations by the Local Application. This facilitator provides routing for four types of
application declarations:

� Export Queries. Applications which want to send queries to remote sites.

� Export Assertions Applications willing to transmit new assertions to remote sites..

� Import Queries. Applications willing to receive (and answer) queries from remote sites.

� Import Assertions. Applications which want to receive assertions from remote sites.

Each declaration is accompanied by a description of the type of assertion or query to be exported
or imported.

Declaration: Exporting Queries. When a Prolog application declares that it needs to export
some of its queries to remote sites, the facilitator interface creates code which will automatically
transmit queries of the appropriate type to the facilitator.

The current implementation handles this by generating a Prolog rule of the form:

(<query> . <args>) :-

=(L, (call-lisp (remote-solve (<query> . <args>))))

member(<args>, L)

For example, if an application declares that it wishes to export queries of the form:

April, 1992 14

Language & Protocol for Intelligent Agent Interoperability Finin, Fritzson and McKay

(color X Y)

The facilitator interface will assert the following rule:

(color X Y) :-

= (L, (call-lisp (remote-solve (color X Y))))

member((X Y), L)

The function remote-solve transmits the query (with substitution performed on bound variables)
to the facilitator which arranges for it to be answered by a remote site. The result is expected to
be a list of variable bindings, e.g.

((sky blue) (emerald green))

This method of dealing with locally generated queries is simple and provides an e�ective way of
dealing with the fact that the remote site returns a list of all solutions while the local site only
expects one at a time while it backtracks through them and solves the problem of merging local
answers with remote ones in a simple way. It is also very easy to implement.

Declaration: Exporting Assertions. Exporting assertions is a declaration primarily used by
forward chaining applications and not those implemented in Prolog, but we have included it here
for the sake of completeness.

When a Prolog application declares that it is willing and able to export assertions of a partic-
ular type, it needs to create code to arrange that assertions which match those described by the
declaration are forwarded to the facilitator. The current implementation has modi�ed the low level
\assert" and \retract" functions in the Prolog implementation to intercept and transmit matching
assertions (and retractions) to the facilitator.

Declaration: Importing Queries and Assertions. When a Prolog application declares that it
is willing to accept queries or receive assertions of a particular type, all it needs to do is transmit that
declaration to its local facilitator. The facilitator is responsible for insuring that other applications
are aware of this service. The transmission is performed by a simple function call provided by the
facilitator package.

When a Prolog system is willing to support this type of activity it it needs to provide the
facilitator with functions to call whenever remote queries or assertions arrive from a remote site.
This registration is made by a call to a function provided by the facilitator package.

Handling Locally Generated Queries and Assertions. When the local Prolog generates a
query or assertion which needs to be transmitted to a remote site, the preliminary work of the
declaration handling (see above) has already arranged for the expression (the query or assertion)
to reach the facilitator interface code. The next step is to package the expression into a message.

The facilitator provides a function for making messages. The interface package simply provides
values for the following message �elds:

� content. The expression itself.

� language. In this case, the name of the particular Prolog dialect, Frolic.

� type. query, assertion, retraction, ...

� ontology. This is a name which signi�es the shared assumptions that the programs have
about the knowledge they are using. It is a keyword shared among programs to keep other
programs with the same topic from answering.

April, 1992 15

Language & Protocol for Intelligent Agent Interoperability Finin, Fritzson and McKay

� topic. For one simple ontology, this is simply the particular predicate used in the expression,
e.g. COLOR/2. For another we used a list which represented the predicate and its arguments
which were represented by either constants or untyped variables, e.g. (available JohnSmith
?Time ?Date ?Duration).

Prolog is not a good language in which to experiment with ontology de�nitions because most
\real" ontologies tend to be object oriented while Prolog is relation oriented. For example, a service
which can answer queries of the form:

(location ?x:airport ?y:coordinates)

which can be translated as \What is the location of a particular airport?" is not likely to advertise
itself as a \location" server, providing information about the location of various objects. It is
more likely to be an \airport" server, able to answer questions about various characteristics about
airports, including their location. That is, it is more likely to be able to answer

(number-of-runways ?x:airport ?n:number)

than

(location ?x:museum ?y:coordinates)

A given application is likely to be able to provide some information about a set of objects in some
\knowledge space". What kind of knowledge space is described by the ontology �eld. But the task
of describing which objects in that space, and what relations about those objects, falls to the topic
�eld.

A second function, send-msg-to-facilitator passes it on to the facilitator for routing.

Handling Remotely Generated Queries and Assertions. To handle remotely generated
queries and assertions all the interface package has to do is provide a function for the facilitator to
call when it needs to pass a query to be processed or an assertion to be added/retracted from the
database.

Common Lisp Facilitator. The facilitator's role is to route messages to appropriate recipients.
Messages are not usually addressed to a speci�c individual site but to either a symbolically named
service (e.g. Shipping-database or Planning-System-7) or a service which has advertised that it is
willing to accept messages of this type. The facilitator is responsible for tracking which remote
applications are interested in receiving assertions or are willing to answer queries on various topics.

To accomplish this, each facilitator maintains its own database of remote applications. Each
entry in the database provides the Internet address of the host that the application is running on
and a TCP/IP port address for the facilitator on that host. The entries are indexed by the types
of messages the applications are willing to accept. Messages are characterized, as described earlier,
by the same �elds used to construct them: type, language, ontology, topic and also communication

style.
The database is maintained jointly by all active facilitators using the following rules:

� When a local application declares that it is willing to import queries or assertions, the facili-
tator broadcasts that to all sites which may be running a facilitator.

� When a facilitator receives a declaration from another facilitator it acknowledges it by sending
a list of imports that its applications are willing to accept.

April, 1992 16

Language & Protocol for Intelligent Agent Interoperability Finin, Fritzson and McKay

The �rst rule lets everyone know about any new services. The current implementation is awk-
ward in that it requires a list of machines where facilitators might be running. We will be replacing
this with a separate service which tracks running facilitators and distributes new messages to them.
The second rule insures that new facilitators which announce their services are immediately apprised
of other facilitators on the net and can build their own database.

Common Lisp TCP/IP. The facilitator is implemented using a locally written TCP/IP in-
terface which allows Common Lisp applications to act as TCP/IP stream clients or servers. It
provides client functions to open streams to remote TCP/IP ports using hostnames (or Internet
addresses) and service names (or numbers). It also creates a separate process (within a Lucid
Common Lisp image) which monitors a speci�ed port and will spin o� additional subprocesses
when remote system communicate with that port. (That is, it implements a standard UNIX server
program.)

4 Conclusions

KQML is a language which supports the high level communication among intelligent agents. It
can be used as a language for an application program to interact with an intelligent system or
for two or more intelligent systems to interact cooperatively in problem solving. SKTP, a Simple
Knowledge Transfer Protocol, supports KQML interactions and is de�ned as a protocol stack with
at least three layers: content at the application level, message at the application to facilitator level,
and communication at the facilitator to facilitator level. Additional layers appear below these
three to supply reliable communication streams between the processes. The content layer contains
an expression in some language which encodes the knowledge to be conveyed. The message layer
adds additional attributes which describe attributes of the content layer such as the language it is
expressed in, the ontology it assumes and the kind of speech act it represents (e.g. an assertion or
a query). The �nal communication layer adds still more attributes which describe the lower level
communication parameters, such as the identity of the sender and recipient and whether or not the
communication is meant to by synchronous or asynchronous.

We have implemented an experimental prototype of SKTP which uses communication facilita-

tors as intelligent \routers" to simplify the application interface and realize the protocol. Facilita-
tors provide a declarative framework in which applications specify their knowledge needs and the
knowledge services they o�er, establish communication channels between appropriate agents, and
mediate the resulting dialogue.

KQML is part of a larger DARPA-sponsored Knowledge Sharing e�ort focused on developing
techniques and tools to promote the sharing on knowledge in intelligent systems. The next steps
in this research will be apply this integration approach in several distributed testbeds. Examples
of applications envisioned include intelligent multi-agent design systems supporting collaborative
designs of complex circuits and devices by multiple design teams as well as intelligent planning,
scheduling and replanning agents supporting distributed transportation planning and scheduling
applications.

5 Acknowledgements

The concepts and ideas in this paper are the result of contributions from a great many people. Major
contributions were made by Hans Chalupsky, Mike Genesereth, Stu Shapiro, and Gio Wiederhold.

April, 1992 17

