
An Agent-based Infrastructure for Enterprise Integration �

R. Scott Cost, Tim Finin, Yannis Labrou, Xiaocheng Luan, Yun Peng, Ian Soboroff
Laboratory for Advanced Information Technology

Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County

Baltimore, Maryland 21250
cost@acm.org,ffinin, jklabrou, xluan1, ypeng, iang@cs.umbc.edu

James Mayfield
Research and Technology Development Center

Johns Hopkins University Applied Physics Laboratory
Laurel, Maryland 20723

james.mayfield@jhuapl.edu

Akram Boughannam
Advanced Manufacturing Solutions Development

IBM Corporation
Boca Raton, Florida 33431

akram@us.ibm.com

Abstract

Jackal is a Java-based tool for communication using the
KQML agent communication language. Some features that
make it extremely valuable to agent development are its con-
versation management facilities, flexible, blackboard style
interface and ease of integration. Jackal has been devel-
oped in support of an investigation of the use of agents
in enterprise-wide integration of planning and execution
for manufacturing. This paper describes Jackal at a sur-
face and design level, and demonstrates its use in a multi-
agent system that supports intelligent integration of enter-
prise planning and execution.

1 Introduction

Jackal is a Java package that allows applications written
in Java to communicate via the KQML [15] agent commu-
nication language. It is designed to be used as a ‘tool’ by
other applications, in that it does not require that applica-
tions be modified or extend some standard shell. Addition-

�This work is supported in part by the Advanced Technology Program,
administered by the National Institute of Standards and Technology, under
agreement number: 70NANB6H2000.

ally, Jackal is designed so that multiple instances of it, and
therefore multiple agents, may be run within the same Java
Virtual Machine.

Jackal has been developed as part of a larger effort to de-
velop an agent infrastructure for manufacturing information
flow. It has been used to facilitate communication among
diverse agents responsible for collecting, processing and
distributing information on a manufacturing shop floor.

In next section, we introduce Jackal within the context
of some other related agent systems, and follow that with
some motivation for higher-level conversation specification.
Next, we present Jackal’s design in some detail. Finally, we
discuss the domain within which Jackal has been developed
- enterprise integration automation - and illustrate this with
an example.

2 Jackal and Agent Development

Agents that will interact with one another require some
method of communication in order to coordinate their ac-
tivities and distribute and collect information. To this end,
several agent communication languages (e.g., KQML [15],
FIPA ACL [16], ARCOL [16], ICL [29], AgenTalk [21],
KaOS [6], and AOP [43]), and various software tools for
them (e.g., TKQML [11], OAA [29], JAT and JATLite

1

[17, 39]), have been developed. Jackal is a tool for the
use of KQML by agents written in the Java programming
language. Java is a useful language for writing agents be-
cause it is relatively platform independent and has good
language support for multi-threading. Jackal benefits from
these properties, and relies exclusively on the Sun JDK
1.2 classes and virtual machine, unmodified. This maxi-
mizes the likelihood that Jackal-based agents can run with-
out modification on any platform that supports Java. Not
only can Jackal-based agents run on diverse or remote en-
vironments; many may coexist within the same Java Virtual
Machine. This is exploited by transparent protocol adapters
for shared memory message passing.

Adding KQML communication abilities to any Java pro-
gram requires minimal modification of existing code. This
is because Jackal’s functionality is accessed through a class
instance, which can be shared among agent components.
Thus, after creating an instance of Jackal (the J3.Intercom
Class) the agent accesses Jackal’s functionality through
method calls on this instance, which can be shared or passed
as a parameter to other classes. This is in contrast to sys-
tems that require a program to subclass an agent shell, or
otherwise restructure itself. With this Jackal instance, the
agent gains more than just the ability to send and receive
messages, however. Jackal’s design is based in large part
on, and implements, the KQML Naming Scheme (KNS),
an evolving standard for resolving agent names in a hierar-
chically structured, dynamic environment. This means that
the agent application need only deal with symbolic agent
names, and may leave issues such as physical address reso-
lution and alias identification to the Jackal infrastructure.

Two components that work together to provide the great-
est benefit to the agent are the conversation management
routines and the Distributor, a blackboard for message dis-
tribution. The conversation system supports the use of eas-
ily interchangeable protocols for interaction, which guide
the behavior of the system. The Distributor presents a flex-
ible, active interface for internal message retrieval by agent
components. While the Distributor optimizes access to the
message flow, it is the conversation system that gives it its
real value; the next section will discuss in depth the rational
behind the conversation-based approach.

3 Conversation-Based Specification of Inter-
action

The study of ACLs is one of the pillars of current agent
research. KQML and the FIPA ACL are the leading can-
didates as standards for specifying the encoding and trans-
fer of messages among agents. While KQML is good for
message-passing among agents, the message-passing level
is not actually a very good one to exploit directly in build-
ing a system of cooperating agents. After all, when an agent

sends a message, it has expectations about how the recipi-
ent will respond to the message. Those expectations are not
encoded in the message itself; a higher-level structure must
be used to encode them. The need for such conversation
policies is increasingly recognized by the KQML commu-
nity [23, 24, 25, 26], and has been formally recognized in
the latest FIPA draft standard [16, 12].

It is common in KQML-based systems to provide a mes-
sage handler that examines the message performative to de-
termine what action to take in response to the message.
Such a method for handling incoming messages is adequate
for very simple agents, but begins to break down as the
range of interactions in which an agent might participate
increases, necessitating selection based on a number of ad-
ditional factors relating to the current message and others
which preceded it. Missing from the traditional message-
level processing, but required for this more complex sce-
nario, is a notion of message context.

A notion growing in popularity is that the unit of com-
munication between agents should be the conversation. A
conversation is a pattern of message exchange that two (or
more) agents agree they will follow in communicating with
one another. In effect, a conversation is a communications
protocol, albeit one that may be initiated through negoti-
ation, and may be short-lived relative to the way we are
accustomed to thinking about protocols. A conversation
lends context to the sending and receipt of messages, fa-
cilitating more meaningful interpretation. The adoption of
conversation-based communication carries with it numer-
ous advantages to the developer, including:

� A better fit with intuitive models of how agents will interact
than is found in message-based communication.

� A closer match to the way that network research approaches
protocols, which allows both theoretical and practical results
from that field to be applied to agent systems.

� Separation of conversation structure and the actions to be
taken by an agent engaged in the conversation. This allows
the same conversation structure to be used by more than one
agent, in more than one context. In particular, two agents can
use the same conversation structure to ensure that they will
engage in the same dialogue.

� The standard advantages of the underlying ACL, including
language-independence and ontology-independence.

Until very recently, little work has been devoted to the
problem of conversation specification and implementation
for mediated architectures. Increased interest is evidenced
by the advent of a workshop on conversation policies at the
Third International Conference on Autonomous Agents, in
1999. Strides must be taken to make conversation specifi-
cations easy to encode and reuse. Additionally, libraries of

2

specifications must be compiled, along with an ontologies
of conversations.

To achieve these goals, we must solve three main prob-
lems:

1. Conversation specification: How can conversations best be
described so that they are accessible both to people and to
machines?

2. Conversation sharing: How can an agent use a conversation
specification standard to describe the conversations in which
it is willing to engage, and to learn what conversations are
supported by other agents?

3. Conversation aggregation: How can sets of conversations be
used as agent ‘APIs’ to describe classes of capabilities that
define a particular service or capability?

3.1 Conversation Specification

A specification of a conversation that could be shared
among agents must contain several kinds of information
about the conversation and about the agents that will use
it. First, the sequence of messages must be specified. One
popular solution that has many advantages is the use of de-
terministic finite-state automata (DFAs) for this purpose;
DFAs can express a wide variety of behaviors while remain-
ing conceptually simple. Next, the set of roles that agents
engaging in a conversation may play must be enumerated.
For example, a conversation that allows a sensor to report
an unusual condition to all interested agents might have two
roles: sensor and broker (which would in turn be specializa-
tions of sentinel and sentinel-consumer roles). Many con-
versations will be dialogues, and will specify just two roles;
conversations may have more than two roles, however, and
represent the coordination of communication among several
agents in pursuit of a single common goal.

DFAs and roles dictate the syntax of a conversation, but
say nothing about the conversation’s semantics. The ability
of an agent to read a description of a conversation, then en-
gage in such a conversation, demands that the description
specify the conversation’s semantics. However, reliance
on a full-blown, highly expressive knowledge representa-
tion language may limit a specification’s usefulness. We
believe that a simple ontology of common goals and ac-
tions, together with a way to relate entries in the ontology
to the roles, states, and transitions of the conversation spec-
ification, will be adequate for many basic purposes. This
approach sacrifices expressiveness for simplicity and ease
of implementation. It is nonetheless perfectly compatible
with attempts to relate conversation policy to the seman-
tics of underlying performatives, as proposed for example
by [5, 6]. Most complex interactions, however, will require
the use of a model that is more expressive, but which retains

many of the positive features of DFAs; we will return to this
later.

The capabilities we have outlined will allow the easy
specification of individual conversations. To develop sys-
tems of conversations though, developers must have the
ability to extend existing conversations through specializa-
tion and composition. Specialization is the ability to cre-
ate new versions of a conversation that are more detailed
than the original version; it is akin to the idea of inheriting
a subclass in an object-oriented language. Composition is
the ability to combine two conversations into a new, com-
pound conversation. Development of these two capabilities
will entail the creation of syntax for expressing a new con-
versation in terms of existing conversations, and for linking
the appropriate pieces of the component conversations. It
will also demand solution of a variety of technical prob-
lems, such as naming conflicts, and the merger of semantic
descriptions of the conversations.

3.2 Conversation Sharing

A standardized conversation language, as proposed
above, dictates how conversations should be represented;
however, it does not say how such representations are to be
shared among agents. While the details of how conversation
sharing is accomplished are more mundane than those of
conversation representation, they are nevertheless crucial to
the viability of dynamic conversation-based systems. Three
questions present themselves:

� How can an agent map the name of a conversation to the
specification of that conversation?

� How can one agent communicate to another the identity of
the conversation it is using?

� How can an agent determine what conversations are handled
by a service provider that does not yet know of the agent’s
interest?

3.3 Conversations Sets as APIs

The set of conversations in which an agent will partici-
pate defines an interface to that agent. Thus, standardized
sets of conversations can serve as Abstract Agent Interfaces
(AAI), in much the same way that standardized sets of func-
tion calls or method invocations serve as APIs in the tradi-
tional approach to system building. That is, an interface
to a particular class of service can be specified by identi-
fying a collection of one or more conversations in which
the provider of such a service agrees to participate. Any
agent that wishes to provide this class of service needs only
to implement the appropriate set of conversations. To be
practical, a naming scheme will be required for referring to
such sets of conversations, and one or more agents will be

3

needed to track the development and dissolution of particu-
lar AAIs. In addition to a mechanism for establishing and
maintaining AAIs, standard roles and ontologies, applicable
to a wide variety of applications, will also be required.

As mentioned, until recently there has been little work
on communication languages from a practitioner’s point of
view. If we set aside work on network transport proto-
cols or protocols in distributed computing (e.g., CORBA)
as being too low-level for the purposes of intelligent agents,
the remainder of the relevant research may be divided into
two categories. The first deals with theoretical constructs
and formalisms that address the issue of agency in general
and communication in particular, as a dimension of agent
behavior (e.g., Agent Oriented Programming (AOP) [43]).
The second addresses agent languages and associated com-
munication languages that have evolved to some degree to
applications (e.g., TELESCRIPT [47], now Odyssey [19]).
In both cases, the bulk of the work on communication lan-
guages has been part of a broader project that commits to
specific architectures.

Agent communication languages like KQML provide a
much richer set of interaction primitives (e.g., KQML’s per-
formatives), support a richer set of communication proto-
cols (e.g., point-to-point, brokering, recommending, broad-
casting, multicasting, etc.), work with richer content lan-
guages (e.g., KIF), and are more readily extensible than
any of the systems described above. However, as dis-
cussed above, KQML lacks organization at the conversa-
tion level that lends context to the messages it expresses
and transmits. Limited work has been done on implement-
ing conversations for software agents, and almost none has
been done on expressing those conversations. As early as
1986, Winograd and Flores [48] used state transition di-
agrams to describe conversations. The COOL system [2]
has perhaps the most detailed current state transition-based
model to describe agent conversations. Each arc in a COOL
state-transition diagram represents a message transmission,
a message receipt, or both. One consequence of this policy
is that two different agents must use different automata to
engage in the same conversation. We believe that a conver-
sation standard should clearly separate message matching
from actions to be carried out when a match occurs; do-
ing so will allow a single conversation specification to be
used by all participants in a conversation. This, in turn, will
allow conversation specifications to describe standard ser-
vices, both from the viewpoint of the service provider, and
from that of the service user.

COOL also uses an :intent slot to allow the recipient to
decide which conversation structure to use in understanding
the message. This is a simple way to express the seman-
tics of the conversation. We argue below that more gen-
eral descriptions of conversation semantics will be needed
if agents are to acquire and engage in new conversations on

the fly. The challenge will be to develop a language that is
general enough to express the most important facts about
a conversation, without being so general that it becomes
an intellectual exercise, or too computationally expensive
to implement.

Other conversation models have been developed, using
various approaches. Extended FSM models, which, like
COOL, focus more on expressivity than adherence to a
model include Kuwabara et al. [22, 21], who add inheri-
tance to conversations; Wagner et al. [46]; and Elio and
Haddadi [14], who defines a multilevel state machine, or
ATM. A few others have chosen to stay within the bounds
of a DFA, such as Chauhan [7], who uses COOL as the basis
for her multi-agent development system,1 Nodine and Un-
ruh [34, 35], who use conversation specifications to enforce
correct conversational behavior, and Pitt and Mamdani [40],
who use DFAs to specify protocols for BDI agents. Also us-
ing automata, Martin et al. [30] employ Push-Down Trans-
ducers (PDT). Lin et al. [28] and Cost et al. [9] demonstrate
the use of Colored Petri Nets, and Moore [33] applies state
charts. Parunak [37] employs Dooley Graphs. Bradshaw [5]
introduces the notion of a conversation suite as a collection
of commonly used conversations known by many agents.
Labrou [23] uses definite clause grammars to specify con-
versations. While each of these works makes contributions
to our general understanding of conversations, more work
must be done in getting agents to share and use conversa-
tions.

3.4 Defining Common Agent Services via Conver-
sations

A significant impediment to the development of agent
systems is the lack of basic standard agent services that
can be easily built on top of the conversation architecture.
Examples of such services are: name and address resolu-
tion; authentication and security services; brokerage ser-
vices; registration and group formation; message tracking
and logging; communication and interaction; visualization;
proxy services; auction services; workflow services; co-
ordination services; and performance monitoring services.
Services such as these have typically been implemented as
needed in individual agent development environments. Two
such examples are an agent name server, treated below, and
an intelligent broker.

3.4.1 Agent Name Server

At first blush, the problem of mapping from an agent name
to information about that agent (such as its address) seems
trivial. However, solving this problem in a way that can

1More recent work with this project, JAFMAS, explores conversion of
policies to standard Petri Nets for analysis [18].

4

easily scale as the number of users and amount of data to
be processed grows is difficult. We believe that develop-
ment of a successful symbolic agent addressing mechanism
demands at least two advances:

1. A simple naming convention to place each role an agent
might play in an organization at a unique point in a names-
pace for that organization. Currently there is no widely ac-
cepted mechanism for universal unique agent naming (in the
way that there now is, e.g., for Internet hosts or web docu-
ments).

2. An efficient, scalable name service protocol for mapping
from symbolic role names to information about the agents
that fill those roles.

The proposed KNS (Section 4) meets both of these demands.

To a large extent, the desired techniques can be mod-
eled after existing name service techniques such as the DNS
(which is widely implemented) and CORBA (whose names-
pace mechanisms are only narrowly implemented). Such
techniques are well studied, highly reliable, and scalable.
Agent name service will differ from DNS primarily in that
agents will tend to appear, disappear, and move around
more frequently than do Internet hosts. This will necessi-
tate the development of naming conventions that are less
rigid than those used in DNS, and algorithms for mapping
from names to agent information that do not rely on the
static local databases found in DNS.

4 KNS

Before communication can take place, there must be a
known destination. KNS adds a communication layer in
which symbolic names are mapped to actual transport ad-
dresses. In addition, however, it offers advanced support
for dynamic group formation and disbanding, and mainte-
nance of persistent, distributed agent identity. KNS is cur-
rently being used within Jackal, UMBC’s Java-based agent
development framework. This section introduces the basic
concepts underlying KNS.

The problem of agent naming is central to agent com-
munication. We would like to be able to talk about agents
with reasonable certainty that we are all discussing the same
ones, and we would like to be able to send messages to
agents that we know by name. The former statement argues
that names should be unique, within some context, and the
latter that they should be resolvable into addresses which
can be used by our underlying transport mechanism. This
can be accomplished by having the address either implicitly
or explicitly encoded in the name, or by providing a service
to perform the resolution.

We can think of the problem in three layers of abstrac-
tion. At the top is the agent’s identity, that which differen-
tiates it from all other agents. One step below this is the

name, and at the base is the address. Although an agent’s
identity will never change (by definition), its name(s) may,
based on changing roles or associations. Addresses may
change even more frequently, because of physical reloca-
tion or constraints of the underlying operating system. This
dynamism argues for the use of service-based resolution
(SBR) between both layers. In addition, SBR allows for
the use of symbolic names with useful meaning.

Uniqueness is a more difficult problem. It is trivial to
assign agents simple unique identifiers (e.g. serial num-
bers) from some central authority. However, if an agent
holds such an identifier, it must still present the tag to some
authority for resolution. An address, for instance a URL,
eliminates the need for SBR altogether, but ties the agent to
that address. We propose to represent an agent’s identity by
the collection of names it uses which we call the persistent
distributed identity (PDI). This set can change as names are
added or removed, but it remains a constant reference point
for the agent itself. Protocols added to the basic agent reg-
istration scheme maintain the PDI with little overhead. In
addition to the benefits of identity, the scheme provides a
valuable mechanism for storing and retrieving information
relating to the agent such as certificates.

KNS is a set of protocols for agent naming and address-
ing. They were developed and used as a basis for the design
of Jackal 3.0. This section provides an overview of KNS.

The KNS covers several layers of abstraction, and pro-
vides basic support for agent operation. It should be noted
that the KNS protocols are layered on top of the KQML, or
linguistic, layer.

First, some definitions:

1 DEFINITION (GIVEN NAME) A symbolic name chosen
for the agent application by itself or some other authority.

2 DEFINITION (LOCAL NAME) A Given Name qualified
by a numeric index, and assigned by a Domain Registrar
upon registration.

3 DEFINITION (FQAN) Fully Qualified Agent Name; the
canonical form for names in KNS. Every FQAN names a
domain.

4 DEFINITION (DOMAIN) A virtual group, defined by reg-
istration and unregistration, and managed by the owner of
the FQAN which names it.

5 DEFINITION (ALIAS) A FQAN that is owned by the
same agent as another FQAN is an alias for that FQAN.

6 DEFINITION (ALIAS SET) Also ‘Alias Net’; for an agent
A, the set of domains with which A is registered.

5

7 DEFINITION (AS) Agent Server; holds a database of in-
formation for given agent.

8 DEFINITION (PAS) Primary AS; there is only one for
any given agent.

9 DEFINITION (SAS) Backup (secondary) AS; serve as
backup to PAS. There can be any number.

4.1 Assumptions

KNS makes some basic assumptions about the environ-
ment in which it is used:

� Message delivery by the underlying transport mechanisms is
reliable. The protocols do not incorporate any retry mech-
anism for delivery failure to a specified address. Further, if
KNS protocols are properly implemented, including strong
message delivery, an agent may be consider unreachable if an
expected acknowledgment is not received on a single trans-
mission.

� Authentication (KNS does not specify what kind) in the mes-
sage transport layer assures that the name in the sender field
of the message is in fact the sender of the message. Security
in KNS is identity based, so any privileges enjoyed by the
named sender are applied to the accompanying transaction.

� Agents purporting to implement KNS correctly and respon-
sibly render services as appropriate.

� It is possible to distinguish agents that implement KNS from
those that do not. This relates to the general problem of de-
termining an agents language or message format. Initially, an
agent should be given the name of another with which to reg-
ister; that agent does implement KNS, as do any agents lo-
cated through KNS name/address resolution. However, new
contacts in unrelated systems may not.

4.2 Agent Names

The foundation of KNS is its agent-naming scheme.
It encompasses both symbolic and direct (URL-based)
names. The symbolic component is modeled after the DNS
scheme [31, 32], and extends it to allow a URL to fill the
root position of a name. A FQAN is defined as follows:

GivenName = [a� zA� Z0 � 9]f1; 64g (1)

NameIndex = 0 j ([1 � 9][0� 9]f; 10g) (2)

LocalName = < GivenName >< NameIndex > (3)

FQAN = (< LocalName > :) �

(< GivenName >j< LocalName >j< URL >) (4)

As in DNS, names registered within a Domain must
be unique. Rather than accepting only applications for
unique names, KNS adopts the policy of accepting any
name and adding a distinguishing suffix. Some examples
of FQANs are: bob[4].ans, freida, barbecue[34].cs and

fred[2].http://www.umbc.edu/. Since names correspond to
entity/Domain relationships, an agent may have any number
of names, and may use them interchangeably.

In light of our earlier discussion of name uniqueness,
it should be clear that this definition allows for unquali-
fied names. This is included as a convenience, since many
contained systems use well-known names for common re-
sources. We assume then that unqualified names are used
only in closed contexts in which the address of name root is
publicly known. In general, the use of fully qualified names
is preferred. The technically correct definition provides for
a root of URL only.

Every FQAN represents a Domain. Thus, an agent
can ‘have’, or manage, multiple Domains, although none
is required to actively accept Domain registrations. An
agent registers with a Domain either with its Given Name,
or under another FQAN that it holds. In the latter
case, protocols are engaged to update the Alias Set for
that agent. In either case, the agent is given a new
FQAN, which is derived from the Given Name of the
name submitted. For example, if an agent registers
orianus.local with freckles.cs[1].umbc.ans (alternatively,
freckles.cs[1].umbc.http://jackal.cs.umbc.edu/ans), it may
receive the FQAN orianus[14].cs[1].umbc[23].ans.

An alternative is to represent the name of an agent
as an actual URL. While this would be enormously con-
venient, it creates unacceptable naming ambiguity. Any
URL should be usable as a legal agent name, for reasons
of flexibility, and for compatibility with systems that use
only URLs as agent names. Given that constraint, it be-
comes impossible to determine which portion of a URL
constitutes the root, and which the domain. For example,
http://jackal.cs.umbc.edu/ans.umbc.cs[1].freckles could in-
dicate four different names, depending on where one de-
cided the root name ended. It is difficult to remedy this
problem directly without abusing or outright violating the
URL syntax.

4.3 KNS Architecture

KNS is served by a dynamic, distributed database sys-
tem, depicted in Figure 1. The two databases maintained are
the Domain Registry (one for each Domain), and the Agent
Registry (one for each agent, and one or more backups).
We impose one additional virtual structure on the name hi-
erarchy, called the Alias Set (or AliasSet). The Alias Set
consists of all Domains with which an agent has ever reg-
istered. One Domain is designated as the Primary Agent
Server (PAS), and it hosts the primary agent registry. Like-
wise, a Backup Agent Server (BAS) hosts the backup agent
registry. All Agent Servers (AS) maintain a reference to
the target agent’s PAS and BASs. ASs are arranged in a
star configuration in order to minimize messaging overhead.

6

The AliasSet itself is treated as a single entity; queries are
directed to any member, and if necessary, are forwarded di-
rectly to the PAS. Member agents notify the PAS of any
changes, and the PAS broadcasts updates to the remaining
members of the set.

One dependency is that agent information is not dis-
carded. While this is not entirely realistic, is means that
agents can be located most of the time, and that more re-
sources can be dedicated to specific localities to increase
the level of fault tolerance. For example, under the KNS
scheme, if agent bob.erols.ans unregisters from erols.ans,
it will still be possible to locate bob through the erols.ans
domain. If erols.ans terminates, and ans has lifted its do-
main, location is still possible. However, if erols.ans goes
down catastrophically or otherwise dissolves the domain,
it will not be possible to reach bob via its previous name.
Agents who are concerned with reachability would there-
fore prefer to register with strong domains, and would show
preference for names that they felt would more reliably per-
sist. This situation could be improved by allowing agents to
register, have included in their address information, or send
with messages an alternate name; this is reminiscent of the
use of sender and reply-to fields.

ans1

umbc[2].ans

Agent99

Baltimore

1. Register as Agent99, get
name: Agent99[1].ans1

2. Register as Agent99.ans1, get
name Agent99[12].umbc[2].ans

3. Register as Agent99[12].umbc[2].ans,
get name Agent99[3].Baltimore

Figure 1. KNS Alias Network. The registrars
of Agent99 coordinate to maintain the agent’s
distributed identity.

4.4 KNS Protocols

KNS specifies protocols for agent addressing and nam-
ing, authentication, aliasing and Domain registration. These
are sketched below:

1. Group Membership

(a) Register: Register with a new Domain (multiple reg-
istrations are permitted). Registration implies a com-
mitment to membership in a Domain. A registration
must contain one address that is reachable by the reg-
istrar. The name given must be a FQAN. Registration

causes the intended registrar to invoke the protocol for
joining an AliasSet, if the name given by the registrant
indicates a prior domain association.

(b) Join: Identify the Alias Set for a registrant, and join.
The agent accepts the responsibility of forwarding PAS
queries, and becomes eligible to become a BAS for the
registering agent, though the latter is not required.

(c) Unregister: Terminate association with a Domain. The
registration entry is not deleted; it is moved to a dor-
mant status, and the addresses are cleared.
The potential for unregistration creates instability in
the naming hierarchy. For this reason, one of two pro-
tocols should be followed in the event that an agent
must leave a Domain.

� Domain Lifting: For each domain owned by the
departing agent, the owner of the parent domain
takes on the subdomain and its registration re-
sponsibilities. This involves a transfer of the reg-
istry, and a conversion of the departing agents
registration entry from real to virtual.

� Recursive Domain Dissolution: The agent wish-
ing to unregister first excuses or discharges (be-
low) all agents registered in the Domain that is
to be eliminated, using existing protocols. Each
in turn does the same until Domain and all of its
subdomains are eliminated.

Clearly, lifting is preferable to dissolution, since no
naming information is lost. However, dissolution does
at least prevent the use of names after they have be-
come invalid.

(d) Excuse: Request that a registrant unregister from a
named group. A positive acknowledgment constitutes
an implicit unregistration. A negative or no acknowl-
edgment is followed by a discharge.

(e) Discharge: Revoke an agent’s membership in a Do-
main. This action does not require consent or acknowl-
edgment; it should be used only in order to elicit a re-
sponse once a request to unregister has failed.

(f) Leave an Alias Set: Terminate relationship with prin-
cipal for that set. If an agent is the principal or a sec-
ondary, it must first arrange successful transfer of the
database and database responsibilities.

2. Registry Query/Update

(a) Query for the address(es) of an agent: Note that ad-
dress queries are posed to Domain registries; there-
fore, querying an agent for its own address(es) is not
provided for. KNS does not prohibit responding to
queries about one’s own addresses. However, some
systems which integrate KNS, e.g. Jackal, do not pro-
vide agents with access to information at the message
transport level directly.

(b) Update a registry entry: by adding or deleting an ad-
dress or other data. It is permitted for an agent to re-
move all addresses from its registration entry; this does
not imply unregistration.

7

Java VM

Java Class Libraries

Jackal Svc Extensions Agent/User Services

Jackal Services

Intercom/Jackal API

Utility

Message Bus

Buffers

Synch

Figure 2. Jackal Architecture

(c) Invalidate: notify an agent that an address it has pro-
vided is invalid. The agent receiving the invalidate
should take steps to right the registry for the domain
in question, either by posing queries, marking or can-
celing the offending entry.

3. Agent Information Server Query/Update

(a) Identify the alias server for an agent of a Given Name.

(b) Verify a FQAN: This is implemented as an address
query, which will return an address packet if the
agent’s name is found in the registry.

(c) Get the aliases for an agent of a Given Name.

(d) Request that another agent replicate a (local) alias
database: An agent’s PAS may at its discretion request
that any or all members of the agent’s AliasSet repli-
cate the AID. If an agent accepts the request, it be-
comes a BAS, and receives updates from the PAS. Its
new status is broadcast to the members of the AliasSet.

(e) Abdicate: A PAS relinquishes control of the AliasSet
to a member BAS. Upon acceptance, the abdicating
PAS begins forwarding all incoming traffic to the new
PAS, while the new PAS broadcasts the change of sta-
tus to all members of the set. Any agent that serves as
a BAS accepts the responsibility of potentially serving
as PAS.

(f) Resign: A BAS notifies the AliasSet’s PAS that it will
no longer serve as BAS. Only a cursory acknowledg-
ment is required. The resigning agent is still a member
of the AliasSet.

4. Additional Features

(a) Broadcast. Messages sent to a virtual Domain are au-
tomatically copied by the registrar of the virtual Do-
main to all members. This is done as a ‘direct’ for-
ward; that is, no modification or wrapping of the mes-
sage. This process repeats itself recursively.

5 An Overview of Jackal’s Design

Jackal was designed to provide comprehensive function-
ality, while presenting a simple interface to the user. Thus,

although Jackal consists of roughly seventy distinct classes,
all user interactions are channeled through one class, hiding
most details of the implementation. Although there are sig-
nificant benefits in some cases to sharing a Jackal instance
among several agents, the typical usage is as an accessory to
an individual agent. Thus, the Jackal architecture does not
describe a multi-agent system based around a shared tuple
space, as it is often perceived, but a private system of which
each agent in a system owns an instance.

5.1 Architecture

As illustrated in Figure 5, Jackal has a layered architec-
ture which facilitates dynamic reconfiguration. Its native
execution environment is standard, off-the-shelf Java. Cen-
tral to Jackal’s operation is a set of enhanced synchroniza-
tion primitives and buffers, which are used to tie together
its very loosely coupled components. TheMessage Busis
the essence of Jackal. Consisting principally of the conver-
sation interpreters and a message redistribution system, it is
the common path for all message traffic in a Jackal-based
agent. This Bus, wrapped along with some additional util-
ities, by the Jackal API, is referred to as the JackalCore.
Both Jackal and agent services interact with the Core and
each other through the API. Some examples of Jackal ser-
vices are the Agent Naming Services, and Message Trans-
port Services. The JackalPackageas it is typically dis-
tributed consists of the Core and a set of standard services.

5.2 Intercom and the Jackal Core

The Intercom class is the bridge between the agent appli-
cation and Jackal. The only visible component of the Core,
it controls startup and shutdown of Jackal, provides the
application with access to internal methods, houses some
common data structures, and plays a supervisory role to the
communications infrastructure.

5.3 Message Bus

All messages, between agents or even intra-agent com-
ponents, traverse Jackal’s Message Bus. Through use of the
Message Transport Service, the Bus can be viewed as a dis-
tributed entity, and messages may be passed to symbolically
named entities, without regard to their physical location.

5.3.1 Conversations

Based largely on the work of Labrou and Finin [26] re-
garding a semantics for KQML, we have created proto-
cols which describe the correct interactions for various per-
formatives and subsequent messages. These protocols are
‘run’ as independent threads for all current conversations.

8

This allows for easy context management, while providing
constraints on language use and a framework for low-level
conversation management. This is in contrast with earlier
approaches (e.g., TKQML [11]) that require the agent to
maintain context on their own.

The Conversation Space is a virtual entity, consisting of
the collection of currently active conversations, run by dis-
tinct threads on individual protocol interpreters. Messages
are associated with current (logical) threads based on their
ID and assigned to ongoing conversations. If no such as-
signment can be made, a new conversation appropriate to
the message is started. Declarative conversation specifi-
cations are downloaded as needed at runtime from an on-
line repository. They can specify something as simple as
a query-response interaction, or as complex as a sophisti-
cated, multi-party negotiation and beyond. In conjunction
with an ontology of well-known actions, these conversa-
tions can be made to implement a wide range of agent be-
haviors.

The conversation management component offers a num-
ber of significant benefits to the agent:

� Running conversations in individual threads provides maxi-
mum flexibility.

� Conversations, in conjunction with the Distributor, route
messages automatically to the threads that need them.

� Each conversation maintains a local store, which can be ac-
cessed by the agent via a message ID, and which serves as
the conversation’s context.

� Since conversations are declaratively specified, they can be
loaded on demand. Our current agents download only the
conversations they will need.

� The conversation mechanisms and the specification are al-
most completely independent of the content or message lan-
guage used,2 and so could be easily be tuned work in a
‘multi-lingual’ environment.

� Actions can be associated with conversation structures, en-
hancing their utility.

5.3.2 Distributor

The Distributor is a Linda-like blackboard, which serves to
match messages with requests for messages. This is the sole

2Messages in Jackal are represented as Java objects, essentially collec-
tions of attribute/value pairs. The values can be of a variety of types. Jackal
expects a message to have certain basic attributes (e.g. sender, performa-
tive), and places no restrictions on additional attributes. Values which are
critical to Jackal’s operation are mapped to/from corresponding, internally
correct values. The conversation framework itself specifies the methods
to be applied to messages, such as comparisons, and so conversation tem-
plates can be tuned to any language. Note that this still leaves open the
question of management issues, which often vary from system to system.

interface between the agent and the message traffic. Its con-
cise API allows for comprehensive specification of message
requests. Requesters are returned message queues, and re-
ceive all return traffic through these queues. Requests for
messages are based on some combination of message, con-
versation or thread ID, and syntactic form. They also per-
mit actions, such as removing an acquired message from
the blackboard or marking it as read only. A priority setting
determines the order or specificity of matching. Finally, re-
quests can be set to persist indefinitely, or terminate after a
certain number of matches.

The use of the Distributor in Jackal allows the integration
of the conversation management utilities easily into existing
agents, by providing a flexible, message-based interface.

5.4 Services

A service here refers to either components of the control-
ling agent, or subthreads of Jackal itself. Two services pack-
aged with Jackal are the Message Transport Service and the
Agent Naming Service.

5.4.1 Message Transport Service

Jackal runs a Transport Module for each protocol it uses
for communication. Jackal 3.0 comes with a module for
TCP/IP, which supports SSL, and one for shared memory
communication within a Java Virtual Machine. Users can
create and add additional modules for other protocols. A
Transport Module is responsible for receiving messages at
some known address, and transmitting messages out via a
given protocol.

A mechanism known as the Switchboard acts as an inter-
face between the Transport Modules and the rest of Jackal,
facilitating the intake of new messages, and carrying out
transmission requests from the application. Utilizing an in-
telligent address cache, the Switchboard must formulate a
plan for the delivery of a message and implement it, with-
out creating a bottleneck to message traffic. The address
cache is a multilayered cache supporting various levels of
locking, allowing it to provide high availability. Unsuccess-
ful address queries trigger underlying KNS lookup mecha-
nisms, while blocking access to only one individual listing.

5.4.2 Naming and Addressing Service

Jackal supports KNS transparently through an intelligent
address cache. Standard Jackal services exist to implement
KNS, and allow any agent to register with any other agent,
facilitating the formation of relationships or teams. Agents
can hold multiple identities, and choose which to use in dif-
ferent situations. Protocols implemented by the naming ser-
vices allow agents to easily discover other agents, regardless
of the their current location or chosen identity.

9

6 Enterprise Integration

The production management system used by most of to-
day’s manufacturers consists of a set of separate applica-
tion softwares, each for a different part of the planning,
scheduling, and execution (P/E) process [45]. Most P/E ap-
plications are legacy systems developed independently over
many years, and are not equipped to handle complex busi-
ness scenarios [4, 20]. Typically, such scenarios involve the
coordination of responses by several P/E applications to ex-
ternal environment changes (price fluctuations, changes of
requests from customers and suppliers, etc.) and internal
execution dynamics within an enterprise (resource changes,
mismatches between plan and execution, etc.). Timely so-
lutions to these scenarios are crucial to agile manufactur-
ing, especially in the era of globalization, automation, and
telecommunication [13]. Currently, these scenarios are pri-
marily handled by human managers, and the responses are
often slow and less than optimal.

The Consortium for Intelligent Integrated Manufactur-
ing Planning-Execution (CIIMPLEX), consisting of several
private companies and universities, was formed in 1995
with the primary goal of developing technologies for in-
telligent enterprise-wide integration of planning and execu-
tion for manufacturing [8]. CIIMPLEX has adopted as one
of its key technologies the approach of intelligent software
agents, and has experimented with several multi-agent sys-
tems (MAS) for various difficult tasks involved in enterprise
integration. Our effort on MAS development has been con-
centrated on those P/E scenarios that represent exceptions to
the normal or expected business processes and whose reso-
lution involves several P/E applications [38]. Routine, nor-
mal communication between P/E applications is handled by
another, non-agent based infrastructure that provides per-
sistent data transfer with static, pre-defined communication
patterns; the message format is the OAG’s Business Object
Document (BOD)

The scenarios for which we developed MASs include:

1. Process rate change. Significant changes in the process
rate of an essential operation may affect the production plan
and schedule. Moreover, depending on the severity of the
change, different corrective actions may be required, rang-
ing from doing nothing to to increasing shift or machinery,
or even rescheduling production (and possibly delaying de-
livery of some orders).

2. Exception in data transfer. Even in routine exchange trans-
action data between applications, exceptions such as missing
messages, messages out of sync, or messages with incorrect
format or parameters may occur. The source of theses errors
needs to be identified and corrected, and, if necessary, data
needs to be re-sent.

3. Application initialization. It is, at times, necessary to intro-
duce into the integrated environment a new application in

order to replace an outmoded application or to provide func-
tion that is not available in the existing environment. The
new application needs to be brought into sync with the rest
of the system (e.g., it needs to populate its own database with
appropriate data from existing applications so that it can start
work from a state that is consistent with the rest of the sys-
tem.)

To provide integrated solutions to the above outlined sce-
narios, as simple as they are, is by no means a trivial un-
dertaking. First, specialized agents need to be developed
to provide functions which are not covered by any of the
existing P/E applications, such as exception detection, data
collection and mining, and impact analysis. As integration
tasks, these functions fall into the ‘white space’ between the
P/E applications. Next, a reliable and flexible inter-agent
communication infrastructure needs to be developed to al-
low agents to effectively share information, knowledge, and
services. Finally, a mechanism for the runtime collabora-
tion of all these pieces also needs to be developed.

In the next section, we will describe in detail an MAS we
developed for the process rate change scenario. In general,
all MASs for the above scenarios include an Agent Name
Server (ANS) and a Broker Agent (BA) in order to facilitate
the coordination of other, specialized agents. All agents use
the KQML as the agent communication language, and use
a subset of KIF that supports Horn clause deductive infer-
ence as the content language. A special service agent, called
the Gateway Agent (GA), is created to provide interface
between the agent world and the application world. GA’s
functions, among other things, include making connections
between the transport mechanisms (e.g., between TCP/IP
and MQ Series) and converting messages between the two
different formats (KQML/KIF and BOD). These agent sys-
tems are all supported by Jackal [10]. From a pragmatic
point of view, we have found these experiences to demon-
strate the value of the following features of Jackal in sup-
porting the development of an MAS.

� It is light-weight with minimum operational overhead.

� It is easy to use by the agent developer.

� It provides mechanisms to ensure the syntactical and seman-
tic correctness of messages.

� It is flexible in switching between different transport mecha-
nisms and in specifying conversation policies.

7 An Application Example

In this section, we demonstrate how the CIIMPLEX
agent system supports intelligent enterprise integration
through a simple business scenario involving some real
manufacturing management application software systems.

10

7.1 The Scenario

The scenario selected, calledprocess rate changeand de-
picted in Figure 3, occurs when the process time of a given
operation on a given machine is reduced significantly from
its normal value. When this type of event occurs, differ-
ent actions need to be taken based on the type of opera-
tion and the severity of the rate reduction. Some of the
actions may be taken automatically according to the given
business rules, and others may involve human decisions.
Some actions may be as simple as recording the event in
the logging file, while others may be complicated and ex-
pensive, such as requesting such as a rescheduling based on
the changed operation rate. Two real P/E application pro-
grams, namely the FactoryOp (a MES by IBM) and MOOPI
(a Finite Scheduler by Berclain), are used in this scenario.

Figure 3. The “process rate change” scenario

7.2 The Agents

Besides the three service agents, Agent Name Server
(ANS), Broker Agent (BA), and GA, the multi-agent sys-
tem also employs the following special agents to support
managing this scenario.

1. The Process Rate Agent (PRA), featured below, is both a
mining agent and a monitoring agent for shop-floor activi-
ties. As a mining agent, PRA requests and receives the mes-
sages containing transaction data of operation completion
from GA. The data originates from FactoryOp in the BOD
Format, and is converted into KIF format by GA. PRA ag-
gregates the continuing stream of operation completion data
and computes the current mean and standard deviation of the
processing time for each operation. It also makes the aggre-
gated data available for other agents to access. As a moni-
toring agent, PRA receives from other agents the monitoring
criteria for disturbance events concerning processing rates
and notifies the appropriate agents when such events occur.

2. The Scenario Coordination Agent (SCA) sets the rate mon-
itoring criterion, receives the notification for rate changes
that meet the criterion, and decides, in consultation with hu-
man decision-makers, appropriate action(s) to take for the
changed rate.

3. The Directory Assistance Agent (DA) is an auxiliary agent
responsible for finding appropriate persons for SCA when
the latter needs to consult human decision-makers. It also
finds the proper mode of communication to that person.

4. The Authentication Assistance Agent (AA) is another auxil-
iary agent used by SCA. It is responsible for conducting au-
thentication checks to see if a person in interaction with SCA
has proper authority to make certain decisions concerning the
scenario.

7.3 The Predicates

Three KIF predicates of multiple arguments are defined.
These predicates, OP-COMPLETE, RATE, and RATE-
CHANGE, are used to compose the contents of messages
between agents in processing the process rate change sce-
nario. The OP-COMPLETE predicate contains all relevant
information concerning a completed operation, including
P/E-Application-id, machine-id, operation-id, starting and
finishing time-stamps, and quantity. The RATE predicate
contains all relevant information concerning the current av-
erage rate of a particular operation at a particular machine
with a particular product. The RATE-CHANGE predicate
contains all the information needed to construct a BOD that
tells MOOPI a significant rate change has occurred and a
re-schedule based on the new rate is called for. It is the
responsibility of the SCA to compose an instance of the
RATE-CHANGE predicate and send it to GA when it deems
necessary to request MOOPI for a re-schedule, based on the
process rate change notification from PRA and consultation
with human decision makers.

7.4 Agent Collaboration and the Message Flow in
the Agent System

Figure 4 depicts how agents cooperate with one another
to resolve the rate change scenario, and sketches the mes-
sage flow in the agent system. For clarity, ANS and its con-
nections to other agents are not shown in the figure. The
message flow employed to establish connections between
SCA and DA and AA (brokered by BA) is not shown.

Each of these agents needs information from others
to perform its designated tasks. Since there is no pre-
determined connection among the agents, the broker agent
(BA) plays a crucial role in dynamically establishing com-
munication channels for inter-agent information exchange.

GA advertises that it can provide the OP-COMPLETE
predicate. It also advertises its ability to handle the RATE-

11

Figure 4. The agent system for “process rate
change” scenario

CHANGE predicate. PRA advertises that it has current pro-
cess rates available for some operations in the form of the
RATE predicate. The following is an example an of adver-
tise message from GA to BA.

(advertise
:sender GA
:receiver BA
:reply-with <a unique id>
:content (subscribe :content (ask-one

:content (OP-
COMPLETE ?x1 ?xn))))

PRA asks BA to recommend an agent that can provide
the OP-COMPLETE predicate, and receives the recommen-
dation of GA in response. Similarly, SCA asks BA to rec-
ommend an agent that can answer queries about the RATE
predicate and receives PRA in response. It also asks BA
to recommend an agent that can provide RATE-CHANGE
predicates and receives GA in response. The following is
an example of recommend-one message from PRA.

(recommend-one
:sender PRA
:receiver BA
:reply-with <a unique id>
:content (subscribe :content (ask-one

:content (OP-COMPLETE ?x1 ?xn))))

In response, BA sends the following tell message to
PRA.

(tell
:sender BA
:receiver PRA
:in-reply-to <id of last>
:content (GA))

Upon the recommendation from BA, an agent then ob-
tains the needed information by sending ask or subscribe
messages to the recommended agent.

When SCA knows from BA that PRA has advertised that
it can provide the current rate for certain operations, it may
send PRA the following subscribe message.

(subscribe
:sender SCA
:receiver PRA
:reply-with <a unique id>
:language KQML
:content (ask-one :language KIF :content

(and (RATE ?mean) (< ?mean 50))))

With this message, SCA tells PRA that it is interested
in receiving new instances of the RATE predicate when-
ever the mean value of the new rate is less than 50. This
effectively turns PRA to a process rate monitor with the
mean < 50 as the monitor criterion. Whenever the newly
updated rate satisfies this criterion, PRA immediately noti-
fies SCA by sending it a tell message with the new rate’s
mean and standard deviation.

Figure 5 shows the abbreviated Java source code for the
PRA agent. The PRA first initializes its databases, and pre-
pares for communication by creating an instance of Jackal;
Intercom performs startup functions (including registration
with the ANS) and provides access to the Jackal API. Next,
PRA advertises itself to the broker (BA) as a source of sta-
tistical data, and requests a recommendation for a raw data
source. Note that Intercom’s one-parameter attend method
causes a message to be sent, and blocks waiting for that
messages reply. This is the simplest use of Jackal’s mes-
saging facilities. One it receives the name of an agent, PRA
sends that agent a subscription request for a raw data stream;
it does this by spawning a subthread which will manage the
incoming data, passing the thread an reference to the agent’s
Jackal instance. Then the PRA enters a cycle of waiting for
data to accumulate, and compiling statistics. The subscrip-
tion thread will also manage incoming requests for data.

Figure 6 shows the declarative specification for the ask-
one conversation used by the agents in this scenario.

8 Relationship to Current Work

A number of groups are currently developing or market-
ing Java-based tools and infrastructures, and Jackal shares
many features with them. Some of Jackal’s defining char-
acteristics are its use of conversation policies, internal mes-
sage distribution blackboard, independence from the trans-
port layer. Also, it’s restriction to agent communication
support differentiates it from most other systems, which
often integrate more agent functionality, making them at
the same time more powerful and less easily integratable.

12

class PRA {
public static RateDatabase Rate = new RateDatabase();
public static Database msgDB = new Database(); // messages
public static int Rate_updated = 0; // # samples observed

public static void main(String[] args) throws Exception
{

ShowOpWin win = new ShowOpWin(); // PRA interface
Intercom intercom = new

Intercom("PRA","file:///C:/agents/pra.kqmlrc");
try { // next, send a ADVERTISE to BA(Broker)

KQMLMessage advertise =
new KQMLMessage("(advertise :receiver BA.ANS :content " +

"(subscribe :content (ask-one :content " +
" (RATE 1 1 ? ? ? ? ?))))");

KQMLMessage response = intercom.attend(advertise);

while(true) { // send RECOMMEND to BA
KQMLMessage recommend =

new KQMLMessage("(recommend-one :content " +
"(subscribe :content " +
"(ask-one :content (R O 1 1 ? ? ? ?))))");

recommend.put("receiver","BA.ANS");
response = intercom.attend(recommend);
if (response!=null) break;

}

KQMLMessage subscribe = // PRA now sends a SUBSCRIBE
new KQMLMessage("(subscribe :content " +

"(ask-one :content (RO 1 1 ? ? ? ?)))");
subscribe.put("receiver", response.get("content"));
Sub__Client subClient(this, subscribe);

}
catch (MessageX exception) {intercom.stderr(e) ;}
catch (InterruptedException e) { intercom.stderr(e); }

// set up computational elements
ROmessageFromPRAForRATE Ref = new ROmessageFromPRAForRATE(1);
ROmessageFromPRAForRATE RefA = new ROmessageFromPRAForRATE();
ROmessageFromPRAForRATE RefB = new ROmessageFromPRAForRATE();

while (true) { // poll intermittently for data
while ((msgDB.size())<5) {

Thread.currentThread().sleep(20); }

for (int i = 0; i<msgDB.size(); i++) { // comp statistics
Ref.set((String)msgDB.elementAt(i));

if (Ref.machn == 65) { /* 65 = ’A’ */
if (RefA.set(Ref)) // PERFORM CALCULATIONS/UPDATE

else {
if (RefB.set(Ref)) // PERFORM CALCULATIONS/UPDATE

}
msgDB.removeAllElements();

}
}

}

Figure 5. CIIMPLEX’s Process Rate Agent
(PRA)

In this section, we will introduce a few of the more well-
known Java-based agent frameworks, and discuss their re-
lationship to Jackal.

The InfoSleuth project [34, 3] is very much committed to
the domain of distributed information retrieval, although the
agent architecture is fairly general. Their overall system de-
sign employs a standard resource brokered approach. InfoS-
leuth implements a Java agent shell, which is carefully sep-
arated into cleanly interfaced layers: message (astride the
Transport Layer), conversation, generic agent, and agent ap-
plication. The message layer handles message addressing,
parameter marshaling, and so forth. The conversation layer
imposes language constraints on sequences of messages.
The generic agent layer provides the agent application layer
with basic services. Conversation policies enforced roughly
correspond to the Finin and Labrou [23, 26] semantics for
KQML, but the model used is a basic DFA; transitions are
determined by performative name only. Aside from its use
of an agent shell, InfoSleuth is similar in principal to Jackal,

// Conversation Template
// Convention: Initial and accepting states all caps,
// other states initial caps,
// arc-labels lower case.
(conversation

(name kqml-ask-one)
(author "R. Scott Cost")
(date "3/4/98")
(start-state START)
(accepting-states TOLD)
(transitions

(arc (label ask-one) (from START) (to Asked)
(match "(ask-one)"))

(arc (label tell) (from Asked) (to TOLD)
(match "(tell)"))

(arc (label deny) (from Asked) (to TOLD)
(match "(deny)"))

(arc (label untell) (from Asked) (to TOLD)
(match "(untell)"))

(arc (label sorry) (from Asked) (to TOLD)
(match "(sorry)"))

(arc (label error) (from Asked) (to TOLD)
(match "(error)"))))

Figure 6. Conversation Template for KQML
Ask-one

but is internally less sophisticated, and relies on simple
DFAs for conversation specification.

Java Agent Template (JAT) [17] is essentially a Java im-
plementation of KQML, in the form of an agent shell. JAT
agents can run stand-alone, or as applets with some restric-
tions. Basic message passing is supported for KQML. An
ANS is used to coordinate agents, and the AEE is the ba-
sic JVM. JAT is intended to be flexible yet comprehensive.
Agents developed with JAT are tightly integrated with the
agent shell. JATLite [39] is a successor to JAT, intended
to be a much lighter-weight package suitable for use with
applets. Of note is its Router facility: applet agents can
communicate with other applet agents by sending messages
back through an associated Router or Routers (communica-
tion by proxy). The Router buffers undeliverable messages,
and is supported by a standard ANS. JATLite agents in gen-
eral are not constrained to communicate through the Router.
Neither platform supports the use of conversation policies.
Of the two, Jackal is perhaps more similar to JATLite than
JAT.

The Aglet project [1, 27], developed at IBM, is a very
promising framework for agent mobility. It provides sup-
port for the construction of small, roving agents called
Aglets, through extension of an agent shell class. Aglets
move from place to place by agent-initiated, single entry-
point transfer. Places maintain a persistent ‘context’, which
the agent can access. Some security is achieved by the use
of an agent proxy. All access to the agent, including peer-
to-peer communication, takes place via the proxy agent.
Since the agent and its proxy need not be collocated, this al-
lows for location transparency. Access to the agent’s meth-
ods can also be selectively restricted with the proxy’s inter-
vention. Communication is supported only through direct
or remote method invocation on the receiving agent (or its
proxy). The Aglet system differs from Jackal in its compre-

13

hensive MAS framework, which includes mobility support.
Many infrastructure components, such as name serving, can
be added onto Jackal as services, but the library itself is an
agent component. Jackal provides more highly developed
communication facilities than do Aglets.

Zeus [36] and AgentBuilder [41] are good examples of
MAS design tools. While they serve a higher level purpose
than Jackal, they could facilitate the development of agents
with Jackal components and libraries.

Zeus is a toolkit for building complete agents, from the
ground up. It consists of a component library, a suite of
visual design tools, and a set of predefined utility agents.
The components are designed such that their behaviors are
largely defined declaratively, and can be changed at run-
time. Agents constructed with Zeus typically have compo-
nents which facilitate planning and reasoning, communica-
tion (via KQML), and which provide a collection of inter-
action protocols. Agents and MASs are created through a
process of task and relationship specification. The resulting
entities are produced as Java source code, for independent
compilation and execution.

AgentBuilder is a commercial platform for constructing
agents based on the RADL (Reticular Agent Definition Lan-
guage). RADL is an extension of PLACA [44] and AGENT-
0 [42], and views the agent as a core of behavioral rules,
constrained by beliefs, capabilities, commitments and com-
mitment rules.

9 Summary

Jackal provides developers with an easy to use facility
for KQML, supporting the use of conversation based proto-
cols. In addition, it provides basic services such as hidden
address resolution. These features make it a valuable asset
in developing agents for manufacturing information flow.

References

[1] Y. Aridor and D. B. Lange. Agent design patterns: Elements
of agent application design. InProceedings of the Second In-
ternational Conference on Autonomous Agents (Agents ’98),
Minneapolis, May 1998. ACM Press.

[2] M. Barbuceanu and M. S. Fox. COOL: A language for de-
scribing coordination in multiagent systems. In V. Lesser,
editor, Proceedings of the First International Conference
on Multi–Agent Systems, pages 17–25, San Francisco, CA,
1995. MIT Press.

[3] R. J. Bayardo, Jr., W. Bohrer, A. Cichocki, J. Fowler,
A. Helal, V. Kashyap, T. Ksiezyk, G. Martin, M. Nodine,
M. Rashid, M. Rusinkiewicz, R. Shea, C. Unnikrishnan,
A. Unruh, and D. Woelk. InfoSleuth: Agent-based semantic
integration of information in open and dynamic systems. In
Proceedings of (SigMod 97), 1997.

[4] J. Bermudez. Advanced planning and scheduling systems:
Just a fad or a breakthrough in manufacturing and supply
chain management? Technical report, Advanced Manufac-
turing Research, Boston, Massachusetts, December 1996.

[5] J. M. Bradshaw. KAoS: An open agent architecture support-
ing reuse, interoperability, and extensibility. InTenth Knowl-
edge Acquisition for Knowledge-Based Systems Workshop,
1996.

[6] J. M. Bradshaw, S. Dutfield, P. Benoit, and J. D. Woolley.
KAoS: Toward an industrial-strength open agent architec-
ture. In J. M. Bradshaw, editor,Software Agents. AAAI/MIT
Press, 1998.

[7] D. Chauhan. JAFMAS: A Java-based agent framework for
multiagent systems development and implementation. Mas-
ter’s thesis, ECECS Department, University of Cincinnati,
1997.

[8] B. Chu, W. J. Tolone, R. Wilhelm, M. Hegedus, J. Fesko,
T. Finin, Y. Peng, C. Jones, J. Long, M. Matthes, J. Mayfield,
J. Shimp, and S. Su. Integrating manufacturing softwares
for intelligent planning-execution: A CIIMPLEX perspec-
tive. In Plug and Play Software for Agile Manufacturing,
SPIE International Symposium of Intelligent Systems and
Advanced Manufacturing, Boston, MA, 1996.

[9] R. S. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng. Mod-
eling agent conversations with colored petri nets. InWorking
Notes of the Workshop on Specifying and Implementing Con-
versation Policies, pages 59–66, Seattle, Washington, May
1999.

[10] R. S. Cost, T. Finin, Y. Labrou, X. Luan, Y. Peng, I. Sobo-
roff, J. Mayfield, and A. Boughannam. Jackal: A Java-based
tool for agent development. In J. Baxter and C. Brian Lo-
gan, editors,Working Notes of the Workshop on Tools for
Developing Agents, AAAI ’98, number WS-98-10 in AAAI
Technical Reports, pages 73–82, Minneapolis, Minnesota,
July 1998. AAAI, AAAI Press.

[11] R. S. Cost, I. Soboroff, J. Lakhani, T. Finin, E. Miller, and
C. Nicholas. TKQML: A scripting tool for building agents.
In M. Wooldridge, M. Singh, and A. Rao, editors,Intelligent
Agents Volume IV – Proceedings of the 1997 Workshop on
Agent Theories, Architectures and Languages, volume 1365
of Lecture Notes in Artificial Intelligence, pages 336–340.
Springer-Verlag, Berlin, 1997.

[12] I. Dickenson. Agent standards. Technical report, Foundation
for Intelligent Physical Agents, October 1997.

[13] P. Dourish and V. Bellotti. Awareness and coordination in
shared workspaces. InProceedings of the ACM 1992 Con-
ference on Computer-Supported Cooperative Work: Sharing
Perspectives (CSCW ’92), pages 107–114, Toronto, Novem-
ber 1992.

[14] R. Elio and A. Haddadi. On abstract task models and con-
versation policies. InWorking Notes of the Workshop on
Specifying and Implementing Conversation Policies, pages
89–98, Seattle, Washington, May 1999.

[15] T. Finin, Y. Labrou, and J. Mayfield. KQML as an agent
communication language. In J. Bradshaw, editor,Software
Agents. MIT Press, 1997.

[16] FIPA. FIPA 97 specification part 2: Agent communication
language. Technical report, FIPA - Foundation for Intelli-
gent Physical Agents, October 1997.

14

[17] H. R. Frost. Java Agent Template. Online Documentation:
http://cdr.stanford.edu/ABE/JavaAgent.html, 1999.

[18] A. Galan and A. Baker. Multi-agent communications in
JAFMAS. In Working Notes of the Workshop on Specify-
ing and Implementing Conversation Policies, pages 67–70,
Seattle, Washington, May 1999.

[19] General Magic.Introduction to the Odyssey API, 1998.
[20] N. R. Jennings, P. Faratin, T. J. Norman, P. O’Brien, M. E.

Wiegand, C. Voudouris, J. L. Alty, T. Miah, and E. H. Mam-
dani. Adept: Managing business processes using intelligent
agents. InProceedings of BCS Expert Systems Conference
(ISP Track), Cambridge, UK, 1996.

[21] K. Kuwabara. AgenTalk: Coordination protocol description
for multi-agent systems. InProceedings of the First Inter-
national Conference on Multi-Agent Systems (ICMAS ’95).
AAAI/MIT Press, 1995.

[22] K. Kuwabara, T. Ishida, and N. Osato. AgenTalk: Describ-
ing multiagent coordination protocols with inheritance. In
Proceedings of the 7th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI ’95), pages 460–
465, 1995.

[23] Y. Labrou. Semantics for an Agent Communication Lan-
guage. PhD thesis, University of Maryland Baltimore
County, 1996.

[24] Y. Labrou and T. Finin. Comments on the specification for
FIPA ’97 AGENT COMMUNICATION LANGUAGE. In-
ternet document, 1997.

[25] Y. Labrou and T. Finin. A proposal for a new KQML speci-
fication. Technical report, UMBC, 1997.

[26] Y. Labrou and T. Finin. Semantics and conversations for
an agent communication language. InProceedings of the
Fifteenth International Joint Conference on Artificial Intel-
ligence (IJCAI ’97). Morgan Kaufman, August 1997.

[27] D. B. Lange and M. Oshima.Programming and Deploying
Agents with Java. Addison-Wesley, Reading, MA, 1998.

[28] F. Lin, D. H. Norrie, W. Shen, and R. Kremer. Schema-
based approach to specifying conversation policies. InWork-
ing Notes of the Workshop on Specifying and Implement-
ing Conversation Policies, Third International Conference
on Autonomous Agents, pages 71–78, Seattle, Washington,
May 1999.

[29] D. L. Martin, A. J. Cheyer, and D. B. Moran. Building dis-
tributed software systems with open agent architecture. In
Proceedings of the Third Internations Conference on Prac-
tical Applications of Intelligent Agents, London, 1998.

[30] F. Martin, E. Plaza, and J. Rodríguez-Aguilar. Conversa-
tion protocols: Modeling and implementing conversations in
agent-based systems. InWorking Notes of the Workshop on
Specifying and Implementing Conversation Policies, pages
49–58, Seattle, Washington, May 1999.

[31] P. Mockapetris. RFC 1034: Domain names - concepts and
facilities, 1987.

[32] P. Mockapetris. RFC 1035: Domain names - implementa-
tion and specification, 1987.

[33] S. Moore. On conversation policies and the need for excep-
tions. InWorking Notes of the Workshop on Specifying and
Implementing Conversation Policies, pages 19–28, Seattle,
Washington, May 1999.

[34] M. H. Nodine and A. Unruh. Facilitating open communi-
cation in agent systems: the InfoSleuth infrastructure. In
M. Wooldridge, M. Singh, and A. Rao, editors,Intelligent
Agents Volume IV – Proceedings of the 1997 Workshop on
Agent Theories, Architectures and Languages, volume 1365
of Lecture Notes in Artificial Intelligence, pages 281–295.
Springer-Verlag, Berlin, 1997.

[35] M. H. Nodine and A. Unruh. Facilitating open communica-
tion in agent systems: The InfoSleuth infrastructure. Tech-
nical Report MCC-INSL-056-97, MCC, April 1997.

[36] H. S. Nwana, D. T. Ndumu, L. C. Lee, and J. C. Collis.
ZEUS: A toolkit for builing distributed multi-agent systems.
Applied Artificial Intelligence, 13(1):129–186, 1999.

[37] H. V. D. Parunak. Visualizing agent conversations: Us-
ing enhanced dooley graphs for agent design and analysis.
In Proceedings of the Second International Conference on
Multi-Agent Systems (ICMAS ’96), 1996.

[38] Y. Peng, T. Finin, Y. Labrou, R. S. Cost, B. Chu, J. Long,
W. J. Tolone, and A. Boughannam. An agent-based ap-
proach for manufacturing integration - the CIIMPLEX ex-
perience.International Journal of Applied Artificial Intelli-
gence, 13(1–2):39–64, 1999.

[39] C. Petrie. JATLite. Online Documentation:
http://java.stanford.edu/, 1998.

[40] J. Pitt and A. Mamdani. Communication protocols in multi-
agent systems. InWorking Notes of the Workshop on Speci-
fying and Implementing Conversation Policies, pages 39–48,
Seattle, Washington, May 1999.

[41] I. Reticular Systems.AgentBuilder: An Integrated Toolkit
for Constructing Intelligent Software Agents, revision 1.3
edition, February 1999.

[42] Y. Shoham. AGENT-0: A simple agent language and its in-
terpreter. InProceedings of the Ninth National Conference
on Artificial Intelligence, volume 2, pages 704–709, Ana-
heim, California, 1991.

[43] Y. Shoham. Agent–oriented programming.Artificial Intelli-
gence, 60:51–92, 1993.

[44] S. R. Thomas. The PLACA agent programming language. In
M. J. Wooldridge and N. R. Jennings, editors,Proceedings
of the ECAI ’94 Workshop on Agent Theories, Architectures
and Languages: Intelligent Agents I, Lecture Notes in Arti-
ficial Intelligence, pages 355–370. Springer-Verlag, Berlin,
1994.

[45] T. Vollmann, W. Berry, and D. Whybark.Manufacturing
Planning and Control Systems. Irwin, New York, 1992.

[46] T. Wagner, B. Benyo, V. Lesser, and P. Xuan. Investigating
interactions between agent conversations and agent control
components. InWorking Notes of the Workshop on Specify-
ing and Implementing Conversation Policies, pages 79–88,
Seattle, Washington, May 1999.

[47] J. White. Mobile agents. In J. M. Bradshaw, editor,Software
Agents. MIT Press, 1995.

[48] T. Winograd and F. Flores.Understanding Computers and
Cognition. Addison-Wesley, 1986.

15

