
Modeling Agent Conversations with Colored Petri Nets

R. Scott Cost, Ye Chen, Tim Finin, Yannis Labrou, Yun Peng

Laboratory for Advanced Information Technology

Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County

Baltimore, Maryland

cost@acm.org, yechen,�nin,jklabrou,ypeng@cs.umbc.edu

Abstract

Conversations are a useful means of structuring communica-
tive interactions among agents. The value of a conversation-
based approach is largely determined by the conversational
model it uses. Finite State Machines, used heavily to date
for this purpose, are not su�cient for complex agent inter-
actions requiring a notion of concurrency. We propose the
use of Colored Petri Nets as a model underlying a language
for conversation speci�cation. This carries the relative sim-
plicity and graphical representation of the former approach,
along with greater expressive power and support for con-
currency. The construction of such a language, Protolin-
gua, is currently being investigated within the framework of
the Jackal agent development environment. In this paper,
we explore the use of Colored Petri Nets in modeling agent
communicative interaction.

1 Introduction

Conversations are a useful means of structuring communica-
tive interactions among agents, by organizing messages into
relevant contexts and providing a common guide to all par-
ties. The value of a conversation-based approach is largely
determined by the conversational model it uses. The pres-
ence of an underlying formal model supports the use of
structured design techniques and formal analysis, facilitat-
ing development, composition and reuse. Most conversation
modeling projects to date have used or extended �nite state
machines (FSM) in various ways, and for good reason. FSMs
are simple, depict the ow of action/communication in an
intuitive way, and are su�cient for many sequential interac-
tions. However, they are not adequately expressive to model
more complex interactions, especially those with some de-
gree of concurrency. Colored Petri Nets (CPN) [12, 13, 14]
are a well known and established model of concurrency, and
can support the expression of a greater range of interaction.
In addition, CPNs, like FSMs, have an intuitive graphical
representation, are relatively simple to implement, and are
accompanied by a variety of techniques and tools for formal
analysis and design.

To appear in Working Notes of the Workshop on Specify-
ing and Implementing Conversation Policies, Autonomous
Agents '99, Seattle, Washington, May 1999.

We have explored the use of model-based conversation
speci�cation in the context of multi agent systems (MAS)
supporting manufacturing integration [20]. Agents in our
systems are constructed using the Jackal agent development
platform [6], and communicate using the KQML agent com-
munication language [8]. Jackal, primarily a tool for com-
munication, supports conversation-based message manage-
ment through the use of abstract conversation speci�cations,
which are interpreted relative to some appropriate model.
Conversation speci�cations, or protocols, can describe any-
thing from simple message/acknowledgment interactions to
complex negotiations.

In the next section, we present a motivation for using
conversations to model and organize agent interaction. Next,
we present CPNs, the model we propose to use, in more de-
tail. Following this, we discuss the implementation of these
ideas in a real MAS framework. Finally, we present two
examples of CPN use: the �rst, speci�cation of a simple
KQML register conversation, and the next, a simple negoti-
ation interaction.

2 Conversation-Based Interaction Protocols

The study of agent communication languages (ACLs) is one
of the pillars of current agent research. KQML and the
FIPA ACL are the leading candidates as standards for spec-
ifying the encoding and transfer of messages among agents.
While KQML is good for message-passing among agents,
directly exploiting it in building a system of cooperating
agents leaves much to be desired. After all, when an agent
sends a message, it has expectations about how the recipi-
ent will respond to the message. Those expectations are not
encoded in the message itself; a higher-level structure must
be used to encode them. The need for such conversation
policies is increasingly recognized by the KQML commu-
nity, and has been formally recognized in the latest FIPA
draft standard [9, 7].

It is common in KQML-based systems to provide a mes-
sage handler that examines the message performative to de-
termine what action to take in response to the message.
Such a method for handling incoming messages is adequate
for very simple agents, but breaks down as the range of
interactions in which an agent might participate increases.
Missing from the traditional message-level processing is a
notion of message context.

A notion growing in popularity is that the unit of com-
munication between agents should be the conversation. A
conversation is a pattern of message exchange that two (or
more) agents agree to follow in communicating with one

1

another. In e�ect, a conversation is a communications pro-
tocol, albeit one that may be initiated through negotiation,
and may be short-lived relative to the way we are accus-
tomed to thinking about protocols. A conversation lends
context to the sending and receipt of messages, facilitat-
ing interpretation that is more meaningful. The adoption
of conversation-based communication carries with it numer-
ous advantages to the developer. There is a better �t with
intuitive models of how agents will interact than is found
in message-based communication. There is also a closer
match to the way that network research approaches pro-
tocols, which allows both theoretical and practical results
from that �eld to be applied to agent systems. Also, con-
versation structure can be separated from the actions to be
taken by an agent engaged in the conversation, facilitating
the reuse of conversations in multiple contexts.

To date, relatively little work has been devoted to the
problem of conversation speci�cation and implementation
for mediated architectures. Strides must be taken in the
toward facilitating the construction and reuse of conversa-
tions. An ontology of conversations and conversation li-
braries would advance this goal, as would solutions to the
following questions:

1. Conversation speci�cation: How can conversations best
be described so that they are accessible both to people
and to machines?

2. Conversation sharing: How can an agent use a conver-
sation speci�cation standard to describe the conversa-
tions in which it is willing to engage, and to learn what
conversations are supported by other agents?

3. Conversation aggregation: How can sets of conversa-
tions be used as agent `APIs' to describe classes of
capabilities that de�ne a particular service?

2.1 Conversation Speci�cation

A speci�cation of a conversation that could be shared among
agents must contain several kinds of information about the
conversation and about the agents that will use it. First, the
sequence of messages must be speci�ed. Traditionally, de-
terministic �nite-state automata (DFAs) have been used for
this purpose; DFAs can express a variety of behaviors while
remaining conceptually simple. For more sophisticated in-
teractions, however, it is desirable to use a formalism with
more support for concurrency and veri�cation. This is the
motivation behind our investigation of CPNs as an alterna-
tive mechanism. Next, the set of roles that agents engaging
in a conversation may play must be enumerated. Many con-
versations will be dialogues, and will specify just two roles;
however conversations with more than two roles are equally
important, representing the coordination of communication
among several agents in pursuit of a single common goal.
For some conversations, the set of participants may change
during the course of the interaction.

DFAs and roles dictate the syntax of a conversation, but
say nothing about the conversation's semantics. The ability
of an agent to read a description of a conversation, then en-
gage in such a conversation, demands that the description
specify the conversation's semantics. To be useful though,
such a speci�cation must not rely on a full-blown, highly
expressive knowledge representation language. We believe
that a simple ontology of common goals and actions, to-
gether with a way to relate entries in the ontology to the
roles, states, and transitions of the conversation speci�ca-
tion, will be adequate for most purposes. This approach

sacri�ces expressiveness for simplicity and ease of implemen-
tation. It is nonetheless perfectly compatible with attempts
to relate conversation policy to the semantics of underlying
performatives, as proposed for example by [3].

These capabilities will allow the easy speci�cation of in-
dividual conversations. To develop systems of conversations
though, developers must have the ability to extend exist-
ing conversations through specialization and composition.
Specialization is the ability to create new versions of a con-
versation that are more detailed than the original version;
it is akin to the idea of subclassing in an object-oriented
language. Composition is the ability to combine two con-
versations into a new, compound conversation. Develop-
ment of these two capabilities will entail the creation of syn-
tax for expressing a new conversation in terms of existing
conversations, and for linking the appropriate pieces of the
component conversations. It will also demand solution of a
variety of technical problems, such as naming conicts, and
the merger of semantic descriptions of the conversations.

2.2 Conversation Sharing

A standardized conversation language, as proposed above,
dictates how conversations will be represented; however, it
does not say how such representations are shared among
agents. While the details of how conversation sharing is ac-
complished are more mundane than those of conversation
representation, they are nevertheless crucial to the viabil-
ity of dynamic conversation-based systems. Three questions
present themselves:

� How can an agent map from the name of a conversation
to the speci�cation of that conversation?

� How can one agent communicate to another the iden-
tity of the conversation it is using?

� How can an agent determine what conversations are
handled by a service provider that does not yet know
of the agent's interest?

2.3 Conversations Sets as APIs

The set of conversations in which an agent will participate
de�nes an interface to that agent. Thus, standardized sets of
conversations can serve as abstract agent interfaces (AAIs),
in much the same way that standardized sets of function
calls or method invocations serve as APIs in the traditional
approach to system-building. That is, an interface to a par-
ticular class of service can be speci�ed by identifying a col-
lection of one or more conversations in which the provider of
such a service agrees to participate. Any agent that wishes
to provide this class of service need only implement the ap-
propriate set of conversations. To be practical, a naming
scheme will need to be developed for referring to such sets
of conversations, and one or more agents will be needed to
track the development and dissolution of particular AAIs.
In addition to a mechanism for establishing and maintaining
AAIs, standard roles and ontologies, applicable to a variety
of applications, will need to be created.

There has been little work on communication languages
from a practitioner's point of view. If we set aside work
on network transport protocols or protocols in distributed
computing (e.g., CORBA) as being too low-level for the pur-
poses of intelligent agents, the remainder of the relevant re-
search may be divided into two categories. The �rst deals
with theoretical constructs and formalisms that address the

2

issue of agency in general and communication in particular,
as a dimension of agent behavior (e.g., AOP [22]). The
second addresses agent languages and associated commu-
nication languages that have evolved somewhat to applica-
tions (e.g., TELESCRIPT [23]). In both cases, the bulk
of the work on communication languages has been part of a
broader project that commits to speci�c architectures.

Agent communication languages like KQML provide a
much richer set of interaction primitives (e.g., KQML's per-
formatives), support a richer set of communication proto-
cols (e.g., point-to-point, brokering, recommending, broad-
casting, multicasting, etc.), work with richer content lan-
guages (e.g., KIF), and are more readily extensible than
any of the systems described above. However, as discussed
above, KQML lacks organization at the conversation level
that lends context to the messages it expresses and trans-
mits. Limited work has been done on implementing and
expressing conversations for software agents. As early as
1986, Winograd and Flores [24] used state transition di-
agrams to describe conversations. The COOL system [2]
has perhaps the most detailed current �nite state automata
model to describe agent conversations. Each arc in a COOL
state transition diagram represents a message transmission,
a message receipt, or both. One consequence of this pol-
icy is that two di�erent agents must use di�erent automata
to engage in the same conversation. COOL also uses an
:intent slot to allow the recipient to decide which conversa-
tion structure to use in understanding the message. This is
a simple way to express the semantics of the conversation,
though it is not su�cient for sophisticated reasoning about
and sharing of conversations.

Other conversation models that have been developed in-
clude those of Parunak [19], Chauhan [4], who uses COOL
as the basis for her multi-agent development system, Kuwabara
et al. [15], who add inheritance to conversations, Nodine
and Unruh [18], who use conversation speci�cations to en-
force correct conversational behavior by agents, Bradshaw
[3], who introduces the notion of a conversation suite as a
collection of commonly-used conversations known by many
agents, and Labrou [16], who uses de�nite clause grammars
to specify conversations. While each of these makes contri-
butions to our general understanding of conversations, none
show how descriptions of conversations might be shared by
agents and used directly by them in implementing conver-
sations.

2.4 De�ning Common Agent Services via Conversations

A signi�cant impediment to the development of agent sys-
tems is the lack of basic standard agent services that can be
easily built on top of the conversation architecture. Exam-
ples of such services are: name and address resolution; au-
thentication and security services; brokerage services; reg-
istration and group formation; message tracking and log-
ging; communication and interaction; visualization; proxy
services; auction services; workow management; coordina-
tion services; and performance monitoring. Services such as
these have typically been implemented as needed in individ-
ual agent development environments. Two such examples
are an agent name server and an intelligent broker.

2.4.1 Agent Name Server

At �rst blush, the problem of mapping from an agent name
to information about that agent (such as its address) seems
trivial. However, solving this problem in a way that can
easily scale as the number of users and amount of data to be

processed grows is di�cult. We believe that development of
a successful symbolic agent addressing mechanism demands
at least two advances:

1. A simple naming convention to place each role an agent
might play in an organization at a unique point in a
namespace for that organization. Currently there is no
widely-accepted mechanism for universal unique agent
naming (in the way that there now is, e.g., for Internet
hosts or web documents).

2. An e�cient, scalable name service protocol for map-
ping from symbolic role names to information about
the agents that �ll those roles.

To a large extent, the desired techniques can be mod-
eled after existing name service techniques such as DNS
(which is widely implemented) and CORBA (whose names-
pace mechanisms are only narrowly implemented). Such
techniques are well-studied, highly reliable, and scalable.
Agent name service will di�er from DNS primarily in that
agents will tend to appear, disappear, and move around
more frequently than do Internet hosts. This will neces-
sitate the development of naming conventions that are less
rigid than those used in DNS, and algorithms for mapping
from names to agent information that do not rely on the
static local databases found in DNS.

2.4.2 Intelligent Broker

A system that is to respond to the demands of multiple
users, with needs that vary over time, under an ever-increasing
query load must be able to do on-the-y matching of queries
to documents and services. In an agent-based architecture,
this means that one agent must be able to dynamically
discover other agents based on the content of their knowl-
edge. It should exploit the research on conversations and the
symbolic agent-addressing scheme described above, while at
the same time �tting neatly into existing brokered systems.
Such systems will continue to see a single broker where there
had been a single broker all along; now, however, that broker
will have the option of coordinating many other disparate
brokers of varying capabilities.

3 Colored Petri Nets

Petri Nets (PN), or Place Transition Nets, are a well known
formalism for modeling concurrency. A PN is a directed,
connected, bipartite graph in which each node is either a
place or a transition. Tokens occupy places. When there is
at least one token in every place connected to a transition,
we say that transition is enabled. Any enabled transition
may �re, removing one token from every input place, and
depositing one token in each output place. Petri nets have
been used extensively in the analysis of networks and con-
current systems. For a more complete introduction, see [1].

Colored Petri Nets (CPN) di�er from PNs in one signi�-
cant respect; tokens are not simply blank markers, but have
data associated with them. A token's color is a schema,
or type speci�cation. Places are then sets of tuples, called
multi-sets. Arcs specify the schema they carry, and can also
specify basic boolean conditions. Speci�cally, arcs exiting
and entering a place may have an associated function which
determines what multi-set elements are to be removed or de-
posited. Simple boolean expressions, called guards, are asso-
ciated with the transitions, and enforce some constraints on
tuple elements. This notation is demonstrated in examples

3

below. CPNs are formally equivalent to traditional PNs;
however, the richer notation makes it possible to model in-
teractions in CPNs where it would be impractical to do so
with PNs.

CPNs have great value for conversational modeling, in
that:

� They are a relatively simple formal model.

� They have a graphical representation.

� They support concurrency, which is necessary for many
non-trivial interactions.

� They are well researched and understood, and have
been applied to many real-world applications.

� Many tools and techniques exist for the design and
analysis of CPN-based systems.

High-level petri nets are a very natural formalism for
modeling concurrent systems, and the notion of applying
them to MASs is not new [10]. In some related work, Holvoet
and Kielmann [11] have applied the CPN formalism to spec-
ifying agent systems based on their Objective-Linda coordi-
nation model. Moldt and Wienberg [17] (using their variant,
Object-Oriented Nets) and Purvis and Crane�eld [21] have
also demonstrated the use of high-level petri nets in model-
ing systems of agents.

4 Putting Colored Petri Nets to Work

Currently, we are investigating the value of CPNs in a gen-
eral framework for agent interaction speci�cation. Within
this scheme, agents use a common language, Protolingua,
for manipulating CPN-based conversations. Protolingua it-
self is very sparse, and relies on the use of a basic interface
de�nition language (IDL) for the association of well known
functions and data types with a CPN framework. Agents
use Protolingua interpreters to execute various protocols.
Protolingua itself is simple in order to facilitate the porting
of interpreters to many di�erent platforms.

One advantage to this approach is that a variety of in-
terpreter implementations may be used, and the agent may
trade resources for conversational `power'. A very simple
CPN interpreter may be able to e�ciently execute very small
or simple protocols; an agent may chose to use this in most
interactions, while employing more expensive and powerful
interpreters for more complex negotiations. In addition to
using direct CPN simulators, CPN speci�cations have a very
natural embedding in a general rule-based framework.

To clarify the relationship between agents, interpreters,
and protocols, let us assume that a Java-based agent would
like to converse with another agent, and that it has deter-
mined, through assumption, negotiation, or other means,
that it needs to use protocol xyz. It can obtain the declara-
tive speci�cation for xyz, if it does not already have it, from
the other agent or from some third party; let's say a pro-
tocol server identi�ed through a broker. Xyz contains the
wire-frame speci�cation of the protocol (arcs, places, transi-
tion), plus schema and functions given in the IDL. The agent
can then obtain the executable attachments (as it did the
speci�cation) and type speci�cations appropriate for its in-
terpreter (in the case of Jackal, Java classes and associated
methods), and then use the protocol to engage the other
agent.

This CORBA-like approach allows the use of very lightweight,
universal interpreters without restricting the expressiveness

of the protocols used. Note that the purpose of the IDL in
Protolingua however is the identi�cation and retrieval of ex-
ecutable modules, not the interaction of distributed compo-
nents. If types and actions are appropriately speci�ed, they
should be suitable for analysis, or translation into some ana-
lyzable form. For example, we are using DesignCPN, a tool
from Aarhus University, Denmark, for high level design and
analysis of protocols. This system uses an extension of ML,
CPN-ML, as its modeling language. We plan to translate
developed protocols into Protolingua and Java extensions,
and restrict modi�cation in such a way that CPN-ML equiv-
alents of the extensions can be used to facilitate analysis of
the protocols. As such, CPN-ML has played a major role in
inuencing the development of Protolingua. For the remain-
der of this paper, we will focus on the abstract application
of CPNs to conversations, rather than their speci�cation in
Protolingua.

5 Example: Conversation Protocol

From its inception, Jackal has used JDFA, a loose Extended
Finite State Machine (EFSM), to model conversations [6,
20]. The base model is a Deterministic Finite State Au-
tomaton (DFA), but the tokens of the system are messages
and message templates, rather than simply characters from
an alphabet. Messages match template messages (with ar-
bitrary match complexity, including recursive matching on
message content) to determine arc selection. A local read/write
store is available to the machine.

CPNs make it possible to formalize much of the extra-
model extensions of DFAs. To make this concrete, we take
the example of a standard JDFA representation of a KQML
Register conversation (see Figure 1) and reformulate it as
a CPN. Note that this simpli�ed Register deviates from
the [16] speci�cation, in that it includes a positive acknowl-
edgment, but does not provide for a subsequent `unregister'
event. The graphic depiction of this JDFA speci�cation can
be seen in Figure 2.

// Conversation Template
// Convention: Initial and accepting states all caps,
// other states initial caps,
// arc-labels lower case.
(conversation
(name kqml-ask-one)
(author "R. Scott Cost")
(date "3/5/98")
(start-state START)
(accepting-states STOP)
(transitions
(arc (label reg) (from START) (to R) (match "(register)"))
(arc (label reply) (from R) (to STOP) (match "(reply)"))
(arc (label error) (from R) (to STOP) (match "(error)"))
(arc (label sorry) (from R) (to STOP) (match "(sorry)"))))

Figure 1: Conversation template for simpli�ed KQML Reg-
ister

There are a number of ways to formulate any conversa-
tion, depending on the requirements of use. This conver-
sation has only one �nal, or accepting, state, but in some
situations, it may be desirable to have multiple accepting
states, and have the �nal state of the conversation denote
the result of the interaction.

In demonstrating the application of CPNs here, we will
�rst develop an informal model based on the simpli�ed Reg-
ister conversation presented, and then describe a complete

4

(reply)

(sorry)

(error)(register)
START R STOP

Figure 2: Diagrammatic DFA representation of the simpli-
�ed KQML Register conversation

and working CPN-ML model of the full Register conversa-
tion.

Some aspects of the model which are implicit under the
DFA model must be made explicit under CPNs. The DFA
allows a system to be in one state at a time, and shows the
progression from one state to the next. Hence, the point to
which an input is applied is clear, and that aspect is omitted
from the diagrammatic representation. Since a CPN can
always accept input at any location, we must make that
explicit in the model.

We will use an abbreviated message which contains the
following components, listed with their associated variable
names: performative(p), sender(s), receiver(r), reply-with(id),
in-reply-to(re), and content(c).

We denote the two receiving states as places of the names
Register and Done (Figure 3). These place serve as a re-
ceipt locations for messages, after processing by the tran-
sitions T1 and T2, respectively. As no message is ever
received into the initial state, we do not include a corre-
sponding place. Instead, we use a a source place, called In.
This is implicit in the DFA representation. It must serve
as input to every transition, and could represent the input
pool for the entire collection of conversations, or just this
one. Note that the source has links to every place, but there
is no path corresponding to the ow of state transitions, as
in the DFA-based model.

The match conditions on the various arcs of the DFA are
implemented by transitions preceding each existing place.
Note that this one-to-one correspondence is not necessary.
Transitions may conditionally place tokens in di�erent places,
and several transitions may concurrently deposit tokens in
the same place.

DoneRegister T2T1In

(p,s,r,id,re,c)

(p,s,r,id,re,c)

(p,s,r,id,re,c)

(p,s,r,id,re,c)

Figure 3: Preliminary CPN model of a simpli�ed KQML
register conversation.

Various constants constrain the actions of the net, such
as performative (Figure 4). These can be represented as
color sets in CPN, rather than hard-coded constraints. Other
constraints are implemented as guards; boolean conditions
associated with the transitions. Intermediate places S, R
and I assure that sender, receiver and ID �elds in the re-
sponse are in the correct correspondence to the initial mes-
sages. I not only ensures that the message sequence is ob-
served, as prescribed by the message IDs, but that only one
response is accepted, since the ID marker is removed follow-
ing the receipt of one correct reply. Not all conversations
follow a simple, linear thread, however. We might, for exam-

ple, want to send a message and allow an arbitrary number
of asynchronous replies to the same ID before responding (as
is the case in a typical Subscribe conversation), or allow a re-
sponse to any one of a set of message IDs. In these cases, we
allow IDs to collect in a place, and remove them only when
replies to them will no longer be accepted. Places interposed
between transitions to implement global constraints, such as
alternating sender and receiver, may retain their markings;
that is implied by the double arrow, a shorthand notation
for two identical arcs in opposite directions.

We add a place after the �nal message transaction to
denote some arbitrary action not implemented by the con-
versation protocol (that is, not by an arc-association action).
This may be some event internal to the interpreter, or a sig-
nal to the executing agent itself. A procedural attachment
at this location would not violate the conversational seman-
tics as long as it did not in turn inuence the course of the
conversation.

This CPN is generally equivalent to the JDFA depicted
in Figure 2. In addition to modeling what is present in the
JDFA, it also models mechanisms implicit in the machin-
ery, such as message ordering. Also, the JDFA incorporates
much which is beyond the underlying formal DFA model,
and thus cannot be subjected to veri�cation. The CPN cap-
tures all of the same mechanisms within the formal model.

5.1 Register Implemented in CPN-ML

We further illustrate this example by examining a full, exe-
cutable CPN implementation of the complete Register con-
versation. Register as given in [16] consists of an initial `reg-
ister' with no positive acknowledgment, but a possible `er-
ror' or `sorry' reply. This registration may then be followed
by an unacknowledged `unregister', also subject to a possi-
ble `error' or `sorry' response. This Register conversation
(Figure 6) has been extracted from a working CPN model
of a multi-agent scenario, implemented in CPN-ML, using
the DesignCPN modeling tool. The model, a six agents sce-
nario involving manufacturing integration, uses a separate,
identical instance of the register conversation, and other
KQML conversations, for each agent. They serve as sub-
components to the agent models, which communicate via
a modeled network. The declarations (given in Figure 5)
have been restricted to only those elements required for the
register conversation itself. The diagram is taken directly
from DesignCPN. The full model uses concepts for building
hierarchical CPNs, such as place replication and the use of
sub-nets, which are beyond the scope of this paper. The
interested reader is encouraged to refer to [12, 13, 14].

The declarations specify a message format MES, a six-
tuple of performative, sender and receiver names, message
IDs, and content. For simplicity, performative and agent
names in the scenario are enumerated, and IDs are integers.
For the content, we have constructed a special Predicate
type, which will allow us to represent content in KIF-like
expressions. The Reg type is used for registry entries, and
encodes the name and address of the registrant, the name of
the registrar, and the ID of the registration message. Finally,
the Signature type is used to bind the names of the sender
and receiver with the ID for a particular message.

The model is somewhat more complex than our infor-
mal sketch (Figure 4) for several reasons, which will become
clear as we look more closely at its operation. For one thing,
it is intended to model multiple concurrent conversations,
and so must be able to di�erentiate among them. Also, it
implements the complete registration operation, rather than

5

DoneRegister T2T1In

(p,s,r,id,re,c)

(p,s,r,id,re,c) (p,s,r,id,re,c)(p,s,r,id,re,c)

register
reply,
error,
sorry

p
p

I re
id

S

R

s

s
r

r if p=reply action1
else if p=error action2
else action3 A

Figure 4: Informal CPN model of a simpli�ed KQML register conversation.

simply modeling the message ow. All messages are initially
presented in the In place, and once processed by each tran-
sition are moved to the Out place. Messages from the Out
place are moved by the agent to the model network, through
which they �nd their way to the In place of the same conver-
sation in the target agent. The �rst transition (T4) accepts
the message for the conversation, based on the performative
`register', and makes it available to the T1 transition. T1,
accepts the message if correct, and places a copy in the Out
place. It also places an entry in the registry (Reg), and a
message signature in Sig1. This signature will be used to
make sure that replies to that message have the appropri-
ate values in the sender and receiver �elds. Message ID is
included in the signature in order to allow the net to model
multiple Register conversations concurrently. Note that be-
cause KQML does not provide for an acknowledgment to
a `register' message, the registration is made immediately,
and is then retracted later if an `error' or `sorry' message is
received.

Transition T2a will �re if an `error' or `sorry' is received
in response to the registration. It unceremoniously removes
the registration from Reg. The message signature con-
strains the names in the reply message. It is also possible
for the initiating agent to send a subsequent `unregister'; in
that case T2b will �re (again, contingent on the constraints
of the message signature being met), also removing the reg-
istration. However, since it is possible for an `unregister' to
be rejected (by an `error' or `sorry'), T2b archives the reg-
istration entry in Arc, and constructs a new signature for
the possible reply. Such a reply would cause transition T3
to restore the registration to Reg.

6 Example: Negotiation Model

In this section we present a simple negotiation protocol pro-
posed in [5]. The CPN diagram in Figure 7 describes the
pair-wise negotiation process in a simple MAS, which con-
sists of two functional agents bargaining for goods. The
messages used are based on the FIPA ACL negotiation per-
formative set.

The diagram depicts three places places: Inactive,Wait-
ing, and Thinking, which reect the states of the agents
during a negotiation process1; we will use the terms state

1It is not always the case with such a model that speci�c nodes
correspond to states of the system or particular agents. More often
the state of the system is described by the combined state of all places.

color Performative = with register | unregister
| error | sorry;

color Name = with ANS | Broker | AnyName;
color ID = int;
color Address = with ans | broker | anyAddress;
color PVal = union add:Address + nam:Name;
color PVals = list PVal;
color PName = with address | agentName;
color Predicate = product PName * PVals;
color Content = union pred:Predicate + C;
color MES = product Performative * Name * Name
* ID * ID * Content;

color Reg = product Name * Name * Address * ID;
color Signature = product Name * Name * ID;

var c : Content;
var message : MES;
var s, r, anyName, name : Name;
var i, j : ID;
var p : Performative;
var a : Address;

Figure 5: Declarations for the Register Conversation.

and place interchangeably. Both agents in this simple MAS
have similar architecture, di�ering primarily in the num-
ber of places/states. This di�erence arises from the roles
they play in the negotiation process. The agent that be-
gins the negotiation, called the buyer agent, which is shown
on the left side of the diagram, has the responsibility of
handling message failures. For this, it has an extra `wait'
state (Waiting), and timing machinery not present in the
other agent, seller. For simplicity, some constraints have
been omitted from this diagram; for example, constraints
on message types, as depicted in the previous examples.

In this system, both agents are initially waiting in the In-
active places. The buyer initiates the negotiation process
by sending a call for proposals (`CFP') to some seller, and
its state changes from Inactive to Waiting. The buyer is
waiting for a response (`proposal', `accept-proposal', `reject-
proposal' or `terminate'). On receipt, its state changes from
Inactive to Thinking, at which point it must determine
how it should reply. Once it replies, completing the cycle,
it returns to the Inactive state. We have inserted a rudi-
mentary timeout mechanism which uses a delay function

6

In
MES

Sig1
Signature

Sig2
Signature

Arc
Reg

T2a
[p=error orelse
p=sorry]

T2b
[p=unregister]

T3[p=error orelse
p=sorry]

Reg
Reg

Pre
MES

T4
[message=(p,s,r,i,j,c),
p=register,
c=pred (address,[add a])]

T1[c=pred (address,
[add a])]

Out
MES

1‘(r,s,j)

1‘(s,r,j)

1‘(r,s,j)
1‘(s,r,i)

1‘(r,s,a,i)

1‘(r,s,a,j)

1‘(r,s,a,j)

1‘(s,r,a,j)
1‘(r,s,a,j)

1‘(p,s,r,i,j,c)

1‘(p,s,r,i,j,c)

1‘(p,s,r,i,j,c)

1‘message

1‘(p,s,r,i,j,pred
(address,[add a]))

1‘(p,s,r,i,j,pred
(address,[add a])) 1‘(s,r,i)

1‘(s,r,a,i)

1‘(p,s,r,i,j,c)
1‘(p,s,r,i,j,c)

1‘(p,s,r,i,j,c)
1‘(p,s,r,i,j,c)

Figure 6: KQML Register.

to name messages which have likely failed in the Timeout
place. This enables the exception action (Throw Excep-
tion) to stop the buyer from waiting, and forward infor-
mation about this exception to the agent in the Thinking
state. Timing can be handled in a number of ways in imple-
mentation, including delays (as above), the introduction of
timer-based interrupt messages, or the use of timestamps.
CPN-ML supports the modeling of time-dependent interac-
tions through the later approach.

Note that this protocol models concurrent pairwise in-
teractions between a buyer and any number of sellers.

7 Summary

The use of conversation policies greatly facilitates the devel-
opment of systems of interacting agents. While FSMs have
proven their value over time in this endeavor, we feel that in-
herent limitations necessitate the use of a model supporting
concurrency for the more complex interactions now arising.
CPNs provide many of the bene�ts of FSMs, while allowing
greater expression and concurrency. Using the Jackal agent
development platform, we hope to demonstrate the value of
CPNs as the underlying model for a protocol speci�cation
language, Protolingua.

References

[1] Tilak Agerwala. Putting petri nets to work. Computer,
pages 85{94, December 1979.

[2] Mihai Barbuceanu and Mark S. Fox. COOL: A lan-
guage for describing coordination in multiagent sys-
tems. In Victor Lesser, editor, Proceedings of the
First International Conference on Multi{Agent Sys-
tems, pages 17{25, San Francisco, CA, 1995. MIT Press.

[3] Je�rey M. Bradshaw, Stuart Dut�eld, Pete Benoit, and
John D. Woolley. KAoS: Toward an industrial-strength

open agent architecture. In Je�rey M. Bradshaw, edi-
tor, Software Agents. AAAI/MIT Press, 1998.

[4] Deepika Chauhan. JAFMAS: A java-based agent
framework for multiagent systems development and im-
plementation. Master's thesis, ECECS Department,
University of Cincinnati, 1997.

[5] Ye Chen, Yun Peng, Tim Finin, Yannis Labrou, and
Scott Cost. A negotiation-based multi-agent system
for supply chain management. In Working Notes of
the Agents '99 Workshop on Agents for Electronic
Commerce and Managing the Internet-Enabled Supply
Chain., Seattle, WA, April 1999.

[6] R. Scott Cost, Tim Finin, Yannis Labrou, Xiaocheng
Luan, Yun Peng, Ian Soboro�, James May�eld, and
Akram Boughannam. Jackal: A java-based tool for
agent development. In Jeremy Baxter and Chairs
Brian Logan, editors, Working Notes of the Work-
shop on Tools for Developing Agents, AAAI '98, num-
ber WS-98-10 in AAAI Technical Reports, pages 73{
82, Minneapolis, Minnesotta, July 1998. AAAI, AAAI
Press.

[7] Ian Dickenson. Agent standards. Technical report,
Foundation for Intelligent Physical Agents, october
1997.

[8] Tim Finin, Yannis Labrou, and James May�eld. KQML
as an agent communication language. In Je� Bradshaw,
editor, Software Agents. MIT Press, 1997.

[9] FIPA. FIPA 97 speci�cation part 2: Agent communi-
cation language. Technical report, FIPA - Foundation
for Intelligent Physical Agents, october 1997.

[10] T. Holvoet. Agents and petri nets. The Petri Net
Newsletter, (49):3{8, 1995.

7

Figure 7: Pair-wise negotiation process for a MAS constituted of two functional agents.

[11] Tom Holvoet and Thilo Kielmann. Behaviour speci�-
cation of parallel active objects. Journal on Parallel
Computing, 24(7):1107{1135, 1998.

[12] K. Jensen. Coloured Petri Nets. Basic Concepts, Analy-
sis Methods and Practical Use, volume Volume 1, Basic
Concepts of Monographs in Theoretical Computer Sci-
ence. Springer-Verlag, 1992.

[13] K. Jensen. Coloured Petri Nets. Basic Concepts, Analy-
sis Methods and Practical Use, volume Volume 2, Anal-
ysis Methods of Monographs in Theoretical Computer
Science. Springer-Verlag, 1994.

[14] K. Jensen. Coloured Petri Nets. Basic Concepts, Analy-
sis Methods and Practical Use, volume Volume 3, Prac-
tical Use of Monographs in Theoretical Computer Sci-
ence. Springer-Verlag, 1997.

[15] K. Kuwabara. AgenTalk: Coordination protocol de-
scription for multi-agent systems. In Proceedings of the
First International Conference on Multi-Agent Systems
(ICMAS '95). AAAI/MIT Press, 1995.

[16] Yannis Labrou. Semantics for an Agent Communica-
tion Language. PhD thesis, University of Maryland Bal-
timore County, 1996.

[17] Daniel Moldt and Frank Wienberg. Multi-agent-
systems based on coloured petri nets. In Proceedings
of the 18th International Conference on Application
and Theory of Petri Nets (ICATPN '97), number 1248
in Lecture Notes in Computer Science, pages 82{101,
Toulouse, France, June 1997.

[18] M. H. Nodine and A. Unruh. Facilitating open com-
munication in agent systems: the InfoSleuth infras-
tructure. In Michael Wooldridge, Munindar Singh,
and Anand Rao, editors, Intelligent Agents Volume IV
{ Proceedings of the 1997 Workshop on Agent The-
ories, Architectures and Languages, volume 1365 of
Lecture Notes in Arti�cial Intelligence, pages 281{295.
Springer-Verlag, Berlin, 1997.

[19] H. Van Dyke Parunak. Visualizing agent conversa-
tions: Using enhanced dooley graphs for agent de-
sign and analysis. In Proceedings of the Second Inter-
national Conference on Multi-Agent Systems (ICMAS
'96), 1996.

[20] Y. Peng, T. Finin, Y. Labrou, R. S. Cost, B. Chu,
J. Long, W. J. Tolone, and A. Boughannam. An agent-
based approach for manufacturing integration - the CI-
IMPLEX experience. International Journal of Applied
Arti�cial Intelligence, 13(1{2):39{64, 1999.

[21] M. Purvis and S. Crane�eld. Agent modelling with
petri nets. In Proceedings of the CESA '96 (Compu-
tational Engineering in Systems Applications) Sympo-
sium on Discrete Events and Manufacturing Systems,
pages 602{607, Lille, France, July 1996. IMACS, IEEE-
SMC.

[22] Yoav Shoham. Agent{oriented programming. Arti�cial
Intelligence, 60:51{92, 1993.

[23] James White. Mobile agents. In Je�ery M. Bradshaw,
editor, Software Agents. MIT Press, 1995.

[24] Terry Winograd and Fernando Flores. Understanding
Computers and Cognition. Addison-Wesley, 1986.

8

