
1

An Agent-Based Approach for Manufacturing Integration

- The CIIMPLEX Experience 1

Y. Peng, T. Finin, Y. Labrou, R. S. Cost

Acknowledgment. This work is supported in part by the Advanced Technology Program administered by the

National Institute of Standards and Technology under the agreement number: 70NANB6H2000.

Department of CSEE
University of Maryland Baltimore County

 Baltimore, MD 21250
(ypeng, finin, jklabrou, rcost1@cs.umbc.edu)

B. Chu, J. Long, W. J. Tolone
Department of Computer Science

University of North Carolina
Charlotte, NC 28223

(billchu, tolone, jlong@uncc.edu)

A. Boughannam
IBM Corporation

Boca Raton, FL 33431
(akram@us.ibm.com)

Abbreviated title: Agents for manufacturing integration

Mailing address for proofs: Yun Peng
Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County
1000 Hilltop Circle
Baltimore, MD 21250. USA

2

ABSTRACT

The production management system used by most manufacturers today is comprised of

disconnected planning and execution processes, and lacks the support for interoperability and

collaboration needed for enterprise-wide integration. This situation often prevents the

manufacturer from fully exploring market opportunities in a timely fashion. To address this

problem, we are exploring an agent-based approach to intelligent enterprise integration. In this

approach, a set of agents with specialized expertise can be quickly assembled to help with the

gathering of relevant information and knowledge, to cooperate with each other and with other

parts of the production management system and humans to arrive at timely decisions in dealing

with various enterprise scenarios. The proposed multi-agent system, including its architecture

and implementation, are presented and demonstrated through an example integration scenario

involving real planning and execution software systems.

1. Introduction

The production management system used by most of today’s manufacturers consists of a set of

separate application softwares, each for a different part of the planning, scheduling, and

execution processes (Vollmann, et al., 1992) #. For example, Capacity Analysis (CA) software

determines a Master Production Schedule that sets long-term production targets. Enterprise

Resource Planning (ERP) software generates material and resource plans. Scheduling software

determines the sequence in which shop floor resources (people, machines, material, etc.) are used

in producing different products. Manufacturing Execution System (MES) tracks real-time status

of work in progress, enforces routing integrity, and reports labor/material claims. Most of these

In the rest of the paper, these planning and execution application software systems are referred to as P/E

applications.

3

P/E applications are legacy systems developed over years. Although each of these software

systems performs well for its designated tasks, they are not equipped to handle complex business

scenarios (Bermudez, 1996, Jennings et al., 1996, Tennebaum et al., 1993). Typically, such

scenarios involve coordination of several P/E applications to respond to external environment

changes (price fluctuations, changes of requests from customers and suppliers, etc.) and internal

execution dynamics within an enterprise (resource changes, mismatches between plan and

execution, etc.). Timely solutions to these scenarios are crucial to agile manufacturing, especially

in the era of globalization, automation, and telecommunication (Dourish, 1992). Unfortunately,

these scenarios are primarily handled by human managers, and the responses are often slow and

less than optimal.

The Consortium for Intelligent Integrated Manufacturing Planning-Execution (CIIMPLEX),

consisting of several private companies and universities, was formed in 1995 with matching

funds from the National Institute of Standards and Technology of the U. S. federal government.

The primary goal of the consortium is to develop technologies for intelligent enterprise-wide

integration of planning and execution for manufacturing (Chu et al., 1996). Our vision of a

successful integrated P/E system for manufacturing would has the following features.

1) Interoperability. Heterogeneous P/E applications from different vendors are able to

operate together as integrated parts of the system.

2) Integration. Software tools and infrastructures to support integration tasks not covered by

existing P/E applications are provided. In particular, the integrated solution should

support runtime dynamic coordination in dealing with unexpected events.

3) Distributed. Resources such as software and data are allowed to be physically or logically

distributed.

4

4) Openness. The user shall be able to select and change different applications and tools

easily and with little additional integration cost.

One approach to an integrated P/E system might be to rewrite all application software into a

monolithic integrated planning-execution system capable of handling all foreseeable scenarios.

This approach is judged to be unfeasible because of high development and maintenance cost, and

the closed-ness and inflexibility of such monolithic systems (Hammer, 1996). Conventional

object-oriented distributed systems also seem inadequate because they work at the level of

objects, and thus lack the support for abstraction at higher levels (Jennings et al., 1998).

Instead, CIIMPLEX has adopted as one of its key technologies the approach of intelligent

software agents, and is developing a multi-agent system (MAS) for enterprise integration. In

sharp contrast to traditional software programs, software agents are programs that help people

solve problems by collaborating with other software agents and other resources in the network

(Bradshaw, et al., 1998, Composition Research Group, 1997, Jennings et al., 1998, Nwana,

1996, Parunak, et al., 1997). For instance, individual agents can be designed to perform data

collection and analysis of plans and schedules and to keep constant vigil against mismatches

among these plans and schedules at different levels of abstraction and time horizons. Other

agents can be designed to resolve the conflicts either by themselves or in coordination with

human managers and analysts. Personal assistant agents can be designed to assist human

managers/analysts. Still other agents can be created to provide legacy systems with better

communication and coordination capabilities so they can more effectively cooperate with each

other and with other agents. Moreover, MAS, as a society of autonomous agents, is inherently

open and distributed, and inter-agent communication capability provides the essential means for

agent collaboration.

5

The environment of the CIIMPLEX consortium is different from academic-oriented research

laboratories. Most of the companies in the consortium are P/E application system vendors and

users. This situation gives us the opportunity to work with real-world P/E systems (rather than

imagined toy problems) and appreciate the complexity of realistic business scenarios. On the

other hand, the agent-based approach, as a relatively immature technology which has not yet

reached the industrial strength, understandably receives only guarded enthusiasm by some

members in the consortium. They are more concerned with integration of the P/E systems, using

more mature technologies, to better handle normal or expected business scenarios. Our

immediate priority is thus not to design and develop a complete agent system that integrates all

aspects of manufacturing planing and execution, but to develop one that is limited in scope but

reliable and scalable, and clearly adds commercial value to the end user. In addition, the initial

prototype agent systems must have minimum interference with the normal work of existing P/E

applications.

Based on these considerations, we have decided to concentrate on those P/E scenarios which

represent exceptions to the normal or expected business processes and whose resolution involves

several P/E applications. For example, consider the scenario involving a delay of the shipment

date on a purchased part from a supplier. This event may cause one of the following possible

actions: (a) the manufacturing plan is still feasible, no action is required; (b) order substitute

parts; (c) reschedule; or, (d) reallocate available material. To detect this exception and determine

which of these actions to take, different applications (e.g., MES, ERP, CA, and Scheduler) and

possibly human decision-makers must be involved. Examples of other similar scenarios include a

favored customer’s request to move ahead the delivery date for one of its orders, a machine

6

breakdown being reported by MES, a crucial operation having its processing rate decreased from

the normal rate, to mention just a few.

Figure 1 about here

Figure 1 illustrates at a conceptual level how an exception (e.g., a shipment of a purchased

part is delayed) should be handled by an integrated system. The decision module decides, with

the instruction from a human or an analysis module, what constitutes an exception. The

monitoring module determines what data is to be monitored to detect such exceptions and

conducts actual monitoring of the data stream. When notified by the monitoring module of the

occurrence of an exception, the decision module makes appropriate decision in consultation with

other P/E applications and the analysis module. The decision (e.g., a request to reschedule) will

then be carried out by the designated P/E application(s). Note that what constitutes an exception

and how to monitor it is a dynamic decision which cannot be specified prior to the plan

execution. For example, a factory may not normally consider a delay of shipment of an ordered

part exceptional unless the delay is greater than five days. However, if a part is crucial for an

order of a preferred customer or the inventory of a part is below a threshold, then a delay of

greater than three days may become an exception. To make the situation more complicated, an

action taken to address one exception may trigger another exception to occur (e.g., a reschedule

to handle the delay of shipment of one part may delay the delivery date of an important order for

which the respective sales representative needs to be notified).

To provide an integrated solution to the above outlined scenarios, simple as they are, is by no

means a trivial undertaking. First of all, a set of agents of specialized expertise need to be

developed to provide functions, such as those performed by the analysis module, decision

7

modules, and monitoring modules in Figure 1, which are not covered by any of the existing P/E

applications. As integration tasks, these functions fall in the “white space” between these P/E

applications. Secondly, a reliable and flexible inter-agent communication infrastructure needs to

be developed to allow agents to effectively share information, knowledge, and services. Thirdly,

some means to support interaction with P/E applications, which will not be agentified at this

stage, needed to be provided. And finally, a mechanism for the runtime collaboration of all these

pieces also needs to be developed.

In this paper, we describe our experience of developing an agent-based system for the

CIIMPLEX project. The rest of this paper is organized as follows. In the next section, we briefly

describe the software agent technologies that are relevant to the task of manufacturing

integration. Sections Three and Four form the core of this paper, where we first present the

proposed multi-agent system’s architecture, and then its work through an example scenario that

involve real P/E applications. Section Five evaluates our approach and compares it with other,

related work. Section Six concludes the paper with discussions of ongoing work to expand the

agent system, along with the directions for future research.

2. Multi-Agent System and Agent Collaboration

There is currently no consensus on the definition of software agents or of agency, and some

people go so far as to suggest that any piece of software or object that can perform a specific

given task is an agent. However, the prevailing opinion is that an agent may exhibit, to varying

extent, three important general characteristics: autonomy, adaptation, and cooperation

(Genesereth and Katchpel, 1994, Nwana, 1996). By “autonomy” we mean that agents have their

own agenda of goals and exhibit goal-directed behavior. They are not simply reactive, but can be

pro-active and take initiatives, as they deem appropriate. Adaptation implies that agents are

8

capable of adapting to the environment, which includes other agents and human users, and can

learn from the experience in order to improve themselves in a changing environment.

Cooperation and coordination among agents is probably the most important feature of MAS

(Nwana, 1996). Unlike those stand-alone agents, agents in many MAS share information,

knowledge, and tasks among themselves, and collaborate with each other to achieve common

goals. The intelligent properties of a MAS is not only reflected by the expertise of individual

agents but also by the emergent behavior of the entire collection.

Cooperation and coordination of agents in a MAS requires agents to be able to understand

each other and to communicate with each other effectively. The infrastructure that supports agent

cooperation in a MAS is thus seen to include at least the following key components:

• A common agent communication language (ACL) and protocol,

• A common format for the content of communication, and

• A shared ontology.

In CIIMPLEX we take the Knowledge-Sharing-Effort (KSE) approach toward achieving the

infrastructure needed for agent cooperation (Patil et al., 1992). Three component technologies

developed by the KSE are adopted. They are (a) Knowledge Query Manipulation Language

(KQML) as a communication language and protocol; (b) Knowledge Interchange Format (KIF)

as the format of the communication content; and (c) the concept of a shared ontology. In what

follows we briefly describe these three components and justify their selections in the context of

manufacturing integration environment.

2.1. KQML

KQML is a message-based ACL (Finin et al., 1993, 1998), and it considers each message not

only contains the content but also the attitude or “intention” the sender has for that content. For

9

instance, consider that Agent A sends the following statement as the content of a message to

Agent B:

“the processing rate of operation 1 at machine X is greater than 5.”

Agent A, in different circumstances, may have different intentions about this statement. Agent A

may simply tell B that this statement is true in its own database, or ask if this statement is true in

B’s database; or attaches some other intention to this statement. KQML provides a formal

specification for representing the intentions of messages through a set of pre-defined performa-

tives used in the messages. A subset of KQML performatives that are particularly relevant to our

agent system include ask-one, tell, advertise, subscribe, recommend-one, error, sorry, etc.

A KQML message is thus divided into three layers: the content layer, the communication

layer, and the message layer. The content layer bears the actual content of the message in a

language chosen by the sending agent. The communication layer encodes a set of features to the

message to describe the lower level communication parameters, such as the identity of the sender

and recipient, and a unique identifier tag associated with the communication. The message layer

encodes the message, including its intention (by a chosen performative), the content language

used, and the ontology. The structured syntax of KQML messages is based on a balanced

parenthesis list whose first element is the performative and the rest are the parameters in the form

of keyword/value pairs. The following is an example of an actual KQML message sent by agent

“joe” to agent “stock-server”, inquiring about the price of a share of IBM stock where ?x is an

uninstantiated variable. The reader is referred to (Finin, et al., 1993) for the detailed description

of KQML specifications.

(ask-one
 :language KIF
 :content (Price IBM ?x)
 :sender joe

10

 :receiver stock-server
 :reply-with <a unique string as the tag of this message>

)

2.2. KIF

Although KQML allows agents to choose their own content language, it is beneficial for all

agents within one MAS to exchange most if not all of their messages in a single neutral format.

One obvious advantage of adopting a common content format is efficiency. Instead of many-to-

many format conversion, each agent only needs to convert the content of the message between its

own internal representation and the common format. KIF (Knowledge Interchange Format), due

to its rich expressive power and simple syntax, is probably the most widely used neutral message

content format for agent communication.

KIF is a prefix version of First Order Predicates Calculus (FOPC) with extensions to support

non-monotonic reasoning and definitions (Genesereth, et al., 1992). The language description

includes both specifications for its syntax and for its semantics. Besides FOPC expressions of

facts and knowledge, KIF also supports extra-logical expressions such as those for the encoding

of knowledge about knowledge and of procedures. KIF is currently the subject of an ANSI

standardization study.

2.3. Shared ontology

Sharing the content of formally represented knowledge requires more than a formalism (such as

KIF) and a communication language (such as KQML). Individual agents, as autonomous entities

specialized for some particular aspects of problem solving in a MAS, may have different models

of the world in which objects, classes and properties of objects of the world may be

conceptualized differently. For example, the same object may be named differently (“machine-

id” and “machine-name” for machine identification in the databases of two agents). The same

11

term may have different definitions in different agents' internal representations (“salary-rate,”

referring to hourly rate in one agent and annual rate in another). Also, different taxonomies may

be conceptualized from different perspectives by individual agents.

Therefore, to ensure correct mutual understanding of the exchanged messages, agents must

also agree on the model of the world, or at least that part of the world about which they are

exchanging information with each other. In the terminology of the agent community, agents must

share a common ontology (Patil, et al., 1992). An ontology for a domain is a conceptualization of

the world in terms of the objects, qualities, distinctions and relationships, etc. in that domain. A

shared or common ontology refers to an explicit specification of the ontological commitments of

a group of agents. Such a specification should be an objective (i.e., interpretable outside of the

agents) description of the concepts and relationships that the agents use to interact with each

other, with other programs such as legacy business applications, and with humans. A shared

ontology can be in the form of a document or a set of machine interpretable specifications.

2.4. Agent collaboration

With a common communication language, a common content language, and a shared ontology,

agents can communicate with each other in the same manner, in the same syntax, and with the

same understanding of the world. In addition to these three essential ingredients, some common

service agents are often used in a MAS to make agent collaboration more efficient and effective.

One type of a service agent is the Agent Name Server (ANS). The ANS, similarly to the white

page phone book, serves as the central repository of the contact addresses for all involved agents,

i.e., it maintains an address table of all registered agents, accessible through the agents’ symbolic

names. Newly created agents must register with the ANS their names, contact addresses and

possibly other information by sending to the ANS a message with the performative register. (As

12

a presumption, every agent in the system must know how to contact the ANS.) The ANS maps

the symbolic name of a registered agent to its contact address when requested by other agents.

Another type of a service agent is the Facilitator Agent (FA), which provides additional

services to other agents. A simple FA is a Broker Agent (BA) which provides a "yellow pages"

type service. It registers services offered and requested by individual agents and dynamically

connects available services to requests whenever possible. Agents register their available

services by sending BA messages with the performative advertise, and request services by

sending to the BA messages with brokering performatives such as recommend-one. In both

cases, the description of the specific service is in the content of the message. In a reply to a

recommend-one message the BA will send the symbolic name of an agent which has advertised

as being able to provide the requested service at the BA, or sorry if such request cannot be met

by current advertisers.

3. CIIPLEX Agent System Architecture

In this section, we describe the MAS architecture that supports inter-agent cooperation in the

CIIMPLEX project, emphasizing on the agent communication infrastructure. Figure 2 below

gives the architecture of CIIMPLEX enterprise integration with MAS as an integrated part.

Figure 2 about here

At the current stage of the project, the entire P/E integration architecture is composed of two

parts: the P/E application world and the agent world, and supported by two separate

communication infrastructures. Although these legacy P/E applications have not being

agentified, they have been wrapped with API’s, which provide them with limited communication

capability (Chu, et al., 1998). Different transport mechanisms (e.g., MQ Series of IBM and

13

VisualFlow of Envisionit) are under experimentation as communication infrastructures for the

wrapped P/E applications. These mechanisms are persistent, but only support static, pre-

determined communication patterns.

In the agent world, besides the service agents ANS and BA, several other types of agents are

useful for enterprise integration. For example, data-mining/parameter-estimation agents are

needed to collect, aggregate, interpolate and extrapolate the raw transaction data of the low level

(shop floor) activities, and then to make this aggregated information available for higher level

analyses by other agents. Event monitoring agents monitor, detect, and notify about abnormal

events that need to be attended. The CIIMPLEX Analysis Agents (CAA) evaluate disturbances to

the current planned schedule and recommend appropriate actions to address each disturbance.

And the Scenario Coordination Agents (SCA) assist human decision making for specific

business scenarios by providing the relevant context, including filtered information, actions, as

well as workflow charts.

All these agents uses the KQML as the agent communication language, and use a subset of

KIF that supports Horn clause deductive inference as the content language. TCP/IP is chosen as

the low-level transport mechanism for agent-to-agent communication. The shared ontology is an

agreement document established by the P/E application vendors and users and other partners in

the consortium. The agreement adopts the format of the Business Object Document (BOD)

defined by the Open Application Group (OAG). BOD is also used as the message format for

communication among P/E applications such as MES and ERP, and between agents and

applications. A special service agent, called the Gateway Agent (GA), is created to provide

interface between the agent world and the application world. GA’s functions, among other

things, include making connections between the transport mechanisms (e.g., between TCP/IP

14

and MQ Series) and converting messages between the two different formats (KQML/KIF and

BOD).

The agent system architecture outlined above is supported by the agent communication

infrastructure called Jackal developed by the consortium (Cost et al., 1998). As indicated by the

name, JACKAL is written in JAVA to support Agent Communication using the KQML Agent

communication Language. The decision to select JAVA as the implementation language was

based mainly on its inter-platform portability, its networking facilities, and its support for multi-

thread programming. The next two subsections provide detailed description of Jackal.

3.1. Conversation policies in Jackal

KQML itself only defines the syntax of the language. However, a good, workable semantics is

imperative for conducting coherent conversation among agents. To support both syntactic and

semantic aspects of the language, Jackal takes a semantic interpretation of KQML from (Labrou,

1996, Labrou and Finin, 1997) and realizes part of it as a set of conversation policies.

The conversation policies are procedures which, based on the performatives involved,

specify how a conversation (consisting of a sequence of messages) is to start, to proceed, and to

terminate. For example, a conversation started with an ask-one message will terminate as soon as

the sender receives a proper reply. (Possible replies include an error message, indicating that the

format of the message is incorrect; a sorry message, indicating that the receiver cannot provide

an answer to the question; a tell message whose content contains an answer to the given

question; or an untell message which retracts a previous tell message). A conversation started by

a message with performative subscribe would have a different policy. When Agent A starts such

a conversation with Agent B, the conversation remains open with A keeping listening for new

messages from B that satisfy the subscription criterion.

15

Conversation policies chosen for Jackal can be described using a Deterministic Finite

Automata (DFA) model. In this model, each conversation starts with a state called START, and

ends with a state called STOP. A conversation moves from one state to another according to the

given state transition diagram. Figure 3 shows examples of the DFA’s for ask-one and subscribe

conversations.

Figure 3 about here

3.2. An overview of Jackal’s design

Jackal was designed to provide comprehensive functionality, while presenting a simple interface

to the user. Thus, although Jackal consists of roughly seventy distinct classes, all user

interactions are channeled through one class, hiding most details of the implementation.

Figure 4 about here

Figure 4 presents the principal Jackal components, and the basic message path through the

system. We will first discuss each of the components, and then, to illustrate their interaction,

trace the path of a message through the system.

3.2.1. Jackal components

The Intercom class is the bridge between the agent application and Jackal. It controls startup

and shutdown of Jackal, provides the application with access to internal methods, houses

common data structures, and plays a supervisory role to the communications infrastructure.

Agents create and use an instance of Intercom, rather than extending an agent shell. This gives

us great flexibility for the design and implementation of other parts of the agent.

16

Jackal runs a Transport Module for each communication protocol it uses. The current

Jackal implementation includes a module for TCP/IP, and users can create additional modules

for other protocols. The Transport Module is responsible for message transmission and receipt.

 Messages received by the Switchboard must be directed to the appropriate places in the

Conversation Space. This is the role of the Message Handler. Messages are associated with

current (logical) threads based on their ID (the value of the "reply-with" or "in-reply-to" field).

This directs their assignment to ongoing conversations when possible. If no such assignment can

be made, a new conversation appropriate to the message is started.

Conversation protocols, described above, are "run" as independent threads for all ongoing

conversations. This allows for easy context management, while providing constraints on

language use and a framework for low level conversation management.

The Distributor is a Linda-like (Carriero and Gelertner, 1989} shared memory space

(concenptually like a blackboard), which serves to match messages with requests for messages.

This is the sole interface between the agent and the message traffic. Its concise API allows for

comprehensive specification of message requests. Requesters are returned message queues, and

receive all return traffic through these queues. Requests for messages are based on some

combination of message, conversation or thread ID, and syntactic form. They permit actions such

as removing an acquired message from the blackboard or marking it as read only. A priority

setting determines the order of matching. Requests can be set to persist indefinitely, or terminate

after a certain number of matches.

A service here is any thread; this could be a Jackal service, or threads within the agent itself.

The only thing that distinguishes among threads is the request priority they use. System, or

Jackal, threads choose from a set of higher priorities than agent threads, but each chooses a level

17

within its own pool. Jackal reserves the highest and lowest priorities for services directing

messages out of the agent and for those cleaning the blackboard, respectively.

The Switchboard acts as an interface between the Transport Modules and the rest of

Jackal. It must facilitate the intake of new messages, which it gathers from the Transport

Modules, and carry out send requests from the application. The latter is a fairly complicated

procedure, since it has multiple protocols at its disposal. The Switchboard must formulate a plan

for the delivery of a message, with the aid of the Address Cache, and pursue it for an

unspecified period of time, without creating a bottleneck to message traffic.

The problem of agent naming arises in any multi-agent system. A naming scheme, called

KNS is developed in Jackal. KNS is a hierarchical scheme similar in spirit to DNS. A fully-

qualified agent name (FQAN) is a sequence of period-separated agent names (e.g. phil.cs.edu).

The sequence denotes registrations between agents. Agents can register together to form teams,

and can maintain multiple identities to represent roles in the multi-agent system. Multiple

registrations for an agent become a network of aliases for that agent. If one name becomes

inaccessible, another can be identified to fill the gap. Moreover, since agents can maintain

multiple contact information for each name, agents can change locations and leave forwarding

arrangements for messages while they migrate. In this way, dynamic group formation is

supported. KNS can easily be extended to support collaborating, mobile KQML-speaking agents

using a variety of transport protocols. In such case, the final segment in a FQAN is always an

URL (e.g., phil.cs.http://www.umbc.edu), providing unique, static location information for the

base of an agent registration chain.

The Address Cache holds agent addresses in order to defray lookup costs. It is a multi-

layered cache supporting various levels of locking, allowing it to provide high availability.

18

Unsuccessful address queries trigger underlying KNS lookup mechanisms, while blocking access

to only one individual listing. Jackal supports KNS transparently through an intelligent address

cache.

3.2.2. Message Path

Having described the various components of Jackal, we will trace the path of a received message

and the corresponding reply, using the numbered arcs in Figure 4 for reference.

The message is first received by a connection thread within a Transport Module ([1] in

Figure 4), is processed in the Message Handler, and transferred directly to the input queue of

either a waiting or a new conversation [2]. A unique thread manages each conversation. The

target conversation awakens, takes the message from its input queue [3], and tries to advance its

DFA accordingly. If accepted, the message is entered into the Distributor [4], an internal

blackboard for message distribution. The Distributor [5] in turn tries to match the message with

any pending requests in order of a specified priority. Ideally, a match is found, and the message

is placed in the appropriate queue or queues [6]. This is the point at which the agent gains access

to the message flow; through services attending to the blackboard.

Once the requesting service thread picks the message out of its queue [7], it presumably

performs some action, and may send [8] a reply or a new message; we assume it does. Jackal

arranges for reply requests to be placed into the Distributor before messages are sent, when

appropriate. The message is directed into the Conversation Space, and traces the same path as

the previous incoming message [9,10] to the Distributor. The message is captured by the

Switchboard’s outbound message request [11]. The Switchboard removes the new message

from its queue and assigns it to an idle send thread [12]; this results in some overhead, but allows

19

sends to proceed concurrently, avoiding bottlenecks due to variation in delivery times. The send

thread uses the appropriate Transport Module to transmit the message.

Figure 5 depicts the typical design of an agent using Jackal for agent communication. A

main thread serves primarily to start and direct Jackal and a collection of service threads. Each

service thread interacts with the Distributor to send and receive messages, and potentially with

the main thread and other service threads as well. Each service thread takes some basic role

within the agent, such as processing all broker requests, or logging all message traffic to an

archival agent.

Figure 5 about here

4. An Application Example

In this section, we demonstrate how the CIIMPLEX agent system supports intelligent enterprise

integration through a simple business scenario involving some real manufacturing management

application software systems.

4.1. The scenario

The scenario selected, called “process rate change” and depicted in Figure 6, occurs when the

process time of a given operation on a given machine is reduced significantly from its normal

value. When this type of event occurs, different actions need to be taken based on the type of

operation and the severity of the rate reduction. Some of the actions may be taken automatically

according to the given business rules, and others may involve human decisions. Some actions

may be as simple as recording the event in the logging file, and some others may be complicated

and expensive as requesting such as a rescheduling based on the changed operation rate. Two

20

real P/E application programs, namely the FactoryOp (a MES by IBM) and MOOPI (a Finite

Scheduler by Berclain), are used in this scenario.

Figure 6 about here

4.2. The agents

To support managing this scenario, we need mechanisms for the following activities:

• Collect in real-time information concerning operation completion originated from MES.

• Compute and constantly update the process rate from the collected information.

• Detect and notify the appropriate parties if the current rate change constitutes a

significant reduction.

• Decide appropriate actions to handle the rate change.

• Carry out the actions

A collection of agents is assembled to support the chosen scenario. All of these agents speak

KQML, and are supported by Jackal. Besides the three service agents ANS, BA, and GA, the

multi-agent system also includes the following special agents.

• The Process Rate Agent (PRA) is both a mining agent and a monitoring agent for shop-

floor activities. As a mining agent, PRA requests and receives the messages containing

transaction data of operation completion from GA. The data originates from FactoryOp in

the BOD Format, and is converted into KIF format by GA. PRA aggregates the

continuing stream of operation completion data and computes the current mean and

standard deviation of the processing time for each operation. It also makes the aggregated

data available for other agents to access. As a monitoring agent, PRA receives from other

21

agents the monitoring criteria for disturbance events concerning processing rates and

notifies the appropriate agents when such events occur.

• The Scenario Coordination Agent (SCA) sets the rate monitoring criterion, receives the

notification for the rate change, and decides, in consultation with human decision-makers,

appropriate action(s) to take for the changed rate. One of the actions would be to request

MOOPI to reschedule if it is determined that the rate change makes the existing schedule

impossible to meet. This request is sent from SCA as a KQML message to GA, where it

is converted into the BOD format. Details of the internal logic and algorithms of the SCA

that handle the “rate change” scenario are reported elsewhere (Tolone, et al., 1998).

• The Directory Assistance Agent (DA) is an auxiliary agent responsible for finding

appropriate persons for SCA when the latter needs to consult human decision-makers. It

also finds the proper mode of communication to that person.

• The Authentication Assistance Agent (AA) is another auxiliary agent used by SCA. It is

responsible for conducting authentication checks to see if a person in interaction with

SCA has proper authority to make certain decisions concerning the scenario.

4.3. The predicates

Three KIF predicates of multiple arguments are defined. These predicates, OP-COMPLETE,

RATE, and RATE-CHANGE, are used to compose the contents of messages between agents in

processing the process rate change scenario.

The OP-COMPLETE predicate contains all relevant information concerning a completed

operation, including P/E-Application-id, machine-id, operation-id, starting and finishing time-

stamps, and quantity. The process time for this operation can then be computed by the difference

between the finishing and starting time stamps, divided by the quantity.

22

The RATE predicate contains all relevant information concerning the current average rate of

a particular operation at a particular machine with a particular product. The operation rate is

represented by its mean and standard deviation over a period of time. RATE instances are

computed and constantly updated by PRA, based on a stream of instances of predicate OP-

COMPLETE obtained from GA.

The RATE-CHANGE predicate contains all the information needed to construct a BOD that

tells MOOPI a significant rate change has occurred and a re-schedule based on the new rate is

called for. In particular, it contains the operation rate used to compute the current schedule and

the new rate. It is the responsibility of the rate change SCA to compose an instance of the RATE-

PREDICATE and send it to GA when it deems necessary to request MOOPI for a re-schedule,

based on the process rate change notification from PRA and consultation with human decision

makers.

Additional predicates and more complicated KIF expressions are needed when dealing with

more complicated scenarios.

4.4. Agent collaboration and the message flow in the agent system

Figure 7 depicts how agents cooperate with one another to resolve the rate change scenario, and

sketches the message flow in the agent system. For clarity, ANS and its connections to other

agents are not shown in the figure. The message flow employed to establish connections between

SCA and DA and AA (brokered by BA) is also not shown.

Figure 7 about here

Each of these agents needs information from others to perform its designated tasks. Each of

them may also have information others need. Since there is no pre-determined stationery

23

connection among agents, the broker agent (BA) plays a crucial role in dynamically establishing

communication channel for agents’ information exchange.

Advertising to BA.

GA advertises that it can provide OP-COMPLETE predicate. It also advertises to be able to

accept RATE-CHANGE predicate. PRA advertises that it has current process rates available for

some operations in the form of RATE predicate. The following is an example of advertise

message from GA to BA.

(advertise
 :sender GA

 :receiver BA
 :reply-with <a unique string as the tag of this message>
 :content (subscribe :content (ask-one :content (OP-COMPLETE ?x1 … ?xn))))

Requesting recommendation from BA.

PRA asks BA to recommend an agent that can provide OP-COMPLETE predicate, and will

receive the recommendation of GA in a responding tell message. Similarly, SCA asks BA to

recommend an agent that can provide RATE predicate and receives PRA in response. It also asks

BA to recommend an agent that can accept RATE-CHANGE predicate and receives GA in

response. The following is an example of recommend-one message from PRA.

(recommend-one
 :sender PRA

 :receiver BA
 :reply-with <a unique string as the tag of this message>
 :content (subscribe :content (ask-one :content (OP-COMPLETE ?x1 …?xn))))

In response, BA sends the following tell message to PRA.

(tell
 :sender: BA

 :receiver PRA
 :in-reply-to <the tag of the message to which this message responds>

 :content (GA))

24

Upon the recommendation from BA, an agent can then obtain the needed information by sending

ask or subscribe messages to the recommended agent.

Monitoring/notification

When SCA knows from BA that PRA has advertised that it can provide the current rate for

certain operation, it may send PRA the following subscribe message.

(subscribe
 :sender SCA
 :receiver PRA
 :reply-with <a unique string as the tag of this message>
 :language KQML
 :content (ask-one

 :language KIF
 :content (and (RATE … ?mean …) (< ?mean 50))))

With this message, SCA tells PRA that it is interested in receiving new instances of RATE

predicate whenever the mean value of the new rate is less than 50. This effectively turns PRA to

a process rate monitor with the "mean < 50" as the monitor criterion. Whenever the newly

updated rate satisfies this criterion, PRA immediately notifies SCA by sending it a tell message

with the new rate’s mean and standard deviation.

5. Evaluation

The prototype agent system outlined in the previous section has been installed at IBM's Boca

Raton CIIMPLEX integration center where a host of P/E application systems, including

FactoryOp and MOOPI, is running. The system has been tested successfully. The architecture of

this system can easily be applied to handle other types of P/E exception scenarios. For example,

we have recently assembled another agent system to manage a different exception scenario in

which some BOD's sent to an application are out of sequence and need to be re-synchronized.

Additional experiments have been conducted to test the reliability and scalability of Jackal.

In the experiments Jackal is seen to be able to support up to 42 agents in a ring in a single NT

25

machine (until the machine runs out of memory), and a message takes on average of 0.3 second

to traverse the entire ring. Jackal is also see to easily handle messages of large size. The largest

ones we have tested are binary image data of half megabytes.

In summary, the prototype system achieves the following, which, as discussed in the

beginning of this paper, are essential for manufacturing planing and execution integration.

1) Specialized agents (e.g., PRA, MA, and SCA) are built to provide functionality needed to

manage P/E exceptions in manufacturing. These agents fill the white space in between

legacy P/E application systems.

2) Jackal, the inter-agent communication infrastructure, is reliable and scalable. It is also

easy to use in developing individual agents because it imposes minimum interference

between communication and other agent functions.

3) Conversation policies implemented in Jackal realize, to some extent, the belief-desire-

intention (BDI) model intended by KQML. These policies can be used to enforce

semantically correct agent-to-agent conversations.

4) The brokering agent (BA) provides necessary support for flexible agent-to-agent

collaboration. The gateway agent (GA) provides the interface between the agent world

and the application world. They together make runtime collaboration among all modules

possible.

5) Ontological support (i.e., the BOD definitions), although very limited at this moment,

enables collaboration between agents and legacy P/E systems.

Comparing with some existing work of others, our work is more focused on particular needs

of CIIMPLEX integration environment. Works such as ZEUS (Nwana et al., 1998), dMARS

based on Procedural Reasoning System (Georgeff and Lansky, 1987), ADEPT (Jennings et al.,

26

1996) and RETSINA (Sycara et al., 1996) attempts to provide generic agent construction

environment and toolkits or general agent architecture. Our work can be seen as more of a point

solution, although some techniques from this work, such as Jackal, can be used as a general-

purpose communication infrastructure for KQML-speaking agents.

We do not impose an unified architecture for all of our agents. Besides the interface to

Jackal, each agent is free to choose its own internal structure. Currently, we are considering

Linda-like shared memory or lightweight blackboard architecture for intra-agent (component-to-

component) interaction.

There are great deal of research activities in developing agent systems for manufacturing and

other business applications. Examples of such systems include ADEPT ADEPT (Jennings et al.,

1996) for business management, COOL for supply chain management (Barbuceanu and Fox,

1996), AMBEI for manufacturing integration (Shen et al., 1998), to mention just a few. A

distinguishing characteristic of our work is that we explicitly deal with real legacy P/E systems.

Although some others discuss legacy systems in principle (Jennings and Wooldridge, 1998, Shen

et al., 1998), these legacy systems are seldom included in the actual implementation.

Another major difference between our work and some others lies on the way the agent

collaboration is achieved. COOL (Barbuceanu and Fox, 1996) emphasizes the high level

coordination by negotiation and extends KQML to support the specification of conversations for

negotiation.# ABMEI (Shen et al., 1998) uses a network of mediators whose main purpose is to

resolve heterogeneity between subsystems. Agents in their systems presumably have the

knowledge of what agents to contact when certain needs arise, while in our system agents do not

Like the conversation policies in our system, COOL’s conversations are also defined using DFA’s. The difference

is that their conversations specify negotiation conventions and our conversations implement intended semantics
for KQML performatives based on speech act theory. In other words, they are at different levels of abstraction,
and for different purposes, their’s is for specifying what it will be and ours for insuring what it should be.

27

assume knowledge of what others can do. Each agent advertises services it can provide and

announces what services it needs. The service requests match advertises by the broker agents,

and the communication between the matched pairs then follows. The Open Agent Architecture

(OAA) (Martin et al., 1998) goes further to use a powerful facilitator to coordinate agents

activities in a system. The facilitator works like a planner. Based on the knowledge stored, it is

able to decompose a task received from an agent to subtasks, delegate subtasks to appropriate

agents, and monitor and coordinate the executions of these subtasks. A drawback of OAA is that

the facilitator is also the communication center. All agents must communicate via the facilitator,

while in our system, agents can communicate directly to each other after the brokering matches.

6. Conclusion

In this paper we presented a multi-agent system that is capable of supporting intelligent

integration of manufacturing planning and execution, especially in managing the exceptions in

business scenarios. With this approach, a set of software agents with specialized expertise can be

quickly assembled to help gather relevant information and knowledge and to cooperate with each

other, and with other management systems and human managers and analysts, in order to arrive

at timely decisions in dealing with various enterprise scenarios. This system has been tested

successfully with a real manufacturing scenario involving real legacy MES and scheduler.

The work presented here represents only the first step of our effort toward agent-based

enterprise integration for manufacturing planning and execution. Further research and

experiments are needed to extend the current work and to address its shortcomings. Although

KQML does not impose many constraints and requirements on the internal structure of agents, it

may be beneficial to have a common framework for the agent’s internal structure within a single

agent system. We are currently considering a lightweight blackboard architecture for such a

28

framework, which, among other advantages, may provide flexibility for agent construction, agent

component re-usability and plug-and-play. Another research direction under consideration is to

increase the functionality of the broker agent and make it more intelligent. The BA in our current

implementation can only conduct brokering activities at the level of predicates. With the help of

a machine interpretable common ontology and an inference engine, more intelligent brokering

can be developed to work with object hierarchies and to make intelligent choices. The current

ontological support is very limited. It only provides definitions of various BOD’s and constraints

of BOD fields to insure data consistency. We are currently extending the ontology to include

deductive rules for additional interrelations between different BOD’s and BOD fields to support

more complicated business scenarios. Work is also under way to identify more complex

enterprise scenarios which require non-trivial interactions with more legacy systems, and their

solutions represent significant added values to the manufacturing production management.

29

References

1. Barbuceanu, M. and Fox, M.S. The Architecture of an Agent Building Shell. In Intelligent

Agents II, 1037, Berling: Springer Verlag, 235-250.

2. Bermudez, J. 1996. Advanced Planning and Scheduling Systems: Just a Fad or a

Breakthrough in Manufacturing and Supply Chain Management? Report on Manufacturing,

Advanced Manufacturing Research, Boston, MA. December.

3. Bradshaw, J., Dutfield, S., Benoit, P. and Woolley, J. 1998. KAoS: Toward An Industrial-

Strength Open Agent Architecture. To appear in Software Agents Bradshaw, J.M. (Ed),

Boston: MIT Press.

4. Carriero, N. and Gelertner, D. 1989. Linda in Context. CACM, 32(4), 444-458.

5. Chu, B., Tolone, W. J., Wilhelm, R., Hegedus, M., Fesko, J., Finin, T., Peng, Y., Jones, C.

Long, J., Matthews, M. Mayfield, J., Shimp, J., and Su, S. 1996. Integrating Manufacturing

Softwares for Intelligent Planning-Execution: A CIIMPLEX Perspective. In Plug and Play

Software for Agile Manufacturing, Proceedings of SPIE , Vol. 2913. Boston, MA, pp. 96-

108.

6. Chu, B., Long, J., Matthews, M., Barnes, J., Sims, J., Hamilton, M., and Lambert, R. 1998.

FAIME: An Object-Oriented Methodology for Application Plug-and-Play. Journal of

Object-Oriented Programming (to appear).

7. Tolone, W.J., Chu, B., Long, J., Finin, T., and Peng, Y. 1998. Supporting Human Interactions

within Integrated Manufacturing Systems. To appear in International Journal of Agile

Manufacturing.

30

8. Compositional Research Group, 1996. Caltech Infosheres Project. Available at

http://www.infospheres.caltech.edu.

9. Dourish, P. Bellotti, V. 1992. Awareness and Coordination in Shared Workspaces” In

Proceedings ACM 1992 Conference on Computer-Supported Cooperative Work: Sharing

Perspectives (CSCW ’92), Toronto, November, 107-114.

10. Finin, T., Weber J. et al. 1993. Draft Specification of the KQML Agent Communication

Language. June. Available at http://www.cs.umbc.edu/kqml/kqmlspec/spec.html.

11. Finin, T., Labrou, Y., and Mayfield, J. 1998. KQML as an agent communication language.

To appear in Software Agents. Bradshaw, J.M. (Ed.). Boston: MIT Press.

12. Genesereth, M., Fikes, R. et al. 1992. Knowledge Interchange Format, Version 3.0 Reference

Manual. Technical Report, Computer Science Department, Stanford University.

13. Genesereth, M. and Katchpel, S. 1994. Software Agents. Communication of the ACM. 37(7):

48-53.

14. Georgeff, M. R. and Lansky, A. L. 1987. Reactive Reasoning and Planning. In Proceedings

of AAAI, Seattle, WA. 677-682.

15. Hammer, M. 1996. Beyond Reengineering: How the Process-Centered Organization Is

Changing Our Work and Our Lives. Harpercollins.

16. Jennings, N. R. Faratin, P., Norman, T. J., O'Brien, P., Wiegand, M. E., Voudouris, C., Alty,

J. L., Miah, T., and Mamdani, E. H. 1996. ADEPT: Managing Business Processes Using

Intelligent Agents. In Proceedings of BCS Expert Systems Conference (ISIP Track).

Cambridge, UK.

31

17. Jennings, N. R. and Wooldridge, M. J. 1998. Applications of Intelligent Agents. In Agent

Technologies: Foundations, Applications, and Markets. N. R. Jennings and M. J. Wooldridge

(eds.) (To appear)

18. Labrou, Y. 1996. Semantics for an Agent Communication Language. Unpublished Ph.D.

Dissertation, Department of Computer Science and Electrical Engineering, University of

Maryland Baltimore County, August.

19. Martin, D.L., Cheyer, A.J., and Moran, D.B. 1998. Building Distributed Software Systems

with the Open Agent Architecture. In Proceedings of the Practical Application of Intelligent

Agents and Multi-Agent Systems. London, UK. 355-376.

20. Nwana, H.S. 1996. Software Agents: An Overview. The Knowledge Engineering Review,

Vol 11 (3).

21. Nwana, H.S., Ndumu, D.T., and Lee, L.C. 1998 ZEUS: An Advanced Tool-Kit for

Engineering Distributed Multi-Agent Systems. In Proceedings of the Practical Application of

Intelligent Agents and Multi-Agent Systems. London, UK. 377-392.

22. Parunak, H.V.D., Baker, A., and Clark, S. 1997. AARIA Agent Architecture: An Example

of Requirements-Driven Agent-Based System Design. Available at http://www.aaria.uc.edu.

23. Patil, R., Fikes, R., Patel-Schneider, P., McKay, D., Finin, T., Gruber, T., and Neches, R.

1992. The DAPA Knowledge Sharing Effort: Progree Report. In Principles of Knowledge

Representation and Reasoning: Proc. Of the Third International Conference on Knowledge

Representation (KR’92), B. Neches, C. Rich, and W. Swartout (eds.). Dan Mateo, CA:

Morgan Kaufmann, November.

24. Shen, W. Xue, D., and Norrie, D.H. 1998. Agent-Based Manufacturing Enterprise

Infrastructure for Distributed Inte3grated Intelligent Manufacturing Systems. In Proceedings

32

of the Practical Application of Intelligent Agents and Multi-Agent Systems. London, UK.

533-550.

25. Sycara, K., Pannu, A., Williamson, M., and Zeng, D. 1996. Distributed Intelligent Agents.

IEEE Expert, 11(6), 36-46.

26. Tennenbaum, M., Weber, J., and Gruber, T. 1993. Enterprise Integration: Lessons from

Shade and Pact. In Enterprise Integration Modeling, C. Peter (ed.). Boston: MIT Press.

27. Vollmann, T., Berry, W. and Whybark, D. 1992 Manufacturing Planning and Control

Systems. Irwin: New York.

33

Figure Captions

Figure 1. A manufacturing integration example: handling exceptions

Figure 2. CIIMPLEX integration architecture

Figure 3. DFA state-diagrams for selected KQML conversations

(a) ask-one conversation

(b) subscribe conversation

Figure 4. An overview of Jackal

Figure 5. A Jackal agent skeleton

Figure 6. The “process rate change” scenario

Figure 7. The agent system for “process rate change” scenario

34

P/E
Application

Monitoring Module

• Determine data
source

• Establish dataflow

• Monitor

Decision Module

• Set monitoring
 specs

• Determine actions
 when exception
 occurs

Analysis Module

• Severity of
exception

• Feasibility of
proposed action

P/E
Application

P/E
Application

Human
Interface
Module

dataflow

monitoring specs

Notification of

exception

Request/

notification

authorization

P/E
Application

consultation

consultation

Figure 1

35

 MES ERP Scheduler

 Customer
 Response CA

 Gateway
 Agent

CIIMPLEX Integration Infrastructure

CIIMPLEX Agent Communication Infrastructure

 ANS BA Data
 mining
 Agent

 Monitoring
 Agent

 CIIMPLEX
 Analysis
 Agent

 Scenario
 Coordination
 Agent

Figure 2.

36

Figure 3.

START Asked STOP
(ask-one)

(tell)

(untell)

(deny)

(error)

(sorry)

(a)

 (b)

START Sub2 STOP
(unsubscribe)

Sub1
(subscribe) (tell)

(tell)

(sorry)

(error)

(error)

37

Figure 4.

...
...

4,10

7

3,9
6

5,11

13

2
8

12

1
Intercom

Switchboard

Distributor
Message
Handler

Conversation
Space

Address
Cache

Internet

Transport
Modules

= Message Queue = Java Thread

Services

Jackal 3.0 in a Nutshell

= Message Path

14

15

38

Figure 5.

Jackal
Intercom Distributor

Service Thread

Main
Agent
Thread

Service Thread
Service Thread

Service Thread

Transport Interface

39

FactoryOp
1.Msg for operation

 Completion (BOD)

Rate monitoring

agent

Rate coordination
agent

People

2. Inform rate change:
 KQML/KIF

MOOPI

4. Request re-schedule
 Msg (BOD)

3. Informing people (email,
pager, cell phone) and
human decision.

Specify monitoring
criteria

Figure 6.

40

 FactoryOp

 GA

BA PRA

SCA

MOOPI

 DA AA

GA-IN
Queue

GA-OUT
Queue

BODs from applications BODs to applications

tell
advertise recommend-one

tell
recommend-one

tell

advertise

subscribe

tell

subscribe
tell

Figure 7.

