
Authorization and Privacy for Semantic Web Services

Lalana Kagal1, Massimo Paolucci2, Naveen Srinivasan2, Grit Denker3, Tim Finin1, Katia Sycara2

1University of Maryland, Baltimore County, Computer Science, 1000 Hilltop Circle, Baltimore, MD 21250
2Carnegie Mellon University, School of Computer Science, Newell-Simon Hall 1602D, Pittsburgh, PA 15213

3SRI International, Computer Science Laboratory, 333 Ravenswood Ave, Menlo Park, CA 94025
lkagal1@cs.umbc.edu, paolucci@cs.cmu.edu, naveen@cs.cmu.edu, grit.denker@sri.com, finin@umbc.edu , katia@cs.cmu.edu

Abstract
In this paper we address security of semantic Web services that
are declaratively described in OWL-S. We propose ontologies to
annotate OWL-S input and output parameters with respect to their
security characteristics, including encryption and digital signa-
tures. Moreover, we propose to incorporate privacy and authenti-
cation policies into OWL-S descriptions and requester profiles.
We designed and implemented algorithms to check policy com-
pliance and integrated them in the service selection process of the
OWL-S MatchMaker. We extended the OWL-S VM with features
for encrypting and signing messages exchanged between service
requester and provider.

1. Introduction and Related Work

The introduction of web services has fundamentally
changed the way business is conducted in today’s market.
Many financial transactions are nowadays web-service
based application. Nevertheless, the current state-of-the-art
of web services deployment and applications do not fully
exploit the potential of web services and even less so of
semantic web services. Standardization groups such as
OASIS and W3C have primarily worked on syntactical
issues of web service interoperability and web service se-
curity. The exploration of how semantically rich annota-
tions will facilitate the discovery, selection, composition,
invocation, and runtime monitoring of web services is only
beginning. Semantic Web services promise to provide so-
lutions towards this grand vision.

Our work focuses on the security aspects of semantic
web services. We aim to provide semantically rich security
and policy annotations for OWL-S service descriptions and
enforce them by extending the existing OWL-S Match-
maker for policy matching and OWL-S Virtual Machine
with security mechanisms. OWL-S is a set of ontologies
for describing capabilities, interfaces and other details of
web services and has been designed to facilitate automated
web service discovery, composition, and invocation. An
OWL-S description comprises profile (what does the serv-
ice do), process model (how does the service achieve its
functionality) and grounding (how can the service be in-
voked) of the web service.

In earlier work [DKF+03], we proposed ontologies for
modeling high-level security requirements and capabilities
of web services and clients. This allows matching a client’s
request with the appropriate provided services. Thus, serv-
ices are discovered based on not only their functional de-
scriptions, but also on the basis of security criteria. For
example, a web service can state that it is capable of per-
forming Open-PGP encryption and requires the invoker to
be capable of authenticating itself and communicating in
XML. We added additional functionality to the DAML-S
Matchmaker enabling it to verify that the security require-
ments of the invoker were fulfilled by the capabilities of
the service and the requirements of the service were satis-
fied by the capabilities of the invoker. Our results are use-
ful for coarse-grain matching decisions such as “Does the
service provide encryption?” or “What kind of credential
do I have to provide in order to authenticate myself to the
service?”

In this paper we propose a more fine-grain security
markup of service parameters in profile and process mod-
els. We further extend the framework through the addition
of annotations about the security and privacy policies of
services expressed in Rei, a rich, declarative policy lan-
guage. Rei [KFJ03] is a logic-based language that allows
rules and constraints to be defined over domain specific
ontologies. This policy information is used in service se-
lection and invocation.

Relevant related work stems from the areas of security
for web services and trust and privacy policies for the se-
mantic web. Lately there has been a significant body of
standardization efforts for XML-based security, such as
WS Security, SAML of the OASIS Security Services
Technical Committee, and the Security Specifications of
the Liberty Alliance Project. This work does not take the
semantic aspects of web services into account. Work in the
area of trust and privacy policies for the semantic web such
as [GS04] and [BUJ+03] is also relevant for our work
though this work in not specifically targeted towards se-
mantic web services. There has also been a significant
amount of research in security policies for distributed sys-
tems [UBJ+03, S94, LS97, LS99, JSS97, DDL+95]. KAoS
provides a policy representation language based in
DAML+OIL [UBJ+03]. Though this is an interesting ap-
proach, DAML+OIL itself is not able to adequately capture

the full range of policy constraints. Several efforts are be-
ing made to add syntax for rules in DAML+OIL and OWL
[HPB+03]. Ponder is a policy specification language de-
veloped at Imperial College [DDL+95]. Though flexible
and expressive, it does not lend itself to being useful for
semantic web services as it more of a syntactic language.
Rei, the language being used in this paper, draws on dis-
tributed policy work by Sloman and Lupu [S94, LS97,
LS99]. It has an RDFS representation and includes a
prolog-like notation for expressing rules on policy objects
that goes beyond what can be done in DAML+OIL and
OWL.

2. Introducing Policies in Web Service
Descriptions

We claim that policies should be part of the representa-
tion of Web services and, in particular, of semantic Web
services. Policies provide the specification of who can use
a service under which conditions, how information should
be provided to the service, and how provided information
will be used later.

We consider the client-server model is one in which a
client wants to invoke a web service. We claim furthermore
that the use of policies is symmetric in the sense that both
the provider and the requester are constrained by sets of
policies that must be honored in their interaction. This
model can be easily extended to a service-service archi-
tectural model.

We will address two kinds of policies in this paper: pri-
vacy policies and authorization policies. Privacy policies
specify under what conditions information can be ex-
changed and what are the legitimate uses of that informa-
tion. It may specify that the provider can give to the re-
quester a key to access private information only if the key
is encrypted during transmission. The requester, upon dis-
covering the policy, should decide whether it can satisfy
this condition or not. Similarly, the requester may have a
privacy policy of its own requiring certain information to
be kept confidential, and, thus, it may not share unen-
crypted private information. This policy would prevent the
requester to interact with any Web service that does not
perform the needed encryption.

Privacy policies are not only useful for specifying the
confidentiality of data during transmission, but also after
receipt of data. Consider for example a service that states
that it will not distribute any details it receives as input.
This might be an important requirement for a requester
who requires privacy. This policy is interpreted as an obli-
gation on the Web service and then acts as a contract. For
example, if after invocation, the service does provide the
requester’s details to a telemarketer, the requester can take
legal action against the service based on the policy. As
financial transactions become more common among web
services and as web services start dealing with confidential
information (e.g., requester’s name, address, social security
numbers, credit cards, telephone numbers, etc.) more re-
questers will expect their privacy policies to be enforced.

We also consider authorization policies, i.e. policies that
constrain the provider to only accept requests for service
from certain clients. For example, an authorization policy
could state that a requester must act on behalf of a person
who is member of a certain organizational group, and that
this membership must be proven with a digital certificate.
Similarly, the requester may limit invocation to only se-
lected providers.

3. A Motivating Example

Subsequently, we use an example that illustrates various
aspects of OWL-S security policies. Consider a scenario in
which a scientist is looking for an online computing service
for its experimental data. The scientist requires that any
personal information she is required to provide to the
service (such as name or SSN) will be kept confidential.
This means that she is only looking for web services that
accept encrypted data and that will not release her personal
information to other services or agents. This constitutes the
privacy policy of the researcher.

Assume there is web service offered by an organization
that can perform the necessary data computations. This
web service is only accessible for members of a certain
group of selected organizations and the scientist needs to
register with the service in a way that can be authenticated.
This constitutes the authorization policy of the web service.

We approach formalization of these privacy and authen-
tication policies on two abstraction levels. On a more con-
crete level (see Section 4), we suggest ontologies to anno-
tate Web service input and output parameters with security
characteristics. Security characteristics of parameter state
whether these parameters are encrypted or digitally signed.
On a more abstract level (see Section 5), we provided for-
malizations of the privacy and authorization policies in
Rei. Selecting Web services that satisfy requester policies
will be part of an extended OWL-S matchmaking process.

Enforcement of cryptographic mechanisms such as en-
crypting or signing messages will be achieved via integra-
tion into the OWL-S VM, a generic processor for the
OWL-S process model and a tool for automatic invocation
of OWL services. This is described in Section 6.

4. Privacy and Authentication: OWL-S
Parameter Markup

In this paper we propose ontologies and markup to cap-
ture security information of web service input and output
parameters. For example, we would like to express that the
scientist requires her personal information to be encrypted.
The problem of representing data confidentiality in the
markup of semantic web services such as OWL-S is that
encrypted data by its very nature does not reveal its internal
value or structure because it is just a byte string. We there-
fore suggest a semantic markup that specifies the security
characteristics of input and output parameters of web serv-
ices while keeping information about the structure of the

data without revealing its value. This meta-information
about the kind of data exchanged with a service can be
used for service selection.

A basic ontology to handle cryptographic details of input
and output parameters of web services can be found at
http://www.csl.sri.com/users/denker/owl-sec/infObj.owl. In
order to capture encrypted or signed input or output data of
services we define an InfObj class (information object)
and subclasses EncInfObj (encrypted information object)
and SigInfObj (signed information object). The InfObj
class will be used as a range for input and output parame-
ters of OWL-S services. Information objects have a
baseObject that describes the type or structure of the
information that is encoded in it. For example, the base
object of an I/O parameter of class EncInfObj can be a
class such as SSN. This property allows deriving knowl-
edge about the kind of data exchanged and can be used for
reasoning purposes such as whether a service parameter fits
the requirements of a client or output/input parameter of
two web services match so that the services can be sequen-
tially combined. Furthermore, an information object can
have a property cryptoAlgUsed to refer to the specific cryp-
tographic algorithm that was used for signing or encrypting
the data.

This basic ontology is enough to describe the crypto-
graphic details necessary in the motivating example. The
first step is the discovery and selection of a service that
satisfies the requirements of the scientist. The second is the
invocation of the service. We describe below how data
confidentiality should be handled in these two steps.

A matchmaker is used to find a data computation service
that satisfies the functional requirements of the employee
(such as type of data to be processed and turn-around time
of computation). In this paper we omit the details about
those requirements and focus on the security related re-
quirements of client and service. Service input and output
parameters will be described in form of information objects
that reference the type of information (such as name, SSN,
etc.) and the kind of security technique applied to it (such
as encryption or signature including the specifics about
algorithm). The same approach will be applied to the capa-
bilities and requirements of clients.

 For our example, we assume that the scientist is capable
of providing an encrypted instance of class Person. We use
the FOAF ontology (see http://xmlns.com/foaf/0.1) to
specify domain-specific information such as person, name,
organization, group, etc.

Assume the following (partial) instance definition of
class Person to describe our scientist.

<foaf:Person rdf:ID=”MarySmith”>
 <foaf:name xml:lang=”en”>Mary Smith</foaf:name>
 <foaf:title>Dr.</foaf:title>
</foaf:Person>

The scientist is not willing to reveal her personal infor-
mation to everybody. One realization of this privacy policy
is to look for services that accept this information in an

encrypted manner. OWL-S service descriptions contain
input descriptions in the process:hasInput property,
where process is the namespace abbreviation for the lat-
est version of the OWL-S specification that can be found at
http://www.daml.org/services/owl-s/1.0. Thus, the kind of
service the scientist is looking for should have the follow-
ing input parameter in its profile

<process:hasInput rdf:ID=”PersonInf”>
<process:parameterType rdf:resource=”EncPersonInfObj”/>
</process:hasInput>
where
<Class rdf:ID=”EncPersonInfObj”>
 <SubClassOf rdf:resource=”#EncInfObject”/>
 <Restriction>
 <onProperty rdf:resource=”baseObject”/>
 <allValuesFrom rdf:resource=”&foaf;#Person”/>
 </Restriction>
</Class>

A matchmaking service uses this information to select
services with appropriate profile or process descriptions.

So far we have dealt with privacy aspects that can be
handled with cryptographic techniques. Similarly, some
aspects of authorization policies can be addressed through
these techniques.

Assume that our data computation service decides
authorization of the scientist on the basis of two aspects:
The scientist needs to be member of a certain group of se-
lected organizations, and the scientist needs to register with
the service in a way that can be authenticated. The first
policy will be treated in the next section as a Rei policy.
The latter condition is expressed by the service with a re-
quirement for the scientist to register with its name and
other personal information in a verifiable way in order to
avoid impersonation attacks. Digital signature is a crypto-
graphic technique to achieve verifiable authentication. The
web service could express its requirement about authenti-
cated sign-in in the following way:

<process:hasInput rdf:ID=”RegInf”>
<process:parameterType rdf:resource=”SigRegInfObj”/>
</process:hasInput>
<Class rdf:ID=”SigRegInfObj”>
 <SubClassOf rdf:resource=”#SigInfObject”/>
 <Restriction>
 <onProperty rdf:resource=”base”/>
 <allValuesFrom rdf:resource=”&foaf;#Person”/>
 </Restriction>
</Class>

 As one can see in our examples, the requirements of the
client (here the scientist), might not be in congruence with
the requirements of the web service (here the data compu-
tation service). The client requires encrypted person infor-
mation as input for the service, and the service requires the
client to sign its information. Nevertheless, a matchmaker
can deduce from our markup that client and web service
agree on the fact that both want person information to be
submitted.

5. Representation of and Reasoning about
Policies

In this paper we propose to integrate expressive policies
relating to several aspects of security, including authoriza-
tion and privacy into semantic web services. Policies are
useful primarily during the discovery phase and for form-
ing informal contracts.

Representing Policies in Rei
Policies are represented using Rei [KFJ03], an RDFS-

based language for policy specification. Rei is modeled on
deontic concepts of rights, prohibitions, obligations and
dispensations. These constructs have four attributes, actor,
action, provision, and constraint. Constraint specifies con-
ditions over the actor, action and any other context entity
that must be true at the time of the invocation, whereas
provision describes conditions that should be true after the
invocation. Provisions are obligations on the part of the
actor.

The class Policy is at the root of the Rei ontology
(http://www.csee.umbc.edu/~lkagal1/rei/swspolicy.owl).
In our implementation this class is the range of the property
policyEnforced, a new property of OWL-S description
described in the following Section. We define three sub-
classes of Policy to specify the different types of policies
that we can support, namely PrivacyPolicy,
AuthorizationPolicy, and Confidentiality-
Policy.

Rei also models several speech acts that modify the
rights and obligations of the sender and receiver. The
speech acts include delegation, revocation, request, cancel,
promise and command. Rei has a unique nesting feature
that allows speech acts to be part of the constraints and
provisions of other deontic concepts. For example, a
promise can be the provision of a right or a delegation can
be part of the constraint of a right. These constructs allow
different kinds of policies to be described including
authorization, privacy and confidentiality.

For example, we can define in Rei an authorization pol-
icy that can be described in natural language as follows:
“Permit everyone to access the data computation service
who is in the same group as the provider of the service.”
To specify this policy, we exploit the OWL-S property
contactInformation, which can be specialized to
have the range foaf:Agent. This property can be used
to describe the provider of the service. We assume that the
OWL-S description of the data computation service exists
at some name-space http://www.somenamespace.com/dcs.
Moreover, we assume that there exists information about
the groups to which the scientist belongs as well as infor-
mation about the groups to which the service provider be-
longs. A section of the authorization policy is specified as
follows in Rei (RDF/N3):

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix rei: <http://www.csee.umbc.edu/~lkagal1/rei#>.
@prefix foaf: <http://xmlns.com/foaf/0.1/l#>.
@prefix process: <http://www.daml.org/services/owl-s/1.0#>.
@prefix dcs: <http://www.somenamespace.com/dcs#>.
@prefix : <#>.

:actorVar a rei:Variable.
:providerVar a rei:Variable.
:projectVar a rei:Variable.
:AuthPolicy1 a rei:Right;

rei:agent actorVar;
rei:constraint [a rei:AndCondition;

rei:first[a rei:AndCondition;
rei:first[a rei:SimpleCondition;

 rei:subject dcs:profile;
 rei:predicate process:contactInformation;
 rei:object providerVar];
 rei:second[a rei:SimpleCondition;
 rei:subject providerVar;
 rei:predicate foaf:currentProject;

 rei:object projectVar]];
rei:second[a rei:SimpleCondition;

 rei:subject actorVar;
 rei:predicate foaf:currentProject;
 rei:object projectVar]].

On the other hand, a requester may have the privacy
policy of never sharing personal information. This policy
can be expressed similarly in Rei in the following way.

:serviceVar a rei:Variable.
:outputVar a rei:Variable.
:PrivPolicy1 a rei:Prohibition;

rei:action serviceVar;
 rei:constraint [a rei:AndCondition;

rei:first[a rei:SimpleCondition;
 rei:subject serviceVar;
 rei:predicate process:hasOutput
 rei:object outputVar];

rei:second [a rei:SimpleCondition;
rei:subject outputVar;

 rei:predicate rdfs:domain;
 rei:object foaf:Person]].

Specifically, this privacy policy assumes that all personal
information of the scientist is specified by the FOAF on-
tology concepts. The policy states that any service that has
as output any concept that describes a FOAF person should
be prohibited. The privacy policy acts as a template for
allowed or prohibited services based on output parameters.
Additionally, the requester may want to specify that any
personal information, if shared, must be encrypted.

:serviceVar a rei:Variable.
:someVar a rei:Variable.
: PrivPolicy2 a rei:Right;
rei:action serviceVar;
 rei:constraint [a rei:AndCondition;
 rei:first[a rei:AndCondition;
 rei:subject serviceVar;

rei:predicate process:hasInput;
 rei:object someVar];

rei:second[a rei:SimpleCondition;
rei:subject someVar;

 rei:predicate process:parameterType;
 rei:object inf: EncPersonInfObj]].

Finally, Rei provides a meta-policy prioritization
mechanism to resolve policy conflicts. For example, we
defined above two policies that may be contradictory with
each other, the first one specifies that the requester does
not want to share personal information, the second one that
personal information can be shared only if it is encrypted.
The requester can then state that PrivPolicy2 holds priority
over PrivPolicy1, ensuring that services that meet
PrivPolicy2 are checked first.

Extending OWL-S with Policies
Web services are described in OWL-S with the help of

three modules: a profile that provides a general description
of the Web service, a process model that describes how the
Web service performs its tasks and the Web service inter-
action protocol, and finally the grounding that specifies
how the atomic processes in the Process Model map onto
WSDL [CCM+01] representations.

Security information is needed in all three modules: the
profile provides the place to specify the requirements for
the Web service invocation, while the process model and
the grounding need a specification of the security require-
ments of the messages exchanged between the Web service
and its requester.

There is no explicit place for security policies in OWL-
S, but the natural extension toward security is to link poli-
cies to the profile. The rational for this is that policies
specify general properties of the Web service rather than
properties that are specific of any process.
Based on our earlier work [DKF+03], we propose that
policies are an extension of the security requirements of
services and suggest the addition of a property, called
policyEnforced, defined as a subproperty of securi-
tyRequirement (http://www.csl.sri.com/~denker/owl-
sec/serviceSecurity.owl). PolicyEnforced describes
the different policies that have to be enforced for the cor-
rect execution of service.

A web service requiring above described authorization
policy could be annotated as follows

<profile:Profile rdf:ID="DataComputationService_Profile">
 <profile:textDescription>
 This data computation service requires authorization.
 </profile:textDescription>
 …
 <policyEnforced: rdf:resource="#AuthPolicy1"/>
</profile:Profile>

Similarly, for requesters we envision annotations of their
policies. In earlier work [DKF+03], we suggested a prop-
erty securityRequirement with domain Agent, a gen-
eral class for clients and requester. Above mentioned prop-
erty policyEnforced, is also subproperty of agents’ se-

curityRequirement and we define foaf:Person class
to be a subclass of Agent. Thus, the scientist requiring
that her personal information is transmitted as encrypted
data and never appears as output of a service is defined as
follows

<foaf:Person rdf:ID=”MarySmith”>
 <foaf:name xml:lang=”en”>Mary Smith</foaf:name>
 <foaf:title>Dr.</foaf:title>
 <policyEnforced: rdf:resource="#PrivPolicy1"/>
 <policyEnforced: rdf:resource="#PrivPolicy2"/>

</foaf:Person>

Using policies to select providers
Properties play an essential role in the discovery and se-

lection of providers. Policies specify constraints on how to
interact with a provider and what to do with the informa-
tion exchanged. Any violation of these policies during the
interaction would of course result in a failure of the inter-
action. Therefore, the requester should select a provider
with compatible policies. For example, if the requester has
a policy that all information transmitted must be encrypted,
it will not be able to interact with a provider that has a
policy of sending all information in the clear.

During the discovery process, the requester has the re-
sponsibility of selecting the best provider, and, as part of
this process, the requester needs to verify the compatibility
of its own policies with the policies of the provider. Rei
provides a reasoning engine over policies and domain
knowledge to provide an evaluation of compatibility of
rights, prohibitions, obligations and dispensation of entities
within the domain.

The primary contribution of this paper is the integration
of Rei reasoning on policies within a capability-based
matching engine, called the MatchMaker [PKP+02]. The
resulting policy compliance algorithms for privacy and
authorization policies are summarized in the following.
For privacy constraints the matching engine first selects the
providers with the capabilities expected by the requester
(step 1) and then the matchmaker extracts the privacy poli-
cies of both the requester and the provider (step 2) and uses
the Rei policy reasoner to verify the compatibility of the
policies (steps 3 and 4). If the policies are found to be in-
compatible then the provider is abandoned, otherwise it is
selected.

1. The MatchMaker fetches the OWL-S description of
a web service that matches the functional require-
ments of the requester.

2. It retrieves the previously defined privacy policy
from the client/requester and extracts the privacy
policies from the provider's profile.

3. The MatchMaker sends the OWL-S description
along with the privacy policies to the Rei reasoner.

4. As the privacy policy defines service templates that
are prohibited, the Rei reasoner verifies that the
matched service is not prohibited. It checks that the
service does not have as output any information that
the client wishes to keep private. It also checks that

the privacy policies of provider and requester are not
in contradiction.

5. If a privacy policy is not satisfied, the Rei reasoner
returns false and the Matchmaker continues to check
the next service for privacy compatibility. Otherwise
the Rei reasoner returns true and the Matchmaker
returns this service to the client.

Similarly the algorithm for authorization policies is as
follows:

1. The MatchMaker extracts the precondition of the
service that is of type AuthorizationPolicy.

2. It gathers all relevant information about the user,
and sends this along with the authorization policy
to the Rei reasoner

3. If the Rei reasoner returns true, then the authoriza-
tion policy is satisfied and the service can be re-
turned to the client. Otherwise the Matchmaker
continues checking the next service for authoriza-
tion compatibility.

Verifying adherence of policies during interaction
Policies can be declared in the profile, but they should be

enforced in the process model which is responsible for the
interaction between the provider and the requester. In the
OWL-S specification, the process model expresses the in-
teraction protocol of the provider that the requester should
follow for successful interaction. Furthermore, the
grounding module provides a mapping from the process
model to the messaging specification, and specifically to
WSDL and SOAP.

The emerging specifications for Web services security
[ADH+02] assume that message security be specified at the
WSDL and SOAP level. If the requester wants to verify
whether the policies will be enforced in the interaction, it
needs to verify the constraints placed by the provider on
message passing.

If the requester wants to verify that the provider adheres
to the published policies, it needs to analyze all the differ-
ent specifications for the message passing. This is also
required because the provider may not expose its policies
completely, but it may compile some aspects directly in the
interaction specifications.

The algorithm described below is a first attempt to en-
able the requester to verify the provider's adherence to
policies. The requester uses the interaction protocol speci-
fications to derive how different types of information are
encoded in the messages that the provider sends, or the
messages that it receives (steps 1 and 2). This process is
achieved by exploiting the grounding which is a mapping
from the process model, which describes the ontological
type of the information to be exchanged, and WSDL that
describes how this information is encoded in the message.
Finally (step 3), a reasoning system is used to verify
whether the encoding proposed adhere to the policies of the
requester and the provider. For the future we envision to

implement this algorithm also in the Rei reasoner. If the
results of the reasoning about policies are not consistent
with the requester's policies, then the requester knows that
it will incur in a violation if it pursues the interaction with
the provider. If instead the reasoning reveals an inconsis-
tency between the policies specified and the actual interac-
tion management, the requester may decide whether to se-
lect the provider depending on whether it can satisfy the
additional requirements, and its own judgment on the pro-
vider's failure.

1.The requester gathers the process model, ground-
ing, WSDL and SOAP specifications from the pro-
vider, and its own policies, as well as the policies
of the provider.

2.The requester uses the process model, grounding,
WSDL and SOAP specifications of the provider to
detect what type of encryption is adopted for the
different types of information

3.The reasoner is used to verify that
a. The requester's policies are satisfied
b. The provider enforces its own policies

4. If the first test fails, the requester does not use the
provider. If the second fails, the requester makes
its own decisions about the use of the provider.

In general, it behooves the provider to be explicit and
honest about its policies. Indeed, if the provider is not
honest, and it specifies a policy that it does not enforce, it
will lose all the requesters that may not want to adhere with
the policy, and lose the trust of the requesters that realize
that policies are not enforced. Similarly, if the provider
does not explicitly specify some of its policies, it may get
to interact with requesters that cannot deal with those poli-
cies, and therefore failing the interaction.

6. Enforcing Privacy and Authentication
in OWL-S VM

We mentioned in previously, one way to fulfill privacy
or authentication is through encrypting or signing input and
output parameter. We propose to keep the work involved
with cryptographic operation transparent from the requester
by extending the tool that invokes the web service (in our
case OWL-S VM) with features for encrypting or signing
data exchanged between client and server.

The OWL-S Virtual Machine (OWL-S VM) implements
the process model and grounding of OWL-S to manage the
interaction between web services. It is a processor that
automates web service interaction without human inter-
vention. The architecture of the OWL-S VM, shown in
Figure 1, is represented by three components in the center
column: the Web service Invocation, the OWL-S VM and
the OWL Parser . The Web service invocation module is
responsible for contacting other Web services and receiv-
ing messages from other Web services. The transaction
with other Web services may be based on SOAP messag-

ing, or on straight HTTP or any other mode of communi-
cation as described by the WSDL specification of either of
the Web service provider. Upon receiving a message the
Web service invocation extracts the payload, or in other
words the content of the message and either sends it to the
OWL Parser or it is passed directly to the OWL-S VM.

The OWL parser is responsible for reading fragments of
OWL ontologies and transforming them into predicates
that can be used by the OWL inference engine. The OWL
parser is also responsible for downloading OWL ontologies
available on the Web, as well as OWL-S descriptions of
other Web services to interact with.

The OWL-S VM is the center of our implementation: it

uses ontologies gathered from the Web and the OWL-S
specifications of the Web services to make sense of the
messages it received, and to decide what kind of informa-
tion to send next. To make these decisions the OWL-S VM
uses a set of rules that implement the semantics of the
OWL-S Process Model and Grounding. The OWL-S VM is
also responsible for the generation of the response mes-
sages; to accomplish the latter task, the OWL-S VM uses
the Grounding to transform the abstract information ex-
changes described by the Process Model into concrete mes-
sage contents that are passed to the Web service invocation
module to be transformed into actual messages and sent off
to their receivers.

 The other two columns of the diagram in Figure 1are
also very important. The column on the left shows the in-
formation that is downloaded from the Web and how it is
used by OWL-S Web services. Specifically the WSDL is
used for Web service invocation, while ontologies and
OWL-S specifications of other Web services are first
parsed and then used by the OWL-S VM to make decisions
on how to proceed.

We have extended the OWL-S VM to enforce authoriza-
tion and privacy policies. We have implemented the re-

quired security transformation on the I/O parameters in the
OWL-S VM. This way we achieve that upon execution of
an atomic process, the OWL-S VM uses the semantic pa-
rameter annotation in the corresponding process model to
enforce the privacy and authorization constraints that can
be implemented through cryptographic techniques (using
encryption and digital signatures). SOAP security annota-
tions are used to implement the actual encryption or sign-
ing of the messages.

With the implementation of the security mechanisms
proposed in this paper, web services implementing the
OWL-S VM are guaranteed to maintain a secure communi-
cation with their partners.

7. Summary and Future Work

In this paper we describe our initial foray into modeling
the various security aspects of web services. We propose
adding privacy and authentication annotations to input and
output parameters to aid in selection of semantic web
services. This annotation includes not only the range of the
parameter but also the cryptographic type, if any. We dis-
cuss the role of authorization and privacy policies for se-
mantic web services and describe a candidate policy speci-
fication language. Specialized policies for authorization
and privacy are provided. An algorithm for checking
whether a web service description is in compliance with
the policies has been designed and implemented. An inte-
gration of our annotation and policy techniques in the
OWL-S MatchMaker supports policy-compliant service
selection. An extension of the OWL-S VM with crypto-
graphic features for message encryption and signing allows
the enforcement of security requirements at runtime.

Another dimension of complexity is added when the
policies do not match and some form of negotiation is nec-
essary. Let’s assume one web service requires authentica-
tion of the other web service, but the credential provided is
not sufficient. A negotiation phase, following certain
communication protocols could be entered, to resolve this
problem. Future work will address negotiation protocols.
Furthermore, the abstraction level or expressiveness of the
policy language also determines the complexity of the
problem. Consider a policy stating that a client never wants
to reveal information from which somebody can deduce his
home address. Depending on the information exchanged
with the service and additional context information, this
could mean that the client’s phone number is never re-
leased, since a reverse lookup could compromise the ad-
dress. This exemplifies the broad range of policies that are
relevant. More complex policies that address combinations
of these security notions and other user-defined policies
will be subject of future work.

References

[ADH+02] B. Atkinson, G. Della-Libera, S. Hada, M.
Hondo, P. Hallam-Baker, J. Klein, B. LaMacchia, P.
Leach, J. Manferdelli, H. Maruyama, A. Nadalin, N. Naga-

Service

SOAP

OWL-S Service
Description

WSDL

OWL-S
Process

Model

OWL -S
Ground

ing

OWL Parser

OWL Theorem Prover

Process Model
Rules

Grounding
Rules

OWL-S VM

Web service

Invocation

Web Services

OWL -S
Ground

ing

Figure 1: The DAML-S Web Service architecture

ratnam, H. Prafullchandra, J. Shewchuk, D. Simon.. Speci-
fication: Web Services Security (WS-Security), http://www-
106.ibm.com/developerworks/webservices/library/ws-
secure, 2002

[BL01] T. Berners-Lee. Notation3 - An RDF language for
the Semantic Web, http://www.w3.org/DesignIssues/ Nota-
tion3.html, 2001

[BUJ+03] J.M. Bradshaw, A. Uszok, R. Jeffers, N. Suri, P.
Hayes, M. Burstein, A. Acquisiti, B. Benyo, M.R. Breedy,
M. Carvalho, D. Diller, M Johnson, S. Kulkarni, J. Lott, M.
Sierhuis, R. Van Hoof. Representation and Reasoning for
DAML-Based Policy and Domain Services in KAoS and
Nomads, AAMAS, 2003.

[CCM+01] E. Christensen, F. Curbera, G. Meredith, S.
Weerawaraana. Web Services Description Language
(WSDL) 1.1. http://www.w3.org/TR/wsdl, 2001

[CSG+03] L. Chen, N.R. Shadbolt, C. Goble, F. Tao, S.J.
Cox, C. Puleston, P.R. Smart. Towards a Knowledge-
Based Approach to Semantic Service Composition, Second
Int. Semantic Web Conference, Sanibel Island FL, October
2003.

[DDL+95] N. Damianou, N. Dulay, E. Lupu, and M. Slo-
man. The ponder policy specification language. In The
Policy Workshop 2001, Bristol U.K., LNCS 1995, Jan
2001.

[DKF+03] G. Denker, L. Kagal, T. Finin, M. Paolucci, K.
Sycara. Security for DAML Web Services: Annotation and
Matchmaking, Second Int. Semantic Web Conference
(ISWC2003), Sanibel Island FL, October 2003.

[GS04] F. Gandon and N. Sadeh. Semantic Web Tech-
nologies to Reconcile Privacy and Context Awareness.
Web Semantics Journal, Vol 1, No. 3, 2004.

[HPB+03] I. Horrocks , P. F. Patel-Schneider, H. Boley, S.
Tabet, B. Grosof , M. Dean, SWRL: A Semantic Web Rule
Language Combining OWL and RuleML, Internet draft,
http://www.daml.org/2003/11/swrl/

[JSS97] S. Jajodia, P. Samarati, V. S. Subrahmanian. A
Logical Language for Expressing Authorizations. IEEE
Sym. on Security and Privacy. Oakland, CA, 1997.

[KFJ03] L. Kagal, T. Finin, and A. Joshi, A Policy Based
Approach to Security on the Semantic Web, Second Int.
Semantic Web Conference, Sanibel Island FL, October
2003.

[LS97] E. Lupu and M. Sloman. A Policy Based Role Ob-
ject Model. In Proceedings EDOC’97, IEEE Computer So-
ciety Press, 1997.

[LS99] E. Lupu and M. Sloman. Conflicts in policy-based
distributed systems management. IEEE Trans. on Software
Engineering, 25(6):852–869, Nov/Dec 1999.

[PAS+03] M. Paolucci, A. Ankolekar, N. Srinivasan, K.
Sycara. The DAML-S Virtual Machine, Second Int. Se-
mantic Web Conference, Sanibel Island FL, October 2003.

[PKP+02] M. Paolucci, T. Kawamura, T. Payne, K. Sycara.
Semantic Matching of Web Services Capabilities, First Int.
Semantic Web Conference, Sardinia, Italy, June 2002.

 [S94] M. Sloman. Policy driven management for distrib-
uted systems. Journal of Network and Systems Manage-
ment, 2:333, 1994.

 [UBJ+03] A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P.
Hayes, R. Breedy, L. Bunch, M. Johnson, S. Kulkarni, J.
Lott. KAoS policy and domain services: Toward a descrip-
tion-logic approach to policy representation, deconfliction,
and enforcement. Proceedings of Policy Workshop, Como,
Italy, 2003..

[WPS+03] D. Wu, B. Parsia, E. Sirin, J. Hendler, D. Nau.
Automating DAML-S Web Services Composition Using
SHOP2, Second Int. Semantic Web Conference, Sanibel
Island FL, October 2003.

