Message Passing/Belief Propagation

CMSC 691 UMBC

Markov Random Fields: **Undirected Graphs**

clique: subset of nodes, where nodes are pairwise connected

maximal clique: a clique that cannot add a node and remain a clique

place on th

A: $\psi_C \geq$

$$p(x_1, x_2, x_3, \dots, x_N) = \frac{1}{Z} \int_{C} \psi_C(x_C)$$
variables part
of the clique C
global
normalization
$$potential function (not necessarily a probability!)$$

Terminology: Potential Functions

$$p(x_1, x_2, x_3, \dots, x_N) = \frac{1}{Z} \prod_C \psi_C(x_C)$$

energy function (for clique C)

(get the total energy of a configuration by summing the individual energy functions)

 $\psi_C(x_c) = \exp -E(x_c)$ **Boltzmann distribution**

MRFs as Factor Graphs

Undirected graphs: G=(V,E) that represents $p(X_1, ..., X_N)$

Factor graph of *p*: Bipartite graph of evidence nodes X, factor nodes F, and edges T

Evidence nodes X are the random variables

Factor nodes F take values associated with the *potential functions*

Edges show what variables are used in which factors

MRFs as Factor Graphs

Undirected graphs: G=(V,E) that represents $p(X_1, ..., X_N)$

Factor graph of *p*: Bipartite graph of evidence nodes X, factor nodes F, and edges T

Evidence nodes X are the random variables

Factor nodes F take values associated with the *potential functions*

Edges show what variables are used in which factors

Outline

Message Passing: Graphical Model Inference

Example: Linear Chain CRF

Two Problems for Undirected Models

$$p(x_1, x_2, x_3, \dots, x_N) = \frac{1}{Z} \prod_C \psi_C(x_C)$$

Finding the normalizer

Computing the marginals

Sum over all variable combinations, with the x_n coordinate fixed

$$Z_n(v) = \sum_{x:x_n=v} \prod_c \psi_c(x_c)$$

Example: 3 variables, fix the 2nd dimension

$$Z_2(v) = \sum_{x_1} \sum_{x_3} \prod_c \psi_c(x = (x_1, v, x_3))$$

$$Z = \sum_{x} \prod_{c} \psi_{c}(x_{c})$$

Two Problems for Undirected Models

$$p(x_1, x_2, x_3, \dots, x_N) = \frac{1}{Z} \prod_C \psi_C(x_C)$$

Finding the normalizer

Computing the marginals

Sum over all variable combinations, with the x_n coordinate fixed

$$Z_n(v) = \sum_{x:x_n = v} \prod_c \psi_c(x_c)$$

Example: 3 variables, fix the 2nd dimension

 $Z_2(v) = \sum_{x_1} \sum_{x_3} \prod_c \psi_c(x = (x_1, v, x_3))$

$$Z = \sum_{x} \prod_{c} \psi_{c}(x_{c})$$

Q: Why are these difficult?

A: Many different combinations

If you are the front soldier in the line, say the number 'one' to the soldier behind you.

If you are the rearmost soldier in the line, say the number 'one' to the soldier in front of you.

If a soldier ahead of or behind you says a number to you, add one to it, and say the new number to the soldier on the other side

If you are the front soldier in the line, say the number 'one' to the soldier behind you.

If you are the rearmost soldier in the line, say the number 'one' to the soldier in front of you.

If a soldier ahead of or behind you says a number to you, add one to it, and say the new number to the soldier on the other side

P Commander

Commander

If you are the front soldier in the line, say the number 'one' to the soldier behind you.

If you are the rearmost soldier in the line, say the number 'one' to the soldier in front of you.

If a soldier ahead of or behind you says a number to you, add one to it, and say the new number to the soldier on the other side

If you are the front soldier in the line, say the number 'one' to the soldier behind you.

If you are the rearmost soldier in the line, say the number 'one' to the soldier in front of you.

If a soldier ahead of or behind you says a number to you, add one to it, and say the new number to the soldier on the other side

Sum-Product Algorithm

Main idea: message passing

An exact inference algorithm for tree-like graphs

Belief propagation (forward-backward for HMMs) is a special case

definition of marginal

$$p(x_i = v) = \sum_{x:x_i = v} p(x_1, x_2, ..., x_i, ..., x_N)$$

definition of marginal

main idea: use **bipartite** nature of graph to efficiently compute the marginals

The factor nodes can act as *filters*

definition of marginal

main idea: use **bipartite** nature of graph to efficiently compute the marginals

alternative marginal computation

$$p(x_i = v) = \frac{\prod_f r_{f \to x_i}(x_i = v)}{\sum_w \prod_f r_{f \to x_i}(x_i = w)} \propto \prod_f r_{f \to x_i}(x_i)$$

main idea: use <mark>bipartite</mark> nature of graph to efficiently compute the marginals

IF FACTORS CAN SEND MESSAGES TO NODES

CAN NODES SEND MESSAGES TO FACTORS?

From variables to factors

 $q_{n \to m}(x_n) = n$ aggregates information from the rest of its graph via its neighbors

 $r_{m \to n}(x_n) = m$ aggregates information from the rest of its graph via its neighbors

Meaning of the Computed Values

From variables to factors

$$q_{n \to m}(x_n) = \prod_{m' \in M(n) \setminus m} r_{m' \to n}(x_n)$$

 x_n telling factor m the "goodness" for the rest of the graph if x_n has a particular value

From factors to variables

$$r_{m \to n}(x_n) = \sum_{\mathbf{w}_m \setminus n} f_m(\mathbf{w}_m) \prod_{n' \in N(m) \setminus n} q_{n' \to m}(x_{n'})$$

factor m telling x_n the "goodness" for the rest of the graph if x_n has a particular value

From Messages to Variable Beliefs

 $r_{m_1 \rightarrow n}(x_n)$ tells x_n the "goodness" from m_1 's perspective if x_n has a particular value

 $r_{m_2 \rightarrow n}(x_n)$ tells x_n the "goodness" from m₂'s perspective if x_n has a particular value

From Messages to Variable Beliefs

 $r_{m_1 \rightarrow n}(x_n)$ tells x_n the "goodness" from m_1 's perspective if x_n has a particular value

 $r_{m_2 \rightarrow n}(x_n)$ tells x_n the "goodness" from m₂'s perspective if x_n has a particular value

Together, they describe the cover the entire graph!

From Messages to Variable Beliefs

 $r_{m_1 \rightarrow n}(x_n)$ tells x_n the "goodness" from m₁'s perspective if x_n has a particular value

 $r_{m_2 \rightarrow n}(x_n)$ tells x_n the "goodness" from m₂'s perspective if x_n has a particular value

Together, they describe the cover the entire graph!

$$p(x_n = v) \propto r_{m_1 \to n}(x_n = v) r_{m_2 \to n}(x_n = v)$$

From Messages to Variable Beliefs: General Formula

 $r_{m_1 \rightarrow n}(x_n)$ tells x_n the "goodness" from m_1 's perspective if x_n has a particular value

 $r_{m_2 \rightarrow n}(x_n)$ tells x_n the "goodness" from m₂'s perspective if x_n has a particular value

$$p(x_n = v) \propto \prod_{m \in N(x_n)} r_{m \to n}(x_n = v)$$

From Messages to Factor Beliefs: General Formula

 $q_{n_i \rightarrow m}$ tells m the "goodness" from x_{n_i} 's perspective if it has a particular value

$$p(x_{\{m\}} = \boldsymbol{v}) \propto m(x_{\{m\}} = \boldsymbol{v}) \prod_{x_{n_i} \in N(m)} q_{n_i \to m}(x_{n_i} = v_i)$$

How to Use these Messages

1. Select the root, or pick one if a tree

- a) Send messages from leaves to root
- b) Send messages from root to leaves
- c) Use messages to compute (unnormalized) marginal probabilities

2. Are we done?

- a) If a tree structure, we've converged
- b) If not:
 - i. Either accept the partially converged result, or...
 - ii. Go back to (1) and repeat

How to Use these Messages

Compute Marginals/Normalizer

- 1. Select the root, or pick one if a tree
 - a) Send messages from leaves to root
 - b) Send messages from root to leaves
 - c) Use messages to compute (unnormalized) marginal probabilities
- 2. Are we done?
 - a) If a tree structure, we've converged
 - b) If not:
 - i. Either accept the partially converged result, or...
 - ii. Go back to (1) and repeat

For Learning/Inference

Whenever you need to compute a likelihood, marginal probability, or a model-specific expectation, run this algorithm to compute the necessary probabilities

- Prediction:
 - Of a sequence $p(z_1, ..., z_N | w_{1:N})$
 - Of an individual tag $p(z_i|w_{1:N})$
- Marginal (if appropriate)
 - $p(w_{1:N})$
- Learning model parameters
 - EM
 - Variational inference
 - ...

Q: What are the variables?

Q: What is the distribution we're modeling?

distribution we're modeling?

 $p(x_1, x_2, x_3, x_4) = f_a(x_1, x_2) f_b(x_2, x_3) f_c(x_2, x_4)$

- 1. Select the root, or pick one if a tree (x_3)
 - 1. Send messages from leaves to root

$$q_{x_1 \to f_a}(x_1) = 1$$
$$q_{x_4 \to f_c}(x_4) = 1$$

$$q_{n \to m}(x_n) = \prod_{m' \in M(n) \setminus m} r_{m' \to n}(x_n) \qquad r_{m \to n}(x_n) = \sum_{w_m \setminus n} f_m(w_m) \prod_{n' \in N(m) \setminus n} q_{n' \to m}(x_{n'})$$

- 1. Select the root, or pick one if a tree (x_3)
 - 1. Send messages from leaves to root

$$\begin{array}{l} q_{x_1 \to f_a}(x_1) = 1 \\ q_{x_4 \to f_c}(x_4) = 1 \\ r_{f_a \to x_2}(x_2) = ? \, ? \, ? \end{array}$$

$$q_{n \to m}(x_n) = \prod_{m' \in M(n) \setminus m} r_{m' \to n}(x_n) \qquad r_{m \to n}(x_n) = \sum_{w_m \setminus n} f_m(w_m) \prod_{n' \in N(m) \setminus n} q_{n' \to m}(x_{n'})$$

- 1. Select the root, or pick one if a tree (x_3)
 - 1. Send messages from leaves to root

$$q_{x_1 \to f_a}(x_1) = 1$$

$$q_{x_4 \to f_c}(x_4) = 1$$

$$r_{f_a \to x_2}(x_2) = \sum_k f_a(x_1 = k, x_2)$$

$$r_{f_c \to x_2}(x_2) = \sum_k f_a(x_2, x_4 = k)$$

$$q_{n \to m}(x_n) = \prod_{m' \in M(n) \setminus m} r_{m' \to n}(x_n) \qquad r_{m \to n}(x_n) = \sum_{w_m \setminus n} f_m(w_m) \prod_{n' \in N(m) \setminus n} q_{n' \to m}(x_{n'})$$

- 1. Select the root, or pick one if a tree (x_3)
 - 1. Send messages from leaves to root

$$q_{x_1 \to f_a}(x_1) = 1$$

$$q_{x_4 \to f_c}(x_4) = 1$$

$$r_{f_a \to x_2}(x_2) = \sum_k f_a(x_1 = k, x_2)$$

$$r_{f_c \to x_2}(x_2) = \sum_k f_a(x_2, x_4 = k)$$

$$q_{x_2 \to f_b}(x_2) = ???$$

$$q_{n \to m}(x_n) = \prod_{m' \in M(n) \setminus m} r_{m' \to n}(x_n) \qquad r_{m \to n}(x_n) = \sum_{w_m \setminus n} f_m(w_m) \prod_{n' \in N(m) \setminus n} q_{n' \to m}(x_{n'})$$

Т

- 1. Select the root, or pick one if a tree (x_3)
 - 1. Send messages from leaves to root

$$q_{x_1 \to f_a}(x_1) = 1$$

$$q_{x_4 \to f_c}(x_4) = 1$$

$$r_{f_a \to x_2}(x_2) = \sum_k f_a(x_1 = k, x_2)$$

$$r_{f_c \to x_2}(x_2) = \sum_k f_a(x_2, x_4 = k)$$

$$q_{x_2 \to f_b}(x_2) = r_{f_a \to x_2}(x_2)r_{f_c \to x_2}(x_2)$$

$$q_{n \to m}(x_n) = \prod_{m' \in M(n) \setminus m} r_{m' \to n}(x_n) \qquad r_{m \to n}(x_n) = \sum_{w_m \setminus n} f_m(w_m) \prod_{n' \in N(m) \setminus n} q_{n' \to m}(x_{n'})$$

- 1. Select the root, or pick one if a tree (x_3)
 - 1. Send messages from leaves to root

$$q_{x_1 \to f_a}(x_1) = 1$$

$$q_{x_4 \to f_c}(x_4) = 1$$

$$r_{f_a \to x_2}(x_2) = \sum_k f_a(x_1 = k, x_2)$$

$$r_{f_c \to x_2}(x_2) = \sum_k f_a(x_2, x_4 = k)$$

$$q_{x_2 \to f_b}(x_2) = r_{f_a \to x_2}(x_2)r_{f_c \to x_2}(x_2)$$

$$r_{f_b \to x_3}(x_3) = \sum_k f_b(x_2 = k, x_3)$$

$$q_{n \to m}(x_n) = \prod_{m' \in M(n) \setminus m} r_{m' \to n}(x_n) \qquad r_{m \to n}(x_n) = \sum_{w_m \setminus n} f_m(w_m) \prod_{n' \in N(m) \setminus n} q_{n' \to m}(x_{n'})$$

- 1. Select the root, or pick one if a tree (x_3)
 - 1. Send messages from leaves to root
 - 2. Send messages from root to leaves

 $q_{x_3 \to f_b}(x_3) = 1$

$$q_{n \to m}(x_n) = \prod_{m' \in M(n) \setminus m} r_{m' \to n}(x_n) \qquad r_{m \to n}(x_n) = \sum_{w_m \setminus n} f_m(w_m) \prod_{n' \in N(m) \setminus n} q_{n' \to m}(x_{n'})$$

- 1. Select the root, or pick one if a tree (x_3)
 - 1. Send messages from leaves to root
 - 2. Send messages from root to leaves

$$q_{x_3 \to f_b}(x_3) = 1$$

$$r_{f_b \to x_2}(x_2) = \sum_k f_b(x_2, x_3 = k)$$

$$q_{n \to m}(x_n) = \prod_{m' \in M(n) \setminus m} r_{m' \to n}(x_n) \qquad r_{m \to n}(x_n) = \sum_{w_m \setminus n} f_m(w_m) \prod_{n' \in N(m) \setminus n} q_{n' \to m}(x_{n'})$$

- 1. Select the root, or pick one if a tree (x_3)
 - 1. Send messages from leaves to root
 - 2. Send messages from root to leaves

 $q_{x_3 \to f_b}(x_3) = 1$ $r_{f_b \to x_2}(x_2) = \sum_{k} f_b(x_2, x_3 = k)$ $q_{x_2 \to f_a}(x_2) = ???$

$$q_{n \to m}(x_n) = \prod_{m' \in M(n) \setminus m} r_{m' \to n}(x_n) \qquad r_{m \to n}(x_n) = \sum_{w_m \setminus n} f_m(w_m) \prod_{n' \in N(m) \setminus n} q_{n' \to m}(x_{n'})$$

- 1. Select the root, or pick one if a tree (x_3)
 - 1. Send messages from leaves to root
 - 2. Send messages from root to leaves

 $q_{x_3 \to f_b}(x_3) = 1$ $r_{f_b \to x_2}(x_2) = \sum_k f_b(x_2, x_3 = k)$ $q_{x_2 \to f_a}(x_2) = r_{f_b \to x_2}(x_2)r_{f_c \to x_2}(x_2)$ We just Q: Where did we

computed this

Q: Where did we compute this?

$$q_{n \to m}(x_n) = \prod_{m' \in M(n) \setminus m} r_{m' \to n}(x_n) \qquad r_{m \to n}(x_n) = \sum_{w_m \setminus n} f_m(w_m) \prod_{n' \in N(m) \setminus n} q_{n' \to m}(x_{n'})$$

- 1. Select the root, or pick one if a tree (x_3)
 - 1. Send messages from leaves to root
 - 2. Send messages from root to leaves

 $q_{x_3 \to f_b}(x_3) = 1$ $r_{f_b \to x_2}(x_2) = \sum_{k} f_b(x_2, x_3 = k)$ $q_{x_2 \to f_a}(x_2) = r_{f_b \to x_2}(x_2)r_{f_c \to x_2}(x_2)$

We just computed this

Q: Where did we compute this?

A: In step 1 (leaves \rightarrow root)

$$q_{n \to m}(x_n) = \prod_{m' \in M(n) \setminus m} r_{m' \to n}(x_n) \qquad r_{m \to n}(x_n) = \sum_{w_m \setminus n} f_m(w_m) \prod_{n' \in N(m) \setminus n} q_{n' \to m}(x_{n'})$$

- 1. Select the root, or pick one if a tree (x_3)
 - 1. Send messages from leaves to root
 - 2. Send messages from root to leaves $q_{x_3 \to f_b}(x_3) = 1$ $r_{f_b \to x_2}(x_2) = \sum_k f_b(x_2, x_3 = k)$ $q_{x_2 \to f_a}(x_2) = r_{f_b \to x_2}(x_2)r_{f_c \to x_2}(x_2)$ $q_{x_2 \to f_c}(x_2) = r_{f_a \to x_2}(x_2)r_{f_b \to x_2}(x_2)$

$$q_{n \to m}(x_n) = \prod_{m' \in M(n) \setminus m} r_{m' \to n}(x_n) \qquad r_{m \to n}(x_n) = \sum_{w_m \setminus n} f_m(w_m) \prod_{n' \in N(m) \setminus n} q_{n' \to m}(x_{n'})$$

- 1. Select the root, or pick one if a tree (x_3)
 - 1. Send messages from leaves to root
 - 2. Send messages from root to leaves $q_{x_3 \to f_b}(x_3) = 1$ $r_{f_b \to x_2}(x_2) = \sum_k f_b(x_2, x_3 = k)$ $q_{x_2 \to f_a}(x_2) = r_{f_b \to x_2}(x_2)r_{f_c \to x_2}(x_2)$ $q_{x_2 \to f_c}(x_2) = r_{f_a \to x_2}(x_2)r_{f_b \to x_2}(x_2)$ $r_{f_c \to x_4}(x_4) = \sum_k f_c(x_2 = k, x_4)$

$$q_{n \to m}(x_n) = \prod_{m' \in M(n) \setminus m} r_{m' \to n}(x_n) \qquad r_{m \to n}(x_n) = \sum_{w_m \setminus n} f_m(w_m) \prod_{n' \in N(m) \setminus n} q_{n' \to m}(x_{n'})$$

- 1. Select the root, or pick one if a tree (x_3)
 - 1. Send messages from leaves to root
 - 2. Send messages from root to leaves $q_{x_3 \to f_b}(x_3) = 1$ $r_{f_b \to x_2}(x_2) = \sum_k f_b(x_2, x_3 = k)$ $q_{x_2 \to f_a}(x_2) = r_{f_b \to x_2}(x_2)r_{f_c \to x_2}(x_2)$ $q_{x_2 \to f_c}(x_2) = r_{f_a \to x_2}(x_2)r_{f_b \to x_2}(x_2)$ $r_{f_c \to x_4}(x_4) = \sum_k f_c(x_2 = k, x_4)$ $r_{f_a \to x_1}(x_1) = \sum_k f_a(x_1, x_2 = k)$

$$q_{n \to m}(x_n) = \prod_{m' \in M(n) \setminus m} r_{m' \to n}(x_n) \qquad r_{m \to n}(x_n) = \sum_{w_m \setminus n} f_m(w_m) \prod_{n' \in N(m) \setminus n} q_{n' \to m}(x_{n'})$$

- 1. Select the root, or pick one if a tree (x_3)
 - 1. Send messages from leaves to root
 - 2. Send messages from root to leaves
 - 3. Use messages to compute marginal probabilities

$$p(x_n) = \prod_{m' \in M(n) \setminus m} r_{m' \to n}(x_n)$$

$$q_{n \to m}(x_n) = \prod_{m' \in M(n) \setminus m} r_{m' \to n}(x_n) \qquad r_{m \to n}(x_n) = \sum_{w_m \setminus n} f_m(w_m) \prod_{n' \in N(m) \setminus n} q_{n' \to m}(x_{n'})$$

- 1. Select the root, or pick one if a tree (x_3)
 - 1. Send messages from leaves to root
 - 2. Send messages from root to leaves
 - 3. Use messages to compute marginal probabilities

$$p(x_n) = \prod_{\substack{m' \in M(n) \setminus m \\ p(x_1) = r_{f_a \to x_1}(x_1)}} r_{m' \to n}(x_n)$$

$$q_{n \to m}(x_n) = \prod_{m' \in M(n) \setminus m} r_{m' \to n}(x_n) \qquad r_{m \to n}(x_n) = \sum_{w_m \setminus n} f_m(w_m) \prod_{n' \in N(m) \setminus n} q_{n' \to m}(x_{n'})$$

- 1. Select the root, or pick one if a tree (x_3)
 - 1. Send messages from leaves to root
 - 2. Send messages from root to leaves
 - 3. Use messages to compute marginal probabilities

$$p(x_n) = \prod_{\substack{m' \in M(n) \setminus m \\ p(x_1) = r_{f_a \to x_1}(x_1)}} r_{m' \to n}(x_n)$$
$$p(x_2)$$
$$= r_{f_a \to x_2}(x_2) r_{f_b \to x_2}(x_2) r_{f_c \to x_2}(x_2)$$

$$q_{n \to m}(x_n) = \prod_{m' \in M(n) \setminus m} r_{m' \to n}(x_n) \qquad r_{m \to n}(x_n) = \sum_{w_m \setminus n} f_m(w_m) \prod_{n' \in N(m) \setminus n} q_{n' \to m}(x_{n'})$$

- 1. Select the root, or pick one if a tree (x_3)
 - 1. Send messages from leaves to root
 - 2. Send messages from root to leaves
 - 3. Use messages to compute marginal probabilities

$$p(x_n) = \prod_{\substack{m' \in M(n) \setminus m}} r_{m' \to n}(x_n)$$

$$p(x_1) = r_{f_a \to x_1}(x_1)$$

$$p(x_2)$$

$$= r_{f_a \to x_2}(x_2)r_{f_b \to x_2}(x_2)r_{f_c \to x_2}(x_2)$$

$$p(x_3) = r_{f_b \to x_3}(x_3)$$

$$p(x_4) = r_{f_c \to x_4}(x_4)$$

$$q_{n \to m}(x_n) = \prod_{m' \in M(n) \setminus m} r_{m' \to n}(x_n) \qquad r_{m \to n}(x_n) = \sum_{w_m \setminus n} f_m(w_m) \prod_{n' \in N(m) \setminus n} q_{n' \to m}(x_{n'})$$

- 1. Select the root, or pick one if a tree (x_3)
 - 1. Send messages from leaves to root
 - 2. Send messages from root to leaves
 - 3. Use messages to compute marginal probabilities
- 2. Are we done?
 - 1. If a tree structure, we've converged

2.

$$q_{n \to m}(x_n) = \prod_{m' \in M(n) \setminus m} r_{m' \to n}(x_n) \qquad r_{m \to n}(x_n) = \sum_{w_m \setminus n} f_m(w_m) \prod_{n' \in N(m) \setminus n} q_{n' \to m}(x_{n'})$$

- 1. Select the root, or pick one if a tree (x_3)
 - 1. Send messages from leaves to root
 - 2. Send messages from root to leaves
 - 3. Use messages to compute marginal probabilities
- 2. Are we done?
 - 1. If a tree structure, we've converged
 - 2. If not:
 - 1. Either accept the partially converged result, or...

2.

$$q_{n \to m}(x_n) = \prod_{m' \in \mathcal{M}(n) \setminus m} r_{m' \to n}(x_n) \qquad r_{m \to n}(x_n) = \sum_{w_m \setminus n} f_m(w_m) \prod_{n' \in \mathcal{N}(m) \setminus n} q_{n' \to m}(x_{n'})$$

Max-Product (Max-Sum)

Problem: how to find the most likely (best) setting of latent variables

Replace sum (+) with max in factor \rightarrow variable computations

$$r_{m \to n}(x_n) = \max_{w_m \setminus n} f_m(w_m) \prod_{n' \in N(m) \setminus n} q_{n' \to m}(x_{n'})$$

(why max-*sum*? computationally, implement with logs)

Loopy Belief Propagation

Sum-product algorithm is not exact for general graphs

Loopy Belief Propagation (Loopy BP): run sumproduct algorithm *anyway* and hope for the best

Requires a message passing schedule

Outline

Message Passing: Graphical Model Inference

Directed (e.g., hidden Markov model [HMM]; generative)

- Generate each tag, and generate each word from the tag
- Locally normalized

Directed (e.g., hidden Markov model [HMM]; generative)

Directed (e.g., maximum entropy Markov model

- Given each word, generate (predict) each tag
- Locally normalized

Example: Linear Chain Conditional Random Field

Widely used in applications like part-of-speech tagging

Noun-Mod Noun Verb Noun President Obama told Congress ...
Example: Linear Chain Conditional Random Field

Widely used in applications like part-of-speech tagging

Noun-ModNounVerbNounPresident Obama told Congress ...

and named entity recognition Person Other Org. President Obama told Congress ...

 $p(\mathbf{A}|\diamond)$

$p(z_1, z_2, \ldots, z_N | \diamond)$

$p(z_1, z_2, ..., z_N | x_{1:N})$

Q: What's the general formula for a factor graph/undirected PGM distribution?

Q: What's the general formula for a factor graph/undirected PGM distribution?

A:
$$p(z_1, z_2, ..., z_N) = \frac{1}{z} \prod_C \psi_C(z_C)$$

$$p(z_1, z_2, \dots, z_N | x_{1:N}) \propto \exp\left(-E_{g_1}(g_1)\right) \dots \exp\left(-E_{g_N}(g_N)\right) * \exp\left(-E_{f_1}(f_1)\right) \dots \exp\left(-E_{f_N}(f_N)\right)$$

$$p(z_1, z_2, ..., z_N | x_{1:N}) = \exp\left(-E_{g_1}(g_1)\right) ... \exp\left(-E_{g_N}(g_N)\right) * \exp\left(-E_{f_1}(f_1)\right) ... \exp\left(-E_{f_N}(f_N)\right)$$

$$p(z_1, z_2, \dots, z_N | x_{1:N}) \propto \prod_{i=1}^{N} \exp\left(-E_{g_i}(g_i)\right) \exp\left(-E_{f_i}(f_i)\right)$$

$$p(z_1, z_2, \dots, z_N | x_{1:N}) \propto \prod_{i=1}^{N} \exp\left(-\left(E_{g_i}(g_i) + E_{f_i}(f_i)\right)\right)$$

$$p(z_1, z_2, \dots, z_N | x_{1:N}) \propto \begin{bmatrix} x_1 & g_1 & g_2 & g_3 & g_4 & g_6 &$$

 $p(z_1, z_2, \dots, z_N | x_{1:N}) \propto$ $\left[\exp(\langle \theta^{(f)}, f_i(z_i) \rangle + \langle \theta^{(g)}, g_i(z_i, z_{i+1}) \rangle \right]$

 g_j : inter-tag features (can depend on any/all input words $x_{1:N}$)

 g_j : inter-tag features (can depend on any/all input words $x_{1:N}$) f_i : solo tag features (can depend on any/all input words $x_{1:N}$)

 g_j : inter-tag features (can depend on any/all input words $x_{1:N}$) f_i : solo tag features (can depend on any/all input words $x_{1:N}$)

Feature design, just like in maxent models!

 g_j : inter-tag features (can depend on any/all input words $x_{1:N}$) f_i : solo tag features (can depend on any/all input words $x_{1:N}$)

$$g_{j,N \to V}(z_j, z_{j+1}) = 1 \text{ (if } z_j == N \& z_{j+1} == V) \text{ else } 0$$

$$g_{j,\text{told},N \to V}(z_j, z_{j+1}) = 1 \text{ (if } z_j == N \& z_{j+1} == V \& x_j == \text{ told}) \text{ else } 0$$

Evampla

(For discussion/whiteboard)

• How would we learn a CRF?

• What objective would we optimize?

• How would we use BP?

Key Insights (1)

 Minimize (structured) cross-entropy loss ↔ (structured) maximum likelihood

 Gradient has very familiar form of "observed feature counts – expected feature counts"

Key Insights (2)

 Rely on adjacency connections/independence assumptions to compute

$$\mathbb{E}_{y'}\left[\sum_{i} h_i(y')\right] = \sum_{i} \sum_{y_{i-1}, y_i} p(y_{i-1}, y_i | x_{1:N}) h_i(y_{i-1}, y_i)$$

Key Insights (3)

• Run BP to compute beliefs (unnormalized, joint marginals)

$$p(y_{i-1}, y_i | x_{1:N}) \propto g_{i-1}(y_{i-1}, y_i) \approx q_{y_{i-1} \to g_{i-1}}(y_{i-1}) \approx q_{y_i \to g_{i-1}}(y_i)$$

Outline

Message Passing: Graphical Model Inference

Example: Linear Chain CRF