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Markov Random Fields:
Undirected Graphs

𝑝 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁 =
1

𝑍
ෑ

𝐶

𝜓𝐶 𝑥𝑐
variables part 
of the clique C

maximal 
cliques

global 
normalization

clique: subset of nodes, 
where nodes are 

pairwise connected

maximal clique: a clique 
that cannot add a node 

and remain a clique

potential function (not 
necessarily a probability!)

Q: What restrictions should we 
place on the potentials 𝜓𝐶?

A: 𝜓𝐶 ≥ 0 (or 𝜓𝐶 > 0)



Terminology: Potential Functions

𝜓𝐶 𝑥𝑐 = exp−𝐸(𝑥𝐶)

energy function (for clique C)

Boltzmann distribution

(get the total energy of a 
configuration by summing the 

individual energy functions)

𝑝 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁 =
1

𝑍
ෑ

𝐶

𝜓𝐶 𝑥𝑐



MRFs as Factor Graphs

Undirected graphs: G=(V,E) that represents 𝑝(𝑋1, … , 𝑋𝑁)

Factor graph of p: Bipartite graph of evidence nodes X, 
factor nodes F, and edges T

Evidence nodes X are the random variables

Factor nodes F take values associated with the potential 
functions

Edges show what variables are used in which factors 
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Outline

Message Passing: Graphical Model Inference

Example: Linear Chain CRF



Two Problems for Undirected Models

Finding the normalizer

𝑍 =෍

𝑥

ෑ

𝑐

𝜓𝑐(𝑥𝑐)

Computing the marginals

𝑍𝑛(𝑣) = ෍

𝑥:𝑥𝑛=𝑣

ෑ

𝑐

𝜓𝑐(𝑥𝑐)

Sum over all variable 
combinations, with the xn

coordinate fixed

𝑍2(𝑣) =෍

𝑥1

෍

𝑥3

ෑ

𝑐

𝜓𝑐(𝑥 = 𝑥1, 𝑣, 𝑥3 )

Example: 3 
variables, fix the 

2nd dimension

𝑝 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁 =
1

𝑍
ෑ

𝐶

𝜓𝐶 𝑥𝑐



Two Problems for Undirected Models

Finding the normalizer

𝑍 =෍

𝑥

ෑ

𝑐

𝜓𝑐(𝑥𝑐)

Computing the marginals

𝑍𝑛(𝑣) = ෍

𝑥:𝑥𝑛=𝑣

ෑ

𝑐

𝜓𝑐(𝑥𝑐)

Q: Why are these difficult?

A: Many different combinations

Sum over all variable 
combinations, with the xn

coordinate fixed

𝑍2(𝑣) =෍

𝑥1

෍

𝑥3

ෑ

𝑐

𝜓𝑐(𝑥 = 𝑥1, 𝑣, 𝑥3 )

Example: 3 
variables, fix the 

2nd dimension

𝑝 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁 =
1

𝑍
ෑ

𝐶

𝜓𝐶 𝑥𝑐



Message Passing: Count the Soldiers

If you are the front soldier in 
the line, say the number ‘one’ 
to the soldier behind you.

If you are the rearmost soldier 
in the line, say the number 
‘one’ to the soldier in front of 
you. 

If a soldier ahead of or behind 
you says a number to you, add 
one to it, and say the new 
number to the soldier on the 
other side

ITILA, Ch 16
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Sum-Product Algorithm

Main idea: message passing

An exact inference algorithm for tree-like graphs

Belief propagation (forward-backward for 
HMMs) is a special case



Sum-Product

𝑝 𝑥𝑖 = 𝑣 = ෍

𝑥:𝑥𝑖=𝑣

𝑝 𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑁
definition of 

marginal

…
…



Sum-Product

definition of 
marginal

…
…

main idea: use bipartite nature of graph to 
efficiently compute the marginals

The factor nodes can act as filters

𝑝 𝑥𝑖 = 𝑣 = ෍

𝑥:𝑥𝑖=𝑣

𝑝 𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑁



Sum-Product

definition of 
marginal

…
…

main idea: use bipartite nature of graph to 
efficiently compute the marginals

𝑟𝑚1→𝑛

𝑟𝑚3→𝑛

𝑟𝑚2→𝑛

𝑟𝑚→𝑛 is a message from factor 
node m to evidence node n

𝑝 𝑥𝑖 = 𝑣 = ෍

𝑥:𝑥𝑖=𝑣

𝑝 𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑁



Sum-Product

𝑝 𝑥𝑖 = 𝑣 =
ς𝑓 𝑟𝑓→𝑥𝑖(𝑥𝑖 = 𝑣)

σ𝑤ς𝑓 𝑟𝑓→𝑥𝑖(𝑥𝑖 = 𝑤)
∝ෑ

𝑓

𝑟𝑓→𝑥𝑖(𝑥𝑖)
alternative 
marginal 

computation

…
…

main idea: use bipartite nature of graph to 
efficiently compute the marginals

𝑟𝑚1→𝑛

𝑟𝑚3→𝑛

𝑟𝑚2→𝑛

𝑟𝑚→𝑛 is a message from factor 
node m to evidence node n





Sum-Product

…
…

𝑟𝑚1→𝑛

𝑟𝑚3→𝑛

𝑟𝑚2→𝑛

𝑟𝑚→𝑛 is a message from factor 
node m to evidence node n

𝑞𝑛→𝑚1

𝑞𝑛→𝑚2

𝑞𝑛→𝑚3

𝑞𝑛→𝑛 is a message from evidence node n 
to factor node m



Sum-Product

From variables to factors

𝑞𝑛→𝑚 𝑥𝑛 =

n

m
n aggregates information 
from the rest of its graph 

via its neighbors



Sum-Product

From variables to factors

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛

n

m

set of factors in which 
variable n participates

default value of 1 if 
empty product



Sum-Product

From variables to factors

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛

From factors to variables

𝑟𝑚→𝑛 𝑥𝑛 =

n

m

n

m

set of factors in which 
variable n participates

default value of 1 if 
empty product

m aggregates information 
from the rest of its graph 

via its neighbors



Sum-Product

From variables to factors

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛

From factors to variables

𝑟𝑚→𝑛 𝑥𝑛 =

n

m

n

m

set of factors in which 
variable n participates

default value of 1 if 
empty product

m aggregates information from the 
rest of its graph via its neighbors

But these neighbors are R.V.s 
that take on different values



Sum-Product

From variables to factors

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛

From factors to variables

n

m

n

m

set of factors in which 
variable n participates

1. sum over configuration of 
variables for the mth factor, 

with variable n fixed
2. aggregate info those other 

variables provide about the 
rest of the graph

default value of 1 if 
empty product

𝑟𝑚→𝑛 𝑥𝑛 =



Sum-Product

From variables to factors

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛

From factors to variables

𝑟𝑚→𝑛 𝑥𝑛

= ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)

n

m

n

m

set of factors in which 
variable n participates

default value of 1 if 
empty product

2. aggregate info those 
other variables provide 

about the rest of the graph

1. sum over configuration of 
variables for the mth factor, 

with variable n fixed



Sum-Product

From variables to factors

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛

From factors to variables

𝑟𝑚→𝑛 𝑥𝑛

= ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)

n

m

n

m

set of variables that the 
mth factor depends on

set of factors in which 
variable n participates

sum over configuration of 
variables for the mth factor, 

with variable n fixed

default value of 1 if 
empty product



Meaning of the Computed Values

From variables to factors

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛

From factors to variables

𝑟𝑚→𝑛 𝑥𝑛

= ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)

𝑥𝑛 telling factor m the 
“goodness” for the rest of 

the graph if 𝑥𝑛 has a 
particular value

factor m telling 𝑥𝑛 the 
“goodness” for the rest of 

the graph if 𝑥𝑛 has a 
particular value



From Messages to Variable Beliefs

n

m1 m2𝑟𝑚1→𝑛 𝑥𝑛 tells 𝑥𝑛
the “goodness” from 
m1’s perspective if 𝑥𝑛
has a particular value

𝑟𝑚2→𝑛 𝑥𝑛 tells 𝑥𝑛
the “goodness” from 
m2’s perspective if 𝑥𝑛
has a particular value
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𝑟𝑚2→𝑛 𝑥𝑛 tells 𝑥𝑛
the “goodness” from 
m2’s perspective if 𝑥𝑛
has a particular value

Together, they describe the
cover the entire graph!



From Messages to Variable Beliefs

n

m1 m2𝑟𝑚1→𝑛 𝑥𝑛 tells 𝑥𝑛
the “goodness” from 
m1’s perspective if 𝑥𝑛
has a particular value

𝑟𝑚2→𝑛 𝑥𝑛 tells 𝑥𝑛
the “goodness” from 
m2’s perspective if 𝑥𝑛
has a particular value

Together, they describe the
cover the entire graph!

𝑝 𝑥𝑛 = 𝑣 ∝ 𝑟𝑚1→𝑛 𝑥𝑛 = 𝑣 𝑟𝑚2→𝑛 𝑥𝑛 = 𝑣



From Messages to Variable Beliefs:
General Formula

n

m1 m2𝑟𝑚1→𝑛 𝑥𝑛 tells 𝑥𝑛
the “goodness” from 
m1’s perspective if 𝑥𝑛
has a particular value

𝑟𝑚2→𝑛 𝑥𝑛 tells 𝑥𝑛
the “goodness” from 
m2’s perspective if 𝑥𝑛
has a particular value

𝑝 𝑥𝑛 = 𝑣 ∝ ෑ

𝑚∈𝑁(𝑥𝑛)

𝑟𝑚→𝑛 𝑥𝑛 = 𝑣



From Messages to Factor Beliefs:
General Formula

n1 n2 n3

m𝑞𝑛𝑖→𝑚tells 𝑚 the 

“goodness” from 𝑥𝑛𝑖’s 

perspective if it has a 
particular value

𝑝 𝑥{𝑚} = 𝒗 ∝ 𝑚 𝑥 𝑚 = 𝒗 ෑ

𝑥𝑛𝑖∈𝑁(𝑚)

𝑞𝑛𝑖→𝑚 𝑥𝑛𝑖 = 𝑣𝑖



How to Use these Messages

1.Select the root, or pick one if a tree

a) Send messages from leaves to root

b) Send messages from root to leaves

c) Use messages to compute (unnormalized) 
marginal probabilities

2.Are we done?

a) If a tree structure, we’ve converged

b) If not:

i. Either accept the partially converged result, or…

ii. Go back to (1) and repeat



How to Use these Messages
Compute Marginals/Normalizer

1. Select the root, or pick one if a 
tree

a) Send messages from leaves 
to root

b) Send messages from root to 
leaves

c) Use messages to compute 
(unnormalized) marginal 
probabilities

2. Are we done?
a) If a tree structure, we’ve 

converged

b) If not:
i. Either accept the partially 

converged result, or…

ii. Go back to (1) and repeat

For Learning/Inference

Whenever you need to compute 
a likelihood, marginal probability, 
or a model-specific expectation, 
run this algorithm to compute the 
necessary probabilities

– Prediction:
• Of a sequence 
𝑝 𝑧1, … , 𝑧𝑁 𝑤1:𝑁

• Of an individual tag 𝑝(𝑧𝑖|𝑤1:𝑁)

– Marginal (if appropriate)

• 𝑝(𝑤1:𝑁)

– Learning model parameters
• EM

• Variational inference

• …



Example

Q: What are 
the variables?

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐



Example

Q: What are 
the variables?

A: 
𝑥1, 𝑥2, 𝑥3, 𝑥4

Q: What are 
the factors?

𝑥2𝑥1 𝑥3

𝑥4
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Example

Q: What are 
the variables?

A: 
𝑥1, 𝑥2, 𝑥3, 𝑥4

Q: What are 
the factors?

A: 𝑓𝑎 𝑥1, 𝑥2 ,
𝑓𝑏 𝑥2, 𝑥3 ,
𝑓𝑐(𝑥2, 𝑥4)

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐



Example

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐

Q: What is the 
distribution 

we’re modeling?



Example

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐

Q: What is the 
distribution 

we’re modeling?

A: 
𝑝 𝑥1, 𝑥2, 𝑥3, 𝑥4 = 𝑓𝑎 𝑥1, 𝑥2 𝑓𝑏 𝑥2, 𝑥3 𝑓𝑐(𝑥2, 𝑥4)



Example

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐

1. Select the root, or pick one if a tree (𝑥3)
1. Send messages from leaves to root

𝑞𝑥1→𝑓𝑎 𝑥1 = 1

𝑞𝑥4→𝑓𝑐 𝑥4 = 1

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛 𝑟𝑚→𝑛 𝑥𝑛 = ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)



Example

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐

1. Select the root, or pick one if a tree (𝑥3)
1. Send messages from leaves to root

𝑞𝑥1→𝑓𝑎 𝑥1 = 1

𝑞𝑥4→𝑓𝑐 𝑥4 = 1

𝑟𝑓𝑎→𝑥2 𝑥2 =? ? ?

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛 𝑟𝑚→𝑛 𝑥𝑛 = ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)



Example

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐

1. Select the root, or pick one if a tree (𝑥3)
1. Send messages from leaves to root

𝑞𝑥1→𝑓𝑎 𝑥1 = 1

𝑞𝑥4→𝑓𝑐 𝑥4 = 1

𝑟𝑓𝑎→𝑥2 𝑥2 =෍

𝑘

𝑓𝑎(𝑥1 = 𝑘, 𝑥2)

𝑟𝑓𝑐→𝑥2 𝑥2 =෍

𝑘

𝑓𝑎(𝑥2, 𝑥4 = 𝑘)

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛 𝑟𝑚→𝑛 𝑥𝑛 = ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)



Example

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐

1. Select the root, or pick one if a tree (𝑥3)
1. Send messages from leaves to root

𝑞𝑥1→𝑓𝑎 𝑥1 = 1

𝑞𝑥4→𝑓𝑐 𝑥4 = 1

𝑟𝑓𝑎→𝑥2 𝑥2 =෍

𝑘

𝑓𝑎(𝑥1 = 𝑘, 𝑥2)

𝑟𝑓𝑐→𝑥2 𝑥2 =෍

𝑘

𝑓𝑎(𝑥2, 𝑥4 = 𝑘)

𝑞𝑥2→𝑓𝑏 𝑥2 =? ? ?

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛 𝑟𝑚→𝑛 𝑥𝑛 = ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)



Example

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐

1. Select the root, or pick one if a tree (𝑥3)
1. Send messages from leaves to root

𝑞𝑥1→𝑓𝑎 𝑥1 = 1

𝑞𝑥4→𝑓𝑐 𝑥4 = 1

𝑟𝑓𝑎→𝑥2 𝑥2 =෍

𝑘

𝑓𝑎(𝑥1 = 𝑘, 𝑥2)

𝑟𝑓𝑐→𝑥2 𝑥2 =෍

𝑘

𝑓𝑎(𝑥2, 𝑥4 = 𝑘)

𝑞𝑥2→𝑓𝑏 𝑥2 = 𝑟𝑓𝑎→𝑥2 𝑥2 𝑟𝑓𝑐→𝑥2 𝑥2

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛 𝑟𝑚→𝑛 𝑥𝑛 = ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)



Example

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐

1. Select the root, or pick one if a tree (𝑥3)
1. Send messages from leaves to root

𝑞𝑥1→𝑓𝑎 𝑥1 = 1

𝑞𝑥4→𝑓𝑐 𝑥4 = 1

𝑟𝑓𝑎→𝑥2 𝑥2 =෍

𝑘

𝑓𝑎(𝑥1 = 𝑘, 𝑥2)

𝑟𝑓𝑐→𝑥2 𝑥2 =෍

𝑘

𝑓𝑎(𝑥2, 𝑥4 = 𝑘)

𝑞𝑥2→𝑓𝑏 𝑥2 = 𝑟𝑓𝑎→𝑥2 𝑥2 𝑟𝑓𝑐→𝑥2 𝑥2

𝑟𝑓𝑏→𝑥3 𝑥3 =෍

𝑘

𝑓𝑏(𝑥2 = 𝑘, 𝑥3)

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛 𝑟𝑚→𝑛 𝑥𝑛 = ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)



Example

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐

1. Select the root, or pick one if a tree (𝑥3)
1. Send messages from leaves to root
2. Send messages from root to leaves

𝑞𝑥3→𝑓𝑏 𝑥3 = 1

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛 𝑟𝑚→𝑛 𝑥𝑛 = ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)



Example

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐

1. Select the root, or pick one if a tree (𝑥3)
1. Send messages from leaves to root
2. Send messages from root to leaves

𝑞𝑥3→𝑓𝑏 𝑥3 = 1

𝑟𝑓𝑏→𝑥2 𝑥2 =෍

𝑘

𝑓𝑏(𝑥2, 𝑥3 = 𝑘)

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛 𝑟𝑚→𝑛 𝑥𝑛 = ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)



Example

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐

1. Select the root, or pick one if a tree (𝑥3)
1. Send messages from leaves to root
2. Send messages from root to leaves

𝑞𝑥3→𝑓𝑏 𝑥3 = 1

𝑟𝑓𝑏→𝑥2 𝑥2 =෍

𝑘

𝑓𝑏(𝑥2, 𝑥3 = 𝑘)

𝑞𝑥2→𝑓𝑎 𝑥2 = ? ? ?

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛 𝑟𝑚→𝑛 𝑥𝑛 = ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)



Example

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐

1. Select the root, or pick one if a tree (𝑥3)
1. Send messages from leaves to root
2. Send messages from root to leaves

𝑞𝑥3→𝑓𝑏 𝑥3 = 1

𝑟𝑓𝑏→𝑥2 𝑥2 =෍

𝑘

𝑓𝑏(𝑥2, 𝑥3 = 𝑘)

𝑞𝑥2→𝑓𝑎 𝑥2 = 𝑟𝑓𝑏→𝑥2 𝑥2 𝑟𝑓𝑐→𝑥2 𝑥2

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛 𝑟𝑚→𝑛 𝑥𝑛 = ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)

We just 
computed this

Q: Where did we 
compute this?



Example

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐

1. Select the root, or pick one if a tree (𝑥3)
1. Send messages from leaves to root
2. Send messages from root to leaves

𝑞𝑥3→𝑓𝑏 𝑥3 = 1

𝑟𝑓𝑏→𝑥2 𝑥2 =෍

𝑘

𝑓𝑏(𝑥2, 𝑥3 = 𝑘)

𝑞𝑥2→𝑓𝑎 𝑥2 = 𝑟𝑓𝑏→𝑥2 𝑥2 𝑟𝑓𝑐→𝑥2 𝑥2

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛 𝑟𝑚→𝑛 𝑥𝑛 = ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)

We just 
computed this

Q: Where did we 
compute this?

A: In step 1 
(leaves → root)



Example

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐

1. Select the root, or pick one if a tree (𝑥3)
1. Send messages from leaves to root
2. Send messages from root to leaves

𝑞𝑥3→𝑓𝑏 𝑥3 = 1

𝑟𝑓𝑏→𝑥2 𝑥2 =෍

𝑘

𝑓𝑏(𝑥2, 𝑥3 = 𝑘)

𝑞𝑥2→𝑓𝑎 𝑥2 = 𝑟𝑓𝑏→𝑥2 𝑥2 𝑟𝑓𝑐→𝑥2 𝑥2
𝑞𝑥2→𝑓𝑐 𝑥2 = 𝑟𝑓𝑎→𝑥2 𝑥2 𝑟𝑓𝑏→𝑥2 𝑥2

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛 𝑟𝑚→𝑛 𝑥𝑛 = ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)



Example

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐

1. Select the root, or pick one if a tree (𝑥3)
1. Send messages from leaves to root
2. Send messages from root to leaves

𝑞𝑥3→𝑓𝑏 𝑥3 = 1

𝑟𝑓𝑏→𝑥2 𝑥2 =෍

𝑘

𝑓𝑏(𝑥2, 𝑥3 = 𝑘)

𝑞𝑥2→𝑓𝑎 𝑥2 = 𝑟𝑓𝑏→𝑥2 𝑥2 𝑟𝑓𝑐→𝑥2 𝑥2
𝑞𝑥2→𝑓𝑐 𝑥2 = 𝑟𝑓𝑎→𝑥2 𝑥2 𝑟𝑓𝑏→𝑥2 𝑥2

𝑟𝑓𝑐→𝑥4 𝑥4 =෍

𝑘

𝑓𝑐(𝑥2 = 𝑘, 𝑥4)

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛 𝑟𝑚→𝑛 𝑥𝑛 = ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)



Example

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐

1. Select the root, or pick one if a tree (𝑥3)
1. Send messages from leaves to root
2. Send messages from root to leaves

𝑞𝑥3→𝑓𝑏 𝑥3 = 1

𝑟𝑓𝑏→𝑥2 𝑥2 =෍

𝑘

𝑓𝑏(𝑥2, 𝑥3 = 𝑘)

𝑞𝑥2→𝑓𝑎 𝑥2 = 𝑟𝑓𝑏→𝑥2 𝑥2 𝑟𝑓𝑐→𝑥2 𝑥2
𝑞𝑥2→𝑓𝑐 𝑥2 = 𝑟𝑓𝑎→𝑥2 𝑥2 𝑟𝑓𝑏→𝑥2 𝑥2

𝑟𝑓𝑐→𝑥4 𝑥4 =෍

𝑘

𝑓𝑐(𝑥2 = 𝑘, 𝑥4)

𝑟𝑓𝑎→𝑥1 𝑥1 =෍

𝑘

𝑓𝑎(𝑥1, 𝑥2 = 𝑘)

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛 𝑟𝑚→𝑛 𝑥𝑛 = ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)



Example

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐

1. Select the root, or pick one if a tree (𝑥3)
1. Send messages from leaves to root
2. Send messages from root to leaves
3. Use messages to compute marginal 

probabilities

𝑝 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛 𝑟𝑚→𝑛 𝑥𝑛 = ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)



Example

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐

1. Select the root, or pick one if a tree (𝑥3)
1. Send messages from leaves to root
2. Send messages from root to leaves
3. Use messages to compute marginal 

probabilities

𝑝 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛

𝑝 𝑥1 = 𝑟𝑓𝑎→𝑥1 𝑥1

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛 𝑟𝑚→𝑛 𝑥𝑛 = ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)



Example

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐

1. Select the root, or pick one if a tree (𝑥3)
1. Send messages from leaves to root
2. Send messages from root to leaves
3. Use messages to compute marginal 

probabilities

𝑝 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛

𝑝 𝑥1 = 𝑟𝑓𝑎→𝑥1 𝑥1
𝑝 𝑥2
= 𝑟𝑓𝑎→𝑥2 𝑥2 𝑟𝑓𝑏→𝑥2 𝑥2 𝑟𝑓𝑐→𝑥2 𝑥2

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛 𝑟𝑚→𝑛 𝑥𝑛 = ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)



Example

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐

1. Select the root, or pick one if a tree (𝑥3)
1. Send messages from leaves to root
2. Send messages from root to leaves
3. Use messages to compute marginal 

probabilities

𝑝 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛

𝑝 𝑥1 = 𝑟𝑓𝑎→𝑥1 𝑥1
𝑝 𝑥2
= 𝑟𝑓𝑎→𝑥2 𝑥2 𝑟𝑓𝑏→𝑥2 𝑥2 𝑟𝑓𝑐→𝑥2 𝑥2
𝑝 𝑥3 = 𝑟𝑓𝑏→𝑥3 𝑥3
𝑝 𝑥4 = 𝑟𝑓𝑐→𝑥4 𝑥4

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛 𝑟𝑚→𝑛 𝑥𝑛 = ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)



Example

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐

1. Select the root, or pick one if a tree (𝑥3)
1. Send messages from leaves to root
2. Send messages from root to leaves
3. Use messages to compute marginal 

probabilities
2. Are we done?

1. If a tree structure, we’ve converged
2.

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛 𝑟𝑚→𝑛 𝑥𝑛 = ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)



Example

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐

1. Select the root, or pick one if a tree (𝑥3)
1. Send messages from leaves to root
2. Send messages from root to leaves
3. Use messages to compute marginal 

probabilities
2. Are we done?

1. If a tree structure, we’ve converged
2. If not:

1. Either accept the partially 
converged result, or…

2.

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛 𝑟𝑚→𝑛 𝑥𝑛 = ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)



Example

𝑥2𝑥1 𝑥3

𝑥4

𝑓𝑎 𝑓𝑏

𝑓𝑐

1. Select the root, or pick one if a tree
1. Send messages from leaves to root
2. Send messages from root to leaves
3. Use messages to compute marginal 

probabilities
2. Are we done?

1. If a tree structure, we’ve converged
2. If not:

1. Either accept the partially 
converged result, or…

2. Go back to (1) and repeat

[Loopy BP]

𝑞𝑛→𝑚 𝑥𝑛 = ෑ

𝑚′∈𝑀(𝑛)\𝑚

𝑟𝑚′→𝑛 𝑥𝑛 𝑟𝑚→𝑛 𝑥𝑛 = ෍

𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)



Max-Product (Max-Sum)

Problem: how to find the most likely (best) 
setting of latent variables

Replace sum (+) with max in factor→variable
computations

𝑟𝑚→𝑛 𝑥𝑛 = max
𝒘𝑚\𝑛

𝑓𝑚 𝒘𝑚 ෑ

𝑛′∈𝑁(𝑚)\𝑛

𝑞𝑛′→𝑚(𝑥𝑛′)

(why max-sum? computationally, 
implement with logs)



Loopy Belief Propagation

Sum-product algorithm is not exact for general 
graphs

Loopy Belief Propagation (Loopy BP): run sum-
product algorithm anyway and hope for the best

Requires a message passing schedule



Outline

Message Passing: Graphical Model Inference

Example: Linear Chain CRF



Example: Linear Chain

Directed (e.g., 

hidden Markov model 
[HMM]; generative)

z1

w1 w2 w3 w4

z2 z3 z4

• Generate each tag, and generate each word from the tag
• Locally normalized



Example: Linear Chain

Directed (e.g., 

hidden Markov model 
[HMM]; generative)

z1

w1 w2 w3 w4

z2 z3 z4

Directed (e.g.., 

maximum entropy 
Markov model 

[MEMM]; conditional)

z1

w1 w2 w3 w4

z2 z3 z4

• Given each word, generate (predict) each tag
• Locally normalized



Example: Linear Chain

Directed (e.g., 

hidden Markov model 
[HMM]; generative)
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w1 w2 w3 w4

z2 z3 z4

Directed (e.g.., 

maximum entropy 
Markov model 

[MEMM]; conditional)

z1

w1 w2 w3 w4

z2 z3 z4

Undirected 
(e.g., conditional 

random field 
[CRF])

z1 z2 z3 z4

w1w2w3w4 w1w2w3w4 w1w2w3w4 w1w2w3w4

• Given all words, generate each tag
• Globally normalized
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random field [CRF])
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Directed (e.g.., 

maximum entropy 
Markov model 
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z2 z3 z4

• Given all words, generate each tag
• Globally normalized

Q: What would the purple 
factors contain?



Example: Linear Chain

Directed (e.g., 

hidden Markov model 
[HMM]; generative)
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w1 w2 w3 w4
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Undirected as 
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(e.g., conditional 

random field [CRF])

z1 z2 z3 z4

Directed (e.g.., 

maximum entropy 
Markov model 

[MEMM]; conditional)

z1

w1 w2 w3 w4

z2 z3 z4

• Given all words, generate each tag
• Globally normalized

Q: What would the purple 
factors contain?

A: Tag-to-tag potential 
scores



Example: Linear Chain

Directed (e.g., 

hidden Markov model 
[HMM]; generative)

z1

w1 w2 w3 w4

z2 z3 z4

Undirected as 
factor graph 
(e.g., conditional 

random field [CRF])

z1 z2 z3 z4

Directed (e.g.., 

maximum entropy 
Markov model 

[MEMM]; conditional)

z1

w1 w2 w3 w4

z2 z3 z4

• Given all words, generate each tag
• Globally normalized

Q: What would the purple 
factors contain?

Q: What would the green 
factors contain?

A: Tag-to-tag potential 
scores



Example: Linear Chain

Directed (e.g., 

hidden Markov model 
[HMM]; generative)

z1

w1 w2 w3 w4

z2 z3 z4

Undirected as 
factor graph 
(e.g., conditional 

random field [CRF])

z1 z2 z3 z4

Directed (e.g.., 

maximum entropy 
Markov model 

[MEMM]; conditional)

z1

w1 w2 w3 w4

z2 z3 z4

• Given all words, generate each tag
• Globally normalized

Q: What would the purple 
factors contain?

Q: What would the green 
factors contain?

A: Tag-to-tag potential 
scores

A: Sequence & tag potential 
scores



Example: Linear Chain Conditional 
Random Field

Widely used in applications like
part-of-speech tagging

z1 z2 z3 z4

President Obama told Congress …
Noun-Mod Noun NounVerb



Example: Linear Chain Conditional 
Random Field

Widely used in applications like
part-of-speech tagging

and named entity recognition

z1 z2 z3 z4

President Obama told Congress …
Noun-Mod Noun NounVerb

President Obama told Congress …
Person Person Org.Other



Linear Chain CRFs for Part of Speech 
Tagging

A linear chain CRF is a conditional probabilistic 
model of the sequence of tags 𝑧1, 𝑧2, … , 𝑧𝑁

conditioned on the entire input sequence 𝑥1:𝑁



Linear Chain CRFs for Part of Speech 
Tagging

𝑝 ♣|♢

A linear chain CRF is a conditional probabilistic 
model of the sequence of tags 𝑧1, 𝑧2, … , 𝑧𝑁

conditioned on the entire input sequence 𝑥1:𝑁



Linear Chain CRFs for Part of Speech 
Tagging

𝑝 𝑧1, 𝑧2, … , 𝑧𝑁|♢

A linear chain CRF is a conditional probabilistic 
model of the sequence of tags 𝑧1, 𝑧2, … , 𝑧𝑁

conditioned on the entire input sequence 𝑥1:𝑁



Linear Chain CRFs for Part of Speech 
Tagging

𝑝 𝑧1, 𝑧2, … , 𝑧𝑁|𝑥1:𝑁

A linear chain CRF is a conditional probabilistic 
model of the sequence of tags 𝑧1, 𝑧2, … , 𝑧𝑁

conditioned on the entire input sequence 𝑥1:𝑁



Linear Chain CRFs for Part of Speech 
Tagging

z1 z2 z3 z4

𝑓1 𝑓2 𝑓3 𝑓4

𝑔1 𝑔2 𝑔3 𝑔4

𝑝 𝑧1, 𝑧2, … , 𝑧𝑁|𝑥1:𝑁



Linear Chain CRFs for Part of Speech 
Tagging

z1 z2 z3 z4

𝑓1 𝑓2 𝑓3 𝑓4

𝑔1 𝑔2 𝑔3 𝑔4

Q: What’s the general formula for a 
factor graph/undirected PGM 

distribution?



Linear Chain CRFs for Part of Speech 
Tagging

z1 z2 z3 z4

𝑓1 𝑓2 𝑓3 𝑓4

𝑔1 𝑔2 𝑔3 𝑔4

A: 𝑝 𝑧1, 𝑧2, … , 𝑧𝑁 =
1

𝑍
ς𝐶𝜓𝐶 𝑧𝑐

Q: What’s the general formula for a 
factor graph/undirected PGM 

distribution?



Linear Chain CRFs for Part of Speech 
Tagging

z1 z2 z3 z4

𝑓1 𝑓2 𝑓3 𝑓4

𝑔1 𝑔2 𝑔3 𝑔4

𝑝 𝑧1, 𝑧2, … , 𝑧𝑁|𝑥1:𝑁 ∝
product of exponentiated potential scores

𝑝 𝑧1, 𝑧2, … , 𝑧𝑁 =
1

𝑍
ෑ

𝐶

𝜓𝐶 𝑧𝑐



Linear Chain CRFs for Part of Speech 
Tagging

z1 z2 z3 z4

𝑓1 𝑓2 𝑓3 𝑓4

𝑔1 𝑔2 𝑔3 𝑔4

𝑝 𝑧1, 𝑧2, … , 𝑧𝑁|𝑥1:𝑁 ∝

exp −𝐸𝑔1 𝑔1 …exp −𝐸𝑔𝑁 𝑔𝑁 ∗

exp −𝐸𝑓1 𝑓1 …exp −𝐸𝑓𝑁 𝑓𝑁



Linear Chain CRFs for Part of Speech 
Tagging

z1 z2 z3 z4

𝑓1 𝑓2 𝑓3 𝑓4

𝑔1 𝑔2 𝑔3 𝑔4

𝑝 𝑧1, 𝑧2, … , 𝑧𝑁|𝑥1:𝑁 ∝

exp −𝐸𝑔1 𝑔1 …exp −𝐸𝑔𝑁 𝑔𝑁 ∗

exp −𝐸𝑓1 𝑓1 …exp −𝐸𝑓𝑁 𝑓𝑁

• We use the notation 𝐸𝑔𝑖 𝑔𝑖 to 

separate the features 𝑔𝑖 from 
how we reweight them

• We use −𝐸𝑔𝑖 to represent these 

as Boltzmann distributions



Linear Chain CRFs for Part of Speech 
Tagging

z1 z2 z3 z4

𝑓1 𝑓2 𝑓3 𝑓4

𝑔1 𝑔2 𝑔3 𝑔4

𝑝 𝑧1, 𝑧2, … , 𝑧𝑁|𝑥1:𝑁 ∝

ෑ

𝑖=1

𝑁

exp −𝐸𝑔𝑖 𝑔𝑖 exp −𝐸𝑓𝑖 𝑓𝑖



Linear Chain CRFs for Part of Speech 
Tagging

z1 z2 z3 z4

𝑓1 𝑓2 𝑓3 𝑓4

𝑔1 𝑔2 𝑔3 𝑔4

𝑝 𝑧1, 𝑧2, … , 𝑧𝑁|𝑥1:𝑁 ∝

ෑ

𝑖=1

𝑁

exp − 𝐸𝑔𝑖 𝑔𝑖 + 𝐸𝑓𝑖(𝑓𝑖)



Linear Chain CRFs for Part of Speech 
Tagging

z1 z2 z3 z4

𝑓1 𝑓2 𝑓3 𝑓4

𝑔1 𝑔2 𝑔3 𝑔4

𝑝 𝑧1, 𝑧2, … , 𝑧𝑁|𝑥1:𝑁 ∝

ෑ

𝑖=1

𝑁

exp − 𝐸𝑔𝑖 𝑔𝑖 + 𝐸𝑓𝑖(𝑓𝑖)

Let 𝐸𝑔𝑖 𝑔𝑖 = −⟨𝜃 𝑔 , 𝑔𝑖⟩

Let 𝐸𝑓𝑖 𝑓𝑖 = −⟨𝜃 𝑓 , 𝑓𝑖⟩

where 𝜃 𝑓 , 𝜃 𝑔 are
learnable parameters



Linear Chain CRFs for Part of Speech 
Tagging

z1 z2 z3 z4

𝑓1 𝑓2 𝑓3 𝑓4

𝑔1 𝑔2 𝑔3 𝑔4

𝑝 𝑧1, 𝑧2, … , 𝑧𝑁|𝑥1:𝑁 ∝

ෑ

i=1

N

exp( 𝜃 𝑓 , 𝑓𝑖 𝑧𝑖 + 𝜃 𝑔 , 𝑔𝑖 𝑧𝑖 , 𝑧𝑖+1 )



Linear Chain CRFs for Part of Speech 
Tagging

z1 z2 z3 z4

𝑓1 𝑓2 𝑓3 𝑓4

𝑔1 𝑔2 𝑔3 𝑔4

𝑔𝑗: inter-tag features 

(can depend on 
any/all input words 

𝑥1:𝑁)



Linear Chain CRFs for Part of Speech 
Tagging

z1 z2 z3 z4

𝑓1 𝑓2 𝑓3 𝑓4

𝑔1 𝑔2 𝑔3 𝑔4

𝑔𝑗: inter-tag features 

(can depend on 
any/all input words 

𝑥1:𝑁)

𝑓𝑖: solo tag features 
(can depend on 

any/all input words 
𝑥1:𝑁)



Linear Chain CRFs for Part of Speech 
Tagging

z1 z2 z3 z4

𝑓1 𝑓2 𝑓3 𝑓4

𝑔1 𝑔2 𝑔3 𝑔4

𝑔𝑗: inter-tag features 

(can depend on 
any/all input words 

𝑥1:𝑁)

𝑓𝑖: solo tag features 
(can depend on 

any/all input words 
𝑥1:𝑁)

Feature design, just 
like in maxent 

models!



Linear Chain CRFs for Part of Speech 
Tagging

z1 z2 z3 z4

𝑓1 𝑓2 𝑓3 𝑓4

𝑔1 𝑔2 𝑔3 𝑔4

𝑔𝑗: inter-tag features 

(can depend on 
any/all input words 

𝑥1:𝑁)

𝑓𝑖: solo tag features 
(can depend on 

any/all input words 
𝑥1:𝑁)

Example:

𝑔𝑗,𝑁→𝑉 zj, zj+1 = 1 (if zj == N & zj+1 == V) else 0

𝑔𝑗,told,𝑁→𝑉 zj, zj+1 = 1 (if zj == N & zj+1 == V & xj == told) else 0



(For discussion/whiteboard)

• How would we learn a CRF?

• What objective would we optimize?

• How would we use BP?



Key Insights (1)

• Minimize (structured) cross-entropy loss ↔ 
(structured) maximum likelihood

• Gradient has very familiar form of

“observed feature counts – expected feature counts”



Key Insights (2)

• Rely on adjacency connections/independence
assumptions to compute

𝔼𝑦′ ෍

𝑖

ℎ𝑖(𝑦
′) =෍

𝑖

෍

𝑦𝑖−1,𝑦𝑖

𝑝(𝑦𝑖−1, 𝑦𝑖|𝑥1:𝑁)ℎ𝑖 𝑦𝑖−1, 𝑦𝑖



Key Insights (3)

• Run BP to compute beliefs (unnormalized, joint marginals)

𝑝 𝑦𝑖−1, 𝑦𝑖|𝑥1:𝑁 ∝
𝑔𝑖−1 𝑦𝑖−1, 𝑦𝑖 ∗
𝑞𝑦𝑖−1→𝑔𝑖−1 𝑦𝑖−1 ∗

𝑞𝑦𝑖→𝑔𝑖−1 𝑦𝑖

y1 y2 y3 y4

𝑓1 𝑓2 𝑓3 𝑓4

𝑔1 𝑔2 𝑔3 𝑔4

𝑝 𝑥{𝑚} = 𝒗 ∝ 𝑚 𝑥 𝑚 = 𝒗 ෑ

𝑥𝑛𝑖∈𝑁(𝑚)

𝑞𝑛𝑖→𝑚 𝑥𝑛𝑖 = 𝑣𝑖



Outline

Message Passing: Graphical Model Inference

Example: Linear Chain CRF


