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Abstract
The success of grounded language acquisition using percep-
tual data (e.g., in robotics) is affected by the complexity of
both the perceptual concepts being learned, and the language
describing those concepts. We present methods for analyzing
this complexity, using both visual features and entropy-based
evaluation of sentences. Our work illuminates core, quantifi-
able statistical differences in how language is used to de-
scribe different traits of objects, and the visual representation
of those objects. The methods we use provide an additional
analytical tool for research in perceptual language learning.

Introduction
In grounded language acquisition, examples from a physi-
cal or simulated context are used to drive language learning.
While there has been significant recent effort on grounded
language learning (Huang et al. 2019; Thomason et al.
2019b; Wu et al. 2019; Zhou, Arnold, and Yu 2019), han-
dling grounded language remains a challenging problem, in
part because groundings are learned from two noisy, am-
biguous, and complex channels. We provide a mechanism
for analyzing the visual and linguistic complexity of the data
used, so as to better understand the trait modifiers, such as
color and shape, of the inputs involved.

Prior studies in multimodal grounding (Kery et al. 2019;
Pillai et al. 2020) show that the amount of data required to
learn about different traits of an item—such as its color,
shape, or overall object type—varies significantly, with
speculation that the “complexity,” broadly defined, of the
trait being linguistically described (or visually represented)
is a key correlate to this varied performance. As in Fig. 1,
this is fairly intuitive, though the lack of a clear quantitative
measure limits the conclusions that can be drawn.

This work is a focused effort to demystify and quantify
this “complexity.” We propose straightforward, approach-
able measures for computing both visual and linguistic com-
plexity. We use two existing datasets (Lai 2014; Pillai and
Matuszek 2018) that contain RGB+depth images of a va-
riety of objects labeled in multiple languages (Kery et al.
2019), and we consider language describing three different
conceptual types: “color,” “shape,” and “object” (Fig. 1). We
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Figure 1: RGB-D sensor data and descriptions. Colors are
described simply and fairly consistently. Shapes are a more
difficult problem visually, and tend towards noisy descrip-
tions. Object types are linguistically more consistent, but
are the most difficult perceptual problem, in part due to the
specificity of labels.

compute statistical descriptors with these calculated com-
plexities, and analyze how both the complexity scores and
statistical descriptors align with broad human intuition.

Our primary contributions are (1) the introduction of
“trait-based” complexity to the AI and grounded language
learning communities, and (2) the identification of appropri-
ate metrics and statistical tools to measure the complexity
of perceptual data and linguistic variety to predict efficiency
in grounded language learning. Language is measured us-
ing a sentence-based entropy analysis, and visual complex-
ity by examining visual featurizations. We argue that this
straightforwardness of our approach is a benefit, since it is
simple to compute yet effective at discerning key differences
in grounded language. We further argue that the complexity
measures provide grounded language learning researchers
with an additional tool for analyzing and understanding their
data and underlying learning problem.

Related Work on Grounding Language and
Quantifying “Complexity”

Grounded language acquisition in perceptual data is related
to a wide range of other problems, and our complexity eval-
uation has the potential to be relevant to many of them.
We foresee applications to areas including visual naviga-
tion (Nguyen et al. 2019; Jain et al. 2019; Hu et al. 2019;



Nguyen and Daumé 2019); scene generation (Cheng et al.
2019); understanding videos (He et al. 2019; Antol et al.
2015); image captioning (Song et al. 2019; Jiang et al.
2019); visual story telling (Huang et al. 2016); and object
detection (Huang, Chang, and Hauptmann 2019). Grounded
object description, where a single object is described, is most
closely related to this effort (Richards and Matuszek 2019).1

We expect our approach to generalize to many of the lan-
guage grounding problems that are currently of significant
interest to the field (Thomason et al. 2019a; Patki et al. 2019;
Goyal, Niekum, and Mooney 2019; Chai et al. 2018; Liang
et al. 2018, i.a.). Despite our focus on RGB-D data, varia-
tions of our measures should apply to most data with a vi-
sual component; the language analyses are directly applica-
ble. There is a growing interest in multilingual grounded lan-
guage. These efforts encompass both image captioning (El-
liott et al. 2016; Hewitt et al. 2018, i.a.), learning spatial re-
lations (Belz et al. 2018; Elliott and Keller 2013), and mul-
tilingual grounded object description (Kery et al. 2019).

Linguistic complexity has been investigated via numer-
ous psycholinguistic approaches, including concreteness
and imageability (Shi et al. 2019; Hessel, Mimno, and Lee
2018, i.a.), cost of learning (Becerra-Bonache, Christiansen,
and Jiménez-López 2018), and length of words (Lewis and
Frank 2016). While Ferraro et al. (2015) presented multi-
ple syntactic-, concreteness-, and language modeling-based
approaches for quantifying the complexity of vision-and-
language-based datasets, we are interested in examining the
complexity of semantic traits (categories of concepts) en-
compassed by those datasets. Many of these are less relevant
to the problem we study, in that we intend to quantify the
differences in complexity, rather than discover the cognitive
sources of those differences. Further, as our data is drawn
from robotics, almost all of the concepts being learned are
similarly concrete (vs. abstract).

Computationally measuring visual complexity in accor-
dance with human perception is challenging. Human reac-
tions can be influenced by familiarity, style, and other per-
ceived factors, which is challenging to evaluate (Machado
et al. 2015). However, here we intend to find an au-
tomated measure for the concept complexity of an im-
age (Miniukovich and De Angeli 2016). As shape com-
plexity varies widely (Attneave 1954), for this category we
use compression techniques (Forsythe, Mulhern, and Sawey
2008; Donderi 2006).

Approach: Measuring Complexity
Although perceptual and linguistic complexity are intuitive
concepts to people, they are difficult to verbalize or define.
In general, humans are poor at providing numerical priors
or rankings of subtle concepts, particularly over a very large
dataset (Aroyo and Welty 2015). We accordingly introduce
automated metrics here. This paper is an attempt to clar-
ify the concept of visual and linguistic complexity individu-

1In contrast to most image captioning tasks, grounded object
description allows people to describe how, or why, an item can be
used in particular ways. It focuses on the object rather than the
image containing the object.

ally. Approximating combined visual-linguistic complexity
would be an exciting topic for future study.

In identifying these metrics, we do not claim that they are
the only possible metrics. Indeed, we argue that the com-
plexity measures provide grounded language learning re-
searchers with an additional tool for analyzing and under-
standing their data and underlying learning problem. We
hope that our work will encourage the community to begin
to examine these notions of complexity in their other efforts
and for other grounded language tasks.

Datasets
In order to limit any confounding task-oriented aspects, we
analyze two datasets that are used for concept grounding.
We chose these datasets as they have an appropriate mixture
of color, shape, and object descriptions.

The first is the well-known UW RGB-D+ object set (Lai
et al. 2011), which contains images for 300 objects across 51
categories, annotated with 1,500 human-provided English
descriptions (Richards and Matuszek 2019). Second, we use
the UMBC RGB-D object/language dataset (Pillai and Ma-
tuszek 2018), which has 72 objects divided into 18 classes.
Each object has multiple descriptions, for a total of 6,000
English, 5,100 Spanish and 5,700 Hindi descriptions (Kery
et al. 2019). Items include food objects such as ‘tomato’ and
‘corn’ and blocks in shapes such as ‘cube’ and ‘triangle.’
These datasets contain an average of 4.9 (UW RGB-D+)
and 4.5 (UMBC) images per object. While the datasets we
use are not very large, there are comparatively few avail-
able datasets that combine non-simulated, robotic-inspired
data (in contrast to, e.g., Scalise et al. (2019)) collected us-
ing modern RGB+depth robotic sensors (as opposed to, e.g.,
ImageNet) and natural language descriptions.

Previous work has successfully used a “concepts-
as-classifiers” method for grounded language learn-
ing (Schlangen, Zarrieß, and Kennington 2016; Pillai et al.
2020): visual classifiers are learned that directly associate vi-
sual features with a lexically-oriented concept word. These
concepts are extracted from descriptions via tokenization
and stopword removal. For example, an image of a tomato
described as “This looks like a red tomato without any leaves
on the top,” yields the concepts RED, TOMATO, and LEAVES.

Linguistic Complexity
We calculate the linguistic complexity by computing lexi-
cal entropy, extracted for each concept from the descrip-
tions. For every object instance i, we combine all the de-
scriptions into a pseudo-document di. We calculate the fre-
quency for every descriptive concept v in di as pi,v ∝
count(v ∈ di). We then compute the entropy hi of the
instance i: hi = −

∑
u pi,u log pi,u. Descriptions and en-

tropies can be separated at the pseudo-document level de-
pending on whether a characteristic word, e.g., “red,” was
used or not. As the entropy reflects the diversity of language
used to describe an instance, examining its variability helps
explain the linguistic complexity of a trait. This approach,
though straightforward, is nicely consistent with the tra-
ditional concepts-as-classifier grounding approach used in



Data- Language D, Color D, Shape D, Object
set Concepts Concepts Concepts

UMBC
English 0.41 (1.63E-7) 0.28 (1.163E-3) 0.36 (9.0E-6)
Spanish 0.58 (1.3E-14) 0.23 (1.3E-2) 0.39 (9.9E-7)
Hindi 0.48 (5.4E-10) 0.41 (2.0E-7) 0.58 (2.8E-14)

UW RGB-D+ English 0.20 (2.2E-16) 0.56 (2.2E-16) 0.56 (2.2E-16)

Table 1: Kolmogorov-Smirnov test result of each dataset and
language on trait vs. not-trait. D represents the max dis-
tance between the two samples’ empirical CDF, i.e., the trait
and non-trait cumulative distributions. All results are signif-
icant to at least p=0.013, with p-values provided in paren-
theses. This table shows that the UMBC dataset has fairly
consistent color descriptions (larger K-S distances), but the
UW-RGBD dataset—which contains more complex, multi-
colored objects—is less consistent (smaller distances). K-S
distances for shape and object traits are smaller, indicating
complex, varied descriptions.

previous work (Schlangen, Zarrieß, and Kennington 2016;
Thomason et al. 2016; Abend et al. 2017).

We then calculate the density estimates of entropy for the
distribution of language describing a trait such as color vs.
the distribution of language not describing that trait. De-
scriptions of one instance may include concepts of all three
traits (e.g., “a round purple eggplant”). We then calculate
the linguistic complexity of a trait by combining the en-
tropies of descriptions that reference a concept associated
with that trait. We compare them with the cumulative en-
tropy calculated from all other concepts that are not related
to that trait. For example, we combine all the descriptions
of eggplant instances and calculate the entropy using every
concept’s count. For color, we select all the concepts asso-
ciated with color (e.g., “purple”), and add the entropies of
all the instances described by that concept (“purple”). To
calculate the distribution of non-color traits, we add all the
entropies which are not color. We categorized the concepts
corresponding to each trait with the help of Google trans-
late (Wu et al. 2016).2

We perform a Kolmogorov-Smirnov (K-S) test to quantify
these distributions. K-S tests are an efficiently compare two
distributions or samples against the null hypothesis that they
do not differ. The K-S test returns the maximum distance
D between two curves, with D bounded by 0 (for identical
distributions) and 1. Results are shown in Tab. 1. This quan-
tifies the “difference” between two distributions. A K-S test
also provides an efficient way to reject a null hypothesis (the
two distributions do not differ).

Visual Complexity
To estimate the complexity and variability of visual traits,
We use edge density features and compression errors, as pro-
posed and validated by Machado et al. (2015). We consider
the different categories in concept-specific ways. For color,
the approach is simple: we use the empirically validated ap-
proach of computing the standard deviation of RGB values.

2Available with code at https://github.com/iral-lab/
MultiModalComplexityEval.

To measure shape complexity, we compute the compres-
sion loss of detected edges. We extract HSV values from an
RGB image, compute edge densities over these using stan-
dard edge detection algorithms (Canny; Kanopoulos, Vasan-
thavada, and Baker (1986; 1988)), and estimate the compres-
sion errors using JPEG compression (see Fig. 3). Machado
et al. (2015) presented user studies validating this approach;
other compression techniques would need to be validated in
a similar fashion—an effort deserving of a dedicated study.3

In order to meaningfully analyze object type as distinct
from color and shape, we would need to consider a dif-
ferent featurization that captured more of the semantics of
“object-ness” (Pillai and Matuszek 2018; Kery et al. 2019).
This is a topic for future work. Nevertheless, we expect
our approach to generalize beyond the language ground-
ing problems that are currently of significant interest to the
field (Goyal, Niekum, and Mooney 2019; Anderson et al.
2018). We focus on RGB-D data, but variations of our mea-
sures apply to most data with a visual component, while our
language analyses are directly applicable.

Analysis of Linguistic Complexity
Fig. 2 shows the density computed from UMBC and UW
RGB-D+ datasets’ entropies. The variability of the traits can
be seen from the entropy results in the figure.

English: We can see that color entropies are concentrated
towards zero compared to non-color entropies, indicating
the concise, less diverse vocabulary used to describe colors.
For example, the BLUE concept is described using exactly
the term “blue” in 95% of the descriptions. Non-color en-
tropies are more diverse, indicating the variance in the de-
scriptions; “color” is linguistically simpler in these datasets
than other traits. “Shape” is the most varied trait, with high
variance in the annotations, both according to our metrics
and in practice. “Object” annotations are more consistent
than “shape” as users were mostly consistent in describing
vegetables (“corn,” “cabbage”) but less consistent in anno-
tating toys (“arch,” “cube”).

Hindi: We see that color complexity (that is, diversity
of language describing color) is much smaller than that of
shape and object. From the annotations, we find the different
forms of the same words are used to describe the object: The
“color” concepts are semantically similar but exhibit noun
inflection based on gender. Such discrepancies affect lan-
guage acquisition performance. Diverse words are used for
shapes, particularly to describe cylindrical objects, making
the downstream language learning problem more complex.
High entropy implies weak agreement between the annota-
tors. The patterns of complexity among traits in Hindi are
nonetheless approximately analogous to English.

Spanish: The diversity of terms used in Spanish across the
three traits is similar to that of English and Hindi: language

3Canny edge detection coupled with JPEG compression pro-
vides one of the highest correlations between human and computa-
tional estimates of visual complexity. This implies that edge den-
sity and compression error are reliable predictors of people’s per-
ception of visual complexity.



Dataset Lang. Color Shape Object Type

UMBC
English Concise, less varied concept

vocabulary

Contrasting descriptions; 83% of
instance descriptions included

shape

Varied and diverse descriptions;
all instances are described with

object names

Spanish Concise, less varied concept
vocabulary

Many synonyms; all instances are
described with shape concepts at

least once

Varied and diverse descriptions;
all instances are described with

object types at least once

Hindi
Semantically similar, but
gender-based inflectional

differences present

Highly varied and diverse
concepts; all instances are

described with shape concepts

Varied and diverse descriptions;
all instances are described with

object concepts at least once

UW RGB-D+ English
Multicolor objects, medium

consistency in descriptions; not
all descriptions include color

Synonyms present; only 9.5% of
all instances have shape in

descriptions

Varied and diverse descriptions;
98.9% instances have object

concepts in description

Table 2: A qualitative summary of the typical complexity of linguistic descriptions by dataset and language.

Data- Language Color Shape Object
set Yes No Yes No Yes No

UMBC
English 0.71 1.45 1.20 1.18 1.67 0.95
Spanish 1.17 2.23 2.07 1.78 2.38 1.63
Hindi 1.09 1.61 0.95 1.68 2.27 1.03

UW RGB-D+ English 0.39 0.58 0.01 0.71 1.03 0.22

Table 3: The average of linguistic complexity comparisons
between trait vs. non-trait for each dataset and language.
Higher differences between average values indicates the
conciseness in the description: color descriptions are con-
cise compared to shape and object descriptions.

Dataset Color Shape
UMBC 0.120 0.910

UW RGB-D+ 0.171 0.942

Table 4: The average value of visual complexity measures of
color and shape distributions for every dataset. The smaller
mean for our color complexity metric indicates a lack of va-
riety in color features, while larger values for shape com-
plexity are a result of the complicated edges and shapes in
the feature set.

about colors is consistent and straightforward, but becomes
more complex for shape and object. “Color” shows the least
variation of the three traits, although there is more variance
in color descriptions for concepts with similar meanings,
such as the very similar terms morado, púrpura, and vio-
leta for purple. The vocabulary used for shape features is
varied and inconsistent. All of rectangulo, poliedro, and par-
alelepı́pedo appear when describing rectangular solids. Sim-
ilarly, object terms vary widely, possibly due to a difference
in what objects are routinely found and discussed in day-to-
day life. For example, a cucumber was described as a pepino
(cucumber) and pepinillo (pickle), but also several times as
“looking like a small sandı́a (watermelon),” as well as by the
category hypernyms vegetal and fruta (vegetable and fruit).

Overall, the relative linguistic complexity of traits is com-
parable to that of English and Hindi. All three languages
have a consistent and straightforward vocabulary for the
“color” concept, but varied and complex vocabulary for
“shape” and “object” concepts.

There are differences between the datasets. In the UW

RGB-D+ dataset, not every instance is described with a
color, which is reflected in the lower K-S distances. “Ob-
ject” descriptions in the UW dataset are also more diverse
compared to the UMBC dataset. The atypical “shape” be-
havior indicates the lack of “shape” words: only 9.5% of
instance descriptions have shape descriptors, likely due to
the occurrence of more complex objects with less of simple
geometric shape. In summary, while language-specific dif-
ferences do emerge, we see very similar overall patterns of
complexity across languages.

Analysis of Visual Complexity
In modeling visual complexity, we consider shape and color
differences between the two datasets, omitting object type
for the reasons described above. Results are shown in Fig. 3.

In the smaller UMBC dataset, the standard deviations of
RGB values are a good indication of greater visual consis-
tency, while lower compression rates are a good indication
of reduced complexity. From these results, we can conclude
that the overall color deviation is small, which is accurate for
the dataset being measured. The compression rates of shape
concepts are more varied, indicative of greater visual variety.

Results are similar in the UW RGB-D+ dataset. While
there are subtle differences, the overall complexity profile
between the two datasets is similar. There is more diversity
in the UW dataset color standard deviation, presumably due
to the less monochromatic objects in this dataset.

Previous work reported large performance drops in clas-
sification surrounding “color”-concepts vs. “shape”-based
concepts (Pillai and Matuszek 2018); while “color” yielded
an accuracy of 0.81, “shape” was much lower at 0.62. This
roughly tracks with our complexity measures: both linguis-
tic and visual complexity measures for the “color” trait
are lower (indicating lower complexity, and more success-
ful classification) while the complexity measures for the
“shape” are higher (indicating higher complexity, more com-
plicated descriptions/visuals, and harder classification). Ad-
ditionally, we find that in the context of dealing with con-
crete objects, the level of ambiguity in learning varies with
multi-sense concepts. For instance, “orange” is both a color
and an object. Learning the meaning of “orange” as a color
is simpler than “orange” as an object, and our complexity
measures reflect that.
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Figure 2: Comparison of traits “Color,” “Shape,” and “Ob-
ject” via lexical entropy for the UMBC and UW RGB-D+
datasets. The K-S statistics quantify the amount of diver-
gence within each facet (subplot). Notice the entropy for
color concepts is lower than non-color, indicating the con-
cise, less varied vocabulary of colors. Object trait entropy
is higher, indicating linguistic variability. Only 9.5% of the
UW dataset instances have shape concepts in the description
at least once. Spanish descriptions contain varied but seman-
tically similar shape/object tokens in vocabulary.

Conclusion
In this work, we analyzed multilingual grounded language
data and presented models that allow automated analysis of
the complexity of descriptions and visual inputs. We ver-
ify that there is a consistent, statistically verifiable pattern
of complexity across the traits we consider, making it pos-
sible to consider differentiated learning approaches in the
cross-modal grounding tasks. We anticipate this will help
grounded language learning researchers better understand
the data they are working with, and yield and aid improved
design decisions, such as appropriate feature selection and
selection of classification model.
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