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Abstract

We propose a cross-modality manifold alignment pro-

cedure that leverages triplet loss to jointly learn consis-

tent, multi-modal embeddings of language-based concepts

of real-world items. Our approach learns these embeddings

by sampling triples of anchor, positive, and negative data

points from RGB-depth images and their natural language

descriptions. We show that our approach can benefit from,

but does not require, post-processing steps such as Pro-

crustes analysis, in contrast to some of our baselines which

require it for reasonable performance. We demonstrate the

effectiveness of our approach on two datasets commonly

used to develop robotic-based grounded language learning

systems, where our approach outperforms four baselines,

including a state-of-the-art approach, across five evaluation

metrics.

1. Grounded Language Acquisition Through

the Lens of Manifold Alignment

As robots become advanced and affordable enough to

have in daily life, more needs to be done to make these

machines as intuitive as possible. Language offers an ap-

proachable interface. However, understanding how natu-

ral language can best be grounded to the physical world is

still very much an open problem. Combining language and

robotics creates unique challenges that much of the current

work on grounded language learning has not yet addressed.

Acquiring grounded language—learning associations

between symbols in language and their referents in the

physical world—takes many forms [14]. With some excep-

tions [37, 39], the majority [21, 34] of current work focuses

on grounding language to RGB images. Due to the avail-

ability of large datasets consisting of up to millions of par-

allel RGB images and language [21, 25, 31], these tasks

typically operate with a large pool of labeled data. Large

annotated datasets are rare in the field of grounded language

for robotics, especially datasets containing depth informa-

tion in the form of RGB-D.

This is a complex problem space, and learning has been

demonstrated successfully in domains as varied as soliciting

human assistance with tasks [20], interactive learning [36],

and understanding complex spatial expressions [28]. Pre-

vious work has made many simplifying assumptions such

as using a bag-of-words language model [29] and focusing

on using domain-specific visual features for training classi-

fier models [33]. Our approach relaxes these assumptions:

we assume neither a particular language model nor specific

visual features.

We approach the grounding problem as a manifold align-

ment problem where we want to find a mapping from het-

erogeneous representations to a shared manifold in a latent

space. In particular, we demonstrate how to recast exist-

ing but disparate language and vision domain representa-

tions into a joint space. We do so by learning a transform

of both language and RGB-D sensor data embeddings into

a joint space using manifold alignment. This enables the

learning of grounded language in a cross-domain manner

and provides a bridge between the noisy, multi-domain per-

ceived world of the robotic agent and unconstrained natural

language. In particular, we use triplet loss in combination

with Procrustes analysis to achieve the alignment of lan-

guage and vision.

Our approach to alignment attains state-of-the-art perfor-

mance on the language enhanced University of Washington



RGB-D Object Dataset [22, 33] and on the dataset of Pillai

and Matuszek [29]. Importantly, as our approach leverages

existing feature extractors, it should be able to integrate with

existing robot language and vision models with little addi-

tional overhead.

We make four main contributions. First, we introduce

an easy to implement manifold alignment approach to the

grounded language problem for systems where sensor data

representations do not live in the same space. Second, we

demonstrate that our method is generalizable to the unsu-

pervised setting. Third, we show that our approach can ben-

efit from, but does not require, post-processing steps such

as Procrustes analysis—in contrast to some of our baselines

which do not perform well without it. Finally, we demon-

strate that our method can be effective in lower-resource and

lower-data settings compared to traditional uses of manifold

alignment in grounded language learning.

2. Related Work

We treat the language grounding problem as one of man-

ifold alignment—finding a mapping from heterogeneous

representations (commonly the case with language and sen-

sor datasets) to a shared structure in latent space [40]. This

makes the assumption that there is an underlying, latent

manifold that datasets share, obtained by leveraging corre-

spondences between paired data elements. Jointly learn-

ing embeddings for different data domains to a shared la-

tent space can yield a consistent representation of concepts

across domains.

Figure 1 illustrates the goal of aligning language and vi-

sion. Given n different domains, the manifold alignment

task is to find n functions, f1, ..., fn such that each func-

tion maps each mi-dimensional space to a shared latent M -

dimensional space, fi : R
mi → R

M , i = 1, ..., n. In our

case, n = 2 where the domains correspond to RGB-D and

natural language.

Applying manifold alignment to learning groundings be-

tween language and physical context is a relatively novel

approach. Most prior work in this area focus on the cooking

domain using the much larger Recipe1M dataset containing

around one million cooking recipes and eight hundred thou-

sand food images [5, 12, 34]. Our work differs from these

previous works as we demonstrate the effectiveness of a

manifold alignment approach using a much smaller amount

of labeled data (our datasets have less than one percent of

the number of data points in the Recipe1M dataset). Lazari-

dou et al. [23] learn a projection of image-extracted features

to an existing and fixed language embedding space.

In the robotics domain, Cohen et al. [7] combine

Bayesian Eigenobjects with a language grounding model

that maps natural language phrases and segmented depth

images to a shared space. This Bayesian Eigenobjects ap-

proach is however evaluated on only three classes of ob-

Figure 1: A language + vision manifold alignment approach

to language grounding. As an example here, natural lan-

guage (top left) and perceptual data (top right) are vec-

torized by a feature extractor and embedded (bottom left).

Triplet loss-based alignment functions (fv and fl) are then

applied to learn a mapping in which similar concepts in dif-

ferent domains are “close” in the new shared embedding,

while dissimilar concepts are distant (bottom right).

jects. Moreover, Choi et al. [6] employ nonparametric re-

gression and deep latent variable modeling to transfer hu-

man motion data to humanoid robots. Lu et al. [24] in-

troduce ViLBERT, task-agnostic and transferable joint rep-

resentations of image content and natural language. Su

et al. [38] similarly introduce VL-BERT. Our work differs

from ViLBERT and VL-BERT as we are not tackling the

problem of learning joint embeddings but rather the prob-

lem of recasting different existing embeddings into a joint

space. Also, the computational requirements for our work

are lower than those needed for training ViLBERT and VL-

BERT.

3. Heterogeneous Domain Alignment

Deep metric learning [18] uses deep neural networks to

learn a projection of data to an embedding space where

intra-class distances are smaller than inter-class distances.

Our intention is that the learned metric and embedding cap-

ture the semantics of the paired data. The triplet loss di-

rectly encodes the desire that data from a common class be

‘closer together’ than data from other classes [3, 35]. In par-

ticular, triplet loss seeks to minimize the distance between

an anchor point and a positive point belonging to the same

class as the anchor, while maximizing the distance between

the anchor point and a negative point belonging to a differ-

ent class. Given an anchor xa, positive xp, and negative xn

triplet each in R
m, we seek to minimize the following triplet

loss where d is a distance metric, f is the embedding func-

tion we want to learn, and α is a margin enforced between

positive and negative data pairs:



L = max (d (f(xa), f(xp))− d (f(xa), f(xn)) + α, 0)
(1)

Previous work has used triplet loss for learning metric

embeddings, for example Hermans et al. [16] maps similar

data from homogeneous domains closer to each other in a

shared lower-dimensional latent space. Our approach, in

contrast, is to use data from heterogeneous domains to learn

the metric embeddings based on triplet loss.

More specifically, we wish to learn two embedding

alignment functions fv and fl that map RGB-D (i.e., “vi-

sion” fv) and language (fl) data respectively to a shared

representation space. We do not fine-tune the original em-

beddings: our empirical results demonstrate that certain

types of grounded language learning can be accomplished

without it. In order to jointly learn fv and fl, we use the

triplet loss but select triplets to be cross-domain. In par-

ticular, we uniformly at random select triplets such that the

anchor, the positive, and the negative can independently be-

long to either domain. For example, in the case where the

anchor and negative come from the vision domain and the

positive comes from the language domain, the loss for that

triplet is:

L = max (d(fv(xa), fl(xp))− d(fv(xa), fv(xn)) + α, 0)
(2)

In the above example, xa could be a cat RGB-D image, xp

a textual description of a cat, and xn a toaster image.

Once the embedding alignment transformations fv and

fl are learned, an optional fine-tuning step can be included

in the form of a Procrustes analysis [13] which finds the

optimal translation, scaling, and rotation of two shapes to

minimize the Procrustes distance between the shapes. The

Procrustes distance is the Euclidean distance between the

shapes after the learned optimal translation, scaling, and ro-

tation of shapes. An optimal rotation matrix R is found

such that the Euclidean distance between the shapes after

translation and scaling is minimized

R
∗

= argmin
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where Xv and Xl are the vision and language data respec-

tively (where rows from each domain form pairs), where

mv and ml are the means of fv(Xv) and fl(Xl), and ‖ · ‖F
is the Frobenius matrix norm. All the Procrustes analysis

parameters are fit using the training set. As we will show,

our method can benefit from, but does not require, Pro-

crustes analysis, in contrast to some of our baselines which

require it for reasonable performance. Our primary method,

called “Triplet Method” throughout this paper, uses cosine

distance as the distance metric d and includes Procrustes

Algorithm 1: Training Procedure for Triplet

Method

Input: Dataset X of paired RGB-D and language

feature vectors (xv, xl).
Output: Embedding alignment functions fv and fl

that map RGB-D and language to a shared

space and a trained Procrustes transform.

1 fv, fl ← randomly initialized neural networks with

parameters θv and θl respectively

2 while not converged do

3 xa ← randomly selected vision or language

feature vector from X

4 xp ← randomly selected vision or language

feature vector from X belonging to the same

class as xa

5 xn ← randomly select any other vision or

language feature vector from X belonging to a

different class than xa and xp

6 Incur loss L using Equation 2, and

backpropogate to update parameters θv and θl

7 end

8 mv ←
1

|X|

∑
∀(xv,xl)∈X fv(xv)

9 ml ←
1

|X|

∑
∀(xv,xl)∈X fl(xl)

10 sv ← ‖fv(Xv)−mv‖F
11 sl ← ‖fl(Xl)−ml‖F
12 R← solution to Equation 3

13 return fv, fl,mv,ml, sv, sl, R

analysis. The full training procedure for the triplet method

is given in algorithm 1.

4. Experiments

4.1. Grounded Language Data and Evaluation

We use the same RGB-D object dataset used by Richards

and Matuszek [33], which extends the classic and well-

known University of Washington object dataset [22] with

natural language text descriptions. The dataset consists of

7,455 RGB-D image and text description pairs where the

pairs each belong to one of 51 classes and where the num-

ber of data points per class range from 33 to 366. We split

the data so that objects tested on do not appear in the train-

ing set. So for example, all data derived from a specific

“water bottle” will appear in only one of the training and

testing sets. In other words, data in the testing set does not

come from the same objects as data in the training set.

Figure 2 shows example data from the tomato, pear, and

food bag classes. The three examples shown in Figure 2

illustrate how ambiguity can occur in natural language, as

all three classes can be described using the word “fruit.”

During evaluation, we desire that a good approach map the



tomato

A fruit that is
round and red
and best with
salads and
sandwiches.

pear This is a
piece of fruit.

food bag
A bag of

frozen fruit.

Figure 2: Example data. Columns correspond to class label,

RGB, depth, and text descriptions.

RGB-D and language representations of each object class

near each other but far from the representations of objects

from other classes.

4.2. Models

For the language feature extraction model bl, we use a

12-layer BERT model pre-trained on lowercase English text

[9]. We used the concatenated output of the last four BERT-

base layers, resulting in a 3,072 dimensional embedding.

For the vision feature extraction bv , we use a ResNet152

pre-trained on ImageNet [15] with its last fully connected

layer removed. The depth component is dealt with via col-

orization (which we shall call D2RGB) in a similar manner

to the procedure from Eitel et al. [11] which encodes a depth

image as an RGB image where the information contained

in the depth data is spread across all three RGB channels.

This allows us to use the same pre-trained ResNet to process

both the RGB image and the transformed depth information.

The vectors resulting from the RGB images and the D2RGB

depth-to-RGB colorization are concatenated to create a final

4,096 dimensional RGB-D vision embedding. This gives us

bv(xRGB−D) = [ResNet(xRGB);ResNet(D2RGB(xD))].
Lu et al. [24] introduce ViLBERT, joint representations

of images and natural language. We note that while a pre-

trained ViLBERT embedding could be used for the vision

and language feature extraction, we do not use ViLBERT

as our feature extractor in our experiments. This is because

ViLBERT learns vision and language embeddings jointly,

and so the representations are already designed to work to-

gether. Our interest is in adapting embeddings that have no

prior relation.

In our experiments, the network architectures for our

alignment models consist of an input layer, two hidden

layers of size equal to the input layer size, and an output

layer that has the size of the desired embedding dimen-

sionality, set to 1,024 in our experiments. Rectified lin-

ear units were used as hidden layer activation functions,

and Adam was used as the optimizer [19]. The triplet loss

uses cosine distance as the distance metric with a margin

of α = 0.4, where we did not tune the margin. PyTorch

1.4.0 was used on a Ubuntu 18.04 server with a GeForce

RTX 2080 Ti GPU. The embedding space is chosen to be

1,024-dimensional and we fix the pre-trained feature extrac-

tion models bl and bv during training, only optimizing the

alignment models.

The fixing of the feature extraction models directly con-

nects to the robotics use-case where feature extraction

model outputs may be used for multiple tasks and where

there may be memory and latency constraints. By not hav-

ing to store and process data through multiple feature ex-

traction models, our approach is advantageous in how it

can fit on top of existing state-of-the-art algorithms used

by the robot for separate tasks. To illustrate, the feature ex-

traction models together have 167,626,048 parameters, and

the alignment models together have 59,785,216 parameters.

In the case of an existing system with language and vision

models currently being used for other tasks, the integration

of manifold alignment would result in a 36% increase in

the number of parameters if the feature extraction models

are reused whereas an 136% increase in the number of pa-

rameters would occur if the feature extraction models are

retrained.

4.3. Baselines

We compare our manifold alignment method with the

following baselines. We also augment each of these base-

lines with a Procrustes analysis for additional, stronger

baselines.

4.3.1 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) finds the linear com-

binations of variables within each of two datasets that maxi-

mizes the linear correlation between the combinations from

each of the datasets [17].

4.3.2 Deep CCA

Deep Canonical Correlation Analysis (Deep CCA) is an ex-

tension of CCA where a nonlinear transformation of two

datasets is learned to maximize the post-transformation lin-

ear correlation [2]. Deep CCA suffers from known numeri-

cal stability issues due to the need to backpropagate through

eigen-decompositions. Additionally, mini-batched stochas-

tic gradient descent cannot be directly used for optimization

as correlation is a function of the training data in its entirety

and does not decompose into a sum over data points. As

a result, care needs to be taken when training Deep CCA

[41, 42]. In particular, we found it necessary to select a

smaller embedding space dimensionality of 64 (instead of

1,024) for Deep CCA in order to avoid numerical instability



during the training process. Testing with larger dimensions

resulted in a failure to converge.

4.4. Manifold Metrics

To evaluate the quality of the manifolds learned, we will

use the three metrics specified below: Mean Reciprocal

Rank (a measure of global order preservation), K-Nearest

Neighbors (a measure of local order preservation), and Dis-

tance Correlation (a measure of global absolute distance

preservation). A successful manifold alignment approach

should perform well in all three of these tasks. We do not

argue that these are sufficient for determining all aspects

about a manifold’s quality, but posit that they are useful to

the tasks we are concerned with. Similar metrics were used

for example in Diaz and Metzler [10] and Aalto and Verma

[1].

4.4.1 Mean Reciprocal Rank

Given an image and text pair, we can compute the distance

in the joint embedding space between the text element and

all data points in the vision domain. These distances can

then be ranked with 1 being the closest, 2 being the sec-

ond closest, and so forth. Common in information retrieval,

Mean Reciprocal Rank (MRR) is the average across the data

of the multiplicative inverse of the rank in embedding space

of the nearest item from the same class that comes from the

other domain [8].

4.4.2 Distance Correlation

Intuitively, if two embedding manifolds are aligned, dis-

tances in one embedding should be correlated to distances

in the other embedding. Specifically, if we select two im-

age and text pairs, the distance between them in the vision

embedding should be correlated with the distance between

them in the language embedding space. To capture this

property, we randomly select 10,000 pairs of image and text

pairs and compute the distance between them. The Pearson

correlation is then computed between the vision space dis-

tances and the language space distances, resulting in a met-

ric between −1 and 1 where closer to 1 means better align-

ment. We call this metric Distance Correlation (DC) in this

paper. The sampling is done due to the prohibitive cost to

compute the pairwise correlation for the entire dataset.

4.4.3 K-Nearest Neighbors

As a final metric, we use K-Nearest Neighbors (KNN) clas-

sification accuracy with K = 5 in our experiments. This

metric captures what performance would look like in an ap-

plied setting where a robot may need to associate natural

language with a visual concept.

5. Supervised Alignment Evaluation

5.1. Grounded Language Learning

Our ultimate goal for manifold alignment is to enable the

grounding of language to referents in the physical world. To

directly assess the effectiveness of cross-modal manifold

alignment for grounded language, we evaluate the aligned

embeddings on the task of determining which objects in

RGB-D space correspond to a given language description.

In particular, every text description datum can be consid-

ered a separate classification task where the goal is the bi-

nary classification of all RGB-D images as relevant or not

relevant given the text description.

For each of the classification tasks, an Area Under the

Receiver Operating Characteristic Curve (AUC) score is ob-

tained. Figure 3 shows cumulative counts over AUCs. We

note that for any particular AUC score, our triplet method

has more better scoring tasks than Deep CCA. In other

words, Deep CCA has more and worse failure cases. We

also compare our triplet method which uses cosine distance

with a version of our triplet method that uses Euclidean dis-

tance instead. This ablation finds our cosine method best.

Table 1 summarizes the mean micro and macro averaged

F1 scores across methods. The triplet method outperforms

all of the other methods on the grounded language task.

For the computation of F1 scores, the distance between the

text description element and RGB-D image element in the

shared space was computed for each datum pair in the train-

ing set. The relevance distance threshold was set to the

mean of these distances plus a standard deviation.

A comparison of the achieved mean macro averaged F1

score of 0.725 for the triplet method in the known class

scenario with the 0.689 macro averaged F1 score reported

in Richards and Matuszek [33], the current state-of-the art

on this dataset, shows a 5.2% improvement and suggests

that a manifold alignment approach to grounded language

is promising, attaining at least similar or likely better per-

formance than traditional word-as-classifier models. The

triplet method without Procrustes achieves a higher 9.9%
improvement in macro averaged F1 score, but we will later

discuss our preference for the triplet method with Pro-

crustes.

5.2. Effective Deep Metric Learning using Triplet
Loss

Table 2 shows the MRR, KNN accuracy, and DC for

the triplet method as well as for our baselines. We find

that while the triplet method has the highest DC and strong

MRR and KNN accuracy, providing consistent performance

across all manifold metrics, Deep CCA with the addition of

Procrustes analysis has the highest MRR and KNN, at the

cost of a 1.9× lower DC compared to our new approach.

This disparity in performance means that Deep CCA with



Figure 3: Grounded language task cumulative counts over

AUCs. Perfect classification lies in the bottom-right corner,

so curves toward the lower-right are preferred. Every text

description datum can be considered a separate classifica-

tion task (with its own AUC) where the goal is the binary

classification of all RGB-D images as relevant or not rele-

vant given the text description. The x-axis represents AUC

score values, and the y-axis represents the number of clas-

sification tasks with an AUC less than a particular value.

For any particular AUC score, our triplet method has more

better scoring tasks than Deep CCA.

Algorithm Avg Micro F1 Avg Macro F1

Triplet Method 0.983 0.725

Trip. Met. (w/out Procrustes) 0.978 0.757

Trip. Met. (Euclidean) 0.969 0.727

Trip. Met. (Eucl. w/out Proc.) 0.952 0.714

Cosine Baseline (w/ Proc.) 0.441 0.318

Cosine Baseline (w/out Proc.) 0.542 0.337

CCA (w/ Procrustes) 0.567 0.294

CCA (w/out Procrustes) 0.455 0.331

Deep CCA (w/ Procrustes) 0.855 0.716

Deep CCA (w/out Procrustes) 0.026 0.025

Richards and Matuszek (2019) Not Reported 0.689

Table 1: Metrics for grounded language task evaluated on

held out test set. Best results are bolded.

Procrustes is not learning a holistically useful manifold. As

we saw in subsection 5.1, this translates to worse perfor-

mance for grounded language learning. Deep CCA without

Procrustes has a significantly reduced, and in fact the worst,

MRR and KNN accuracy. CCA with and without Procrustes

analysis both have poor performance. These results demon-

strate the value of using Procrustes to improve the quality of

a manifold alignment at little effort. We also note that while

Procrustes is crucial for CCA and Deep CCA, our triplet

method remains strong with only a slight decrease in MRR

and KNN accuracy when Procrustes analysis is ablated.

To help confirm that our approach learns good mani-

folds, we would expect a visualization of the vision and

language domains to have similar structure. We do this

using UMAP [26], which preserves global structure. Fig-

Algorithm MRR KNN DC

Triplet Method 0.802 0.787 0.686

Trip. Met. (w/out Procrustes) 0.758 0.742 0.692

Trip. Met. (Euclidean) 0.724 0.702 0.693

Trip. Met. (Eucl. w/out Proc.) 0.673 0.648 0.685

Cosine Baseline (w/ Proc.) 0.113 0.097 -0.001

Cosine Baseline (w/out Proc.) 0.208 0.181 0.031

CCA (w/ Procrustes) 0.144 0.122 0.067

CCA (w/out Procrustes) 0.035 0.027 0.040

Deep CCA (w/ Procrustes) 0.870 0.860 0.359

Deep CCA (w/out Procrustes) 0.023 0.012 0.377

Table 2: Evaluation of manifolds using Mean Reciprocal

Rank (MRR), K-Nearest Neighbors (KNN), and Distance

Correlation (DC) as metrics. Higher is better for all metrics.

Figure 4: Test set UMAP of the Triplet Method. 10 ran-

domly selected classes are plotted.

ure 4 shows the UMAP for the triplet method. Ten ran-

domly selected classes are plotted for legibility purposes.

We observe that classes are generally well clustered (items

are close to other items from the same class and classes are

separated) and are projected to similar locations across both

the language and vision domains. Note that using our new

approach, classes with wide dispersion (e.g., water bottle)

or compactness (e.g., cell phone) share this structure across

domains. Figure 5 shows the UMAP for Deep CCA with

Procrustes. In contrast with the triplet method, we observe

that while data is well clustered in the language domain,

data is less well clustered in the vision domain, in particular

when it comes to class separation. Class alignment across

domains is also less evident. While classes such as cell

phone and food bag are well aligned, other classes such as

kleenex and calculator are not. In these cases the structure

is not successfully shared between the domains, indicating

a lesser quality as a manifold.

Additionally, we can gain more insight into the DC re-

sults by plotting the vision space distances and the language

space distances to compare their relationships. Subplots (a)

and (b) in Figure 6 respectively show the distance relation-

ships for the triplet method and Deep CCA with Procrustes.



Figure 5: Test set UMAP of Deep CCA with Procrustes. 10

randomly selected classes are plotted.

(a) Triplet Method (b) Deep CCA with Procrustes

Figure 6: Distance Correlation visualization for the Triplet

Method and for Deep CCA with Procrustes. Pairs of im-

age and text pairs are randomly selected and the distance

between them is plotted, with the x-axis representing the

distance in the language domain and the y-axis representing

the distance in the vision domain. The dashed line repre-

sents where points should lie under perfect manifold align-

ment.

While the triplet method has the desired linear relationship

between distances, Deep CCA with Procrustes lacks the de-

sired relationship that would indicate well aligned mani-

folds.

5.3. Understanding the Contribution of Procrustes
Analysis and Triplets

To understand the role played by Procrustes analysis, we

run ablation experiments, separately removing each of the

Procrustes analysis components (translation, scaling, and

rotation) one by one. Table 3 shows metrics for Procrustes

analysis ablations on the triplet method. Metrics stay rel-

atively similar when translation or scaling are removed.

When rotation is removed, a decrease in MRR and KNN ac-

curacy is observed without a decrease in DC. Similar abla-

tion experiments can be run for Deep CCA with Procrustes

analysis. Table 4 suggests that both rotation and scaling are

needed for Deep CCA to achieve high MRR and KNN ac-

Algorithm MRR KNN DC

Triplet Method 0.802 0.787 0.686

No Translation 0.806 0.790 0.679

No Scaling 0.801 0.786 0.696

No Rotation 0.750 0.733 0.693

Table 3: Ablation metrics where various components of

Procrustes analysis are disabled for the Triplet Method.

Algorithm MRR KNN DC

Deep CCA w/ Procrustes 0.870 0.860 0.359

No Translation 0.871 0.862 0.363

No Scaling 0.021 0.011 0.378

No Rotation 0.034 0.021 0.352

Table 4: Ablation metrics where various components of

Procrustes analysis are disabled for Deep CCA.

Algorithm MRR KNN DC

Triplet Method 0.724 0.702 0.693

No Translation 0.729 0.707 0.688

No Scaling 0.045 0.039 0.680

No Rotation 0.680 0.658 0.684

Table 5: Ablation metrics where various components of

Procrustes analysis are disabled for the Triplet Method with

Euclidean distance.

curacy.

Table 5 shows metrics for Procrustes analysis ablations

on a variant of the triplet method that uses Euclidean dis-

tance instead of cosine distance. Metrics stay similar when

translation or rotation are removed. When scaling is re-

moved, a significant decrease in MRR and KNN accuracy is

observed. This suggests that the Euclidean distance without

Procrustes maps data in each domain to similarly shaped

manifolds of different scales. This result is consistent with

the formulation of the Euclidean triplet loss, as differently

scaled but otherwise similar manifolds can satisfy the rela-

tive distance constraints encouraged by the Euclidean triplet

loss. This result demonstrates an advantage of the use of

cosine distance in this context. A comparison of the per-

formance of the triplet method with its Euclidean variant in

Table 1, Table 2, and Figure 3 confirms this advantage.

We also explore the contribution of using triplets by

adding a baseline which seeks to simply minimize the co-

sine distance between the positive and anchor points in the

shared space. Table 1 and Table 2 show the performance

of the cosine distance baseline, with and without Procrustes

analysis. Overall, the triplet method performs significantly

better than the cosine distance baselines. We note that our



Algorithm Micro F1 Macro F1 MRR KNN DC

Triplet Met. (BERT) 0.984 0.735 0.816 0.804 0.686

Triplet Met. (SBERT) 0.982 0.748 0.745 0.731 0.678

Triplet Met. (SBERT fine-tuned) 0.984 0.734 0.834 0.823 0.731

Table 6: Metrics for grounded language task and mani-

fold evaluation comparing BERT, SBERT, and a fine-tuned

SBERT. We report average F1 scores.

cosine baseline is similar to the approach taken by Nguyen

et al. [27].

5.4. Comparison of Language Embeddings

Next, we investigate the effect of better feature extrac-

tion. Sentence-BERT (SBERT) is a sentence embedding

oriented modification of BERT that achieves better perfor-

mance on Semantic Textual Similarity (STS) tasks [32]. We

compare a BERT-based version of our triplet method to an

off-the-shelf SBERT version and a fine-tuned SBERT ver-

sion. We fine-tune SBERT using pairs of object descriptions

from the same extended University of Washington dataset.

Pairs describing the same instance of an object are given a

score of 5 while pairs describing different instances of an

object are given a score of 2.5, and pairs describing differ-

ent objects are given a score of 0.

Table 6 summarizes the comparative performance of the

language embeddings on the grounded language task and

manifolds. Fine-tuned SBERT leads to the highest quality

manifold. This follows intuition and suggests that the use

of higher quality original embeddings of sensor data leads

to higher quality aligned representations. Note that we re-

trained the BERT based triplet method for this experiment,

hence the slightly different (but nearly identical) metrics

when compared to Table 1 and Table 2.

6. Generalizability to Other Settings

We now investigate if our approach generalizes to situ-

ations where unsupervised manifold alignment is needed,

and to another dataset with more limited labeled data.

6.1. Sampling Negative Examples in an Unsuper
vised Setting

So far, the training of the triplet method has assumed the

availability of class labels for triplet selection. However, the

triplet method can still be trained when class ground truth

is not available using unsupervised negative example selec-

tion. In this setting, the triplets are fixed to have a vision

anchor and language negatives and positives. The positive

is selected to be the anchor’s paired text, and the negative

example is chosen through a semantic distance based tech-

nique similar to that used in [29]. In particular, the cosine

distances between all natural language descriptions can be

Algorithm Micro F1 Macro F1 MRR KNN DC

Triplet Method 0.983 0.725 0.802 0.787 0.686

Trip. Met. (unsup.) 0.963 0.698 0.754 0.736 0.773

Trip. Met. (unsup. w/out Proc.) 0.941 0.685 0.688 0.665 0.725

Table 7: Metrics for grounded language task and evaluation

of manifolds in the unsupervised setting. We report average

F1 scores.

computed, and the negative is sampled from the 25% of de-

scriptions furthest away from the positive description. This

can be interpreted as aligning vision to the manifold induced

by the language embedding. Table 7 summarizes the per-

formance of the triplet method in this unsupervised setting.

While there is a decrease in MRR and KNN accuracy, DC

remains strong and even increases. On the grounded lan-

guage task, performance also remains strong with only a 2%
decrease in average micro F1 and a 4% decrease in average

macro F1, compared to the triplet method results.

6.2. Effectiveness on a Smaller Dataset

We also test our triplet method on a dataset [29] con-

taining fewer classes and fewer instances per class, with a

lower computational cost vision extraction method, depth

kernel descriptors [4] and average values for RGB channel

values. Prior work [29, 30] used these same visual feature

extraction methods with a word-as-classifier model. Pillai

et al. [30] combined depth kernel descriptors and averaged

RGB channel values. We concatenate the kernel descriptors

and the average RGB channel values into a single vision

embedding vector. Each vision vector is paired with a nat-

ural language description of the object. On this dataset, the

triplet method with Procrustes achieves a mean macro F1

score of 0.722, and the triplet method without Procrustes

achieves a mean macro F1 score of 0.729, both of which

are better than but still comparable to the reported 0.714 for

the non-category based model from previous works.

7. Conclusions

We explored the use of the triplet loss enhanced with

Procrustes analysis for manifold alignment in the context

of grounded language. Our approach to alignment achieves

state-of-the-art performance on two datasets, and integra-

tion with existing robot sensors and models would likely

have minimal additional overhead. Next steps include the

alignment of more than two modalities, integration with a

robot system, and evaluation on a wider variety of tasks.
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