
In The 20th International FLAIRS Conference (FLAIRS-07),
Key West, Forida, May 2007.

Guiding Inference with Policy Search Reinforcement Learning

Matthew E. Taylor
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712-1188
mtaylor@cs.utexas.edu

Cynthia Matuszek, Pace Reagan Smith, and Michael Witbrock
Cycorp, Inc.

3721 Executive Center Drive
Austin, TX 78731

{cynthia,pace,witbrock}@cyc.com

Abstract

Symbolic reasoning is a well understood and effective approach
to handling reasoning over formally represented knowledge;
however, simple symbolic inference systems necessarily slow
as complexity and ground facts grow. As automated approaches
to ontology-building become more prevalent and sophisticated,
knowledge base systems become larger and more complex, ne-
cessitating techniques for faster inference. This work uses re-
inforcement learning, a statistical machine learning technique,
to learn control laws which guide inference. We implement our
learning method in ResearchCyc, a very large knowledge base
with millions of assertions. A large set of test queries, some of
which require tens of thousands of inference steps to answer,
can be answered faster after training over an independent set
of training queries. Furthermore, this learned inference mod-
ule outperforms ResearchCyc’s integrated inference module, a
module that has been hand-tuned with considerable effort.

Introduction
Logical reasoning systems have a long history of success and
have proven to be powerful tools for assisting in solving cer-
tain classes of problems. However, those successes are lim-
ited by the computational complexity of naı̈ve inference meth-
ods, which may grow exponentially with the number of infer-
ential rules and amount of available background knowledge.
As automated learning and knowledge acquisition techniques
(e.g. (Etzioni et al. 2004; Matuszek et al. 2005)) make very
large knowledge bases available, performing inference effi-
ciently over large amounts of knowledge becomes progres-
sively more crucial. This paper demonstrates that it is pos-
sible to learn to guide inference efficiently via reinforcement
learning, a popular statistical machine learning technique.

Reinforcement learning (Sutton & Barto 1998) (RL) is a
general machine learning technique that has enjoyed success
in many domains. An RL task is typically framed as an
agent interacting with an unknown (or under-specified) envi-
ronment. Over time, the agent attempts to learn when to take
actions such that an external reward signal is maximized.

Many sequential choices must be made when performing
complex inferences (e.g. what piece of data to consider, or
what information should be combined). This paper describes
work utilizing RL to train an RL Tactician, an inference mod-
ule that helps direct inferences. The job of the Tactician is
to order inference decisions and thus guide inference towards
answers more efficiently. It would be quite difficult to deter-
mine an optimal inference path for a complex query to support
training a learner with classical machine learning. However,
RL is an appropriate machine learning technique for optimiz-
ing inference as it is relatively simple to provide feedback to

Copyright c© 2007, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

a learner about how efficiently it is able to respond to a set of
training queries.

Our inference-learning method is implemented and tested
within ResearchCyc, a freely available1 version of Cyc (Lenat
1995). We show that the speed of inference can be signif-
icantly improved over time when training on queries drawn
from the Cyc knowledge base by effectively learning low-
level control laws. Additionally, the RL Tactician is also able
to outperform Cyc’s built-in, hand-tuned tactician.

Inference in Cyc
Inference in Cyc is different from most inference engines be-
cause it was designed and optimized to work over a large
knowledge base with thousands of predicates and hundreds
of thousands of constants. Inference in Cyc is sound but is not
always complete: in practice, memory- or time-based cutoffs
are typically used to limit very large or long-running queries.
Additionally, the logic is “nth order,” as variables and quan-
tifiers can be nested arbitrarily deeply inside of background
knowledge or queries (Ramachandran et al. 2005).

Cyc’s inference engine is composed of approximately a
thousand specialized reasoners, called inference modules, de-
signed to handle commonly occurring classes of problem
and sub-problem. Modules range from those that handle ex-
tremely general cases, such as subsumption reasoning, to very
specific modules which perform efficient reasoning for only
a single predicate. An inference harness breaks a problem
down into sub-problems and selects among the modules that
may apply to each problem, as well as choosing follow-up ap-
proaches, pruning entire branches of search based on expected
productivity, and allocating computational resources. The be-
havior of the inference harness is defined by a set of manually
coded heuristics. As the complexity of the problem grows,
that set of heuristics becomes more complex and more diffi-
cult to develop effectively by human evaluation of the problem
space; detailed analysis of a set of test cases shows that over-
all time spent to achieve a set of answers could be improved
by up to 50% with better search policy.

Cyc’s inference harness is composed of three main high-
level components: the Strategist, Tactician, and Worker. The
Strategist’s primary function is to keep track of resource con-
straints, such as memory or time, and interrupt the inference
if a constraint is violated. A tactic is a single quantum of
work that can be performed in the course of producing re-
sults for a query, such as splitting a conjunction into multiple
clauses, looking up the truth value of a fully-bound clause, or
finding appropriate bindings for a partial sentence via index-
ing. At any given time during the solving of a query, there
are typically multiple logically correct possible actions. Dif-
ferent orderings of these tactics can lead to solutions in radi-

1http://research.cyc.com/

cally different amounts of time, which is why we believe this
approach has the potential to improve overall inference per-
formance. The Worker is responsible for executing tactics as
directed by the Tactician. The majority of inference reasoning
in Cyc takes place in the Tactician, and thus this paper will
focus on speeding up the Tactician.

The Tactician used for backward inference in Cyc is called
the Balanced Tactician, which heuristically selects tactics in
a best-first manner. The features that the Balanced Tactician
uses to score tactics are tactic type, productivity, complete-
ness, and preference. There are eight tactic types which de-
scribes the kind of operation to be performed, such as “split”
(i.e. split a conjunction into two sub-problems). Productivity
is a heuristic that is related to the expected number of answers
that will be generated by the execution of a tactic; lower pro-
ductivity tactics are typically preferred because they reduce
the state space of the inference. Completeness can take on
three discrete values and is an estimate of whether the tac-
tic is complete in the logical sense, i.e. it is expected to yield
all true answers to the problem. Preference is a related fea-
ture that also estimates how likely a tactic is to return all the
possible bindings. Completeness and Preference are mutually
exclusive, depending on the tactic type. Therefore the Bal-
anced Tactician scores each tactic based on the tactic’s type,
productivity, and either completeness or preference.

Speeding up inference is a particularly significant accom-
plishment as the Balanced Tactician has been hand-tuned
for a number of years by Cyc programmers and even small
improvements may dramatically reduce real-world running
times. The Balanced Tactician also has access to heuristic ap-
proaches to tactic selection that are not based on productivity,
completeness, and preference (for example, so-called “Magic
Wand” tactics—a set of tactics which almost always fail, but
which are so fast to try that the very small chance of success
is worth the effort). Because these are not based on the usual
feature set, the reinforcement learner does not have access to
those tactics.

Learning
This section presents an overview of the reinforcement learn-
ing problem, a standard type of machine learning task. We
next describe NEAT, the RL learning method utilized in this
work, and then detail how NEAT trains the RL Tactician.

Reinforcement Learning

In reinforcement learning tasks, agents take sequential actions
with the goal of maximizing a reward signal, which may be
time delayed. RL is a popular machine learning method for
tackling complex problems with limited feedback, such as
robot control and game playing. Unlike other machine learn-
ing tasks, such as classification or regression, an RL agent
typically does not have access to labeled training examples.

An RL agent repeatedly receives state information from
its environment, performs an action, and then receives a re-
ward signal. The agent acts according to some policy and
attempts to improve its performance over time by modifying
the policy to accumulate more reward. To be more precise
we will utilize standard notation for Markov decision pro-
cesses (MDPs) (Puterman 1994). The agent’s knowledge of
the current state of its environment, s ∈ S is a vector of k

state variables, so that s = x1, x2, . . . , xk. The agent has a
set of actions, A, from which to choose. A reward function,
R : s 7→ R, defines the instantaneous environmental reward
of a state. A policy, π : S 7→ A, fully defines how an agent
interacts with its environment. The performance of an agent’s
policy is defined by how well it maximizes the received re-
ward while following that policy.

RL agents often use a parameterized function to represent
the policy; representing a policy in table is either difficult or
impossible if the state space is either large or continuous. Pol-
icy search RL methods, a class of global optimization tech-
niques, directly search the space of possible policies. These
methods learn by tuning the parameters of a function repre-
senting the policy. NEAT is one such learning method.

NeuroEvolution of Augmenting Topologies (NEAT)1

This paper utilizes NeuroEvolution of Augmenting Topologies
(NEAT) (Stanley & Miikkulainen 2002), a popular, freely
available, method to evolve neural networks via a genetic al-
gorithm. NEAT has had substantial success in RL domains
like pole balancing (Stanley & Miikkulainen 2002) and vir-
tual robot control (Taylor, Whiteson, & Stone 2006).

In many neuroevolutionary systems, weights of a neu-
ral network form an individual genome. A population of
genomes is then evolved by evaluating each and selectively
reproducing the fittest individuals through crossover and mu-
tation. Most neuroevolutionary systems require the designer
to manually determine the network’s topology (i.e. how many
hidden nodes there are and how they are connected). By con-
trast, NEAT automatically evolves the topology by learning
both network weights and the network structure.

NEAT begins with a population of simple networks: inputs
are connected directly to outputs without any hidden nodes.
Two special mutation operators introduce new structure in-
crementally by adding hidden nodes and links to a network.
Only structural mutations that improve performance tend to
survive evolution. Thus NEAT tends to search through a min-
imal number of weight dimensions and find the appropriate
level of complexity for the problem.

Since NEAT is a general purpose optimization technique, it
can be applied to a wide variety of problems. When applied
to reinforcement learning problems, NEAT typically evolves
action selectors, in which the inputs to the network describe
the agent’s current state. There is one output for each available
action and the agent chooses whichever action has the highest
activation, breaking ties randomly.

RL Tactician

To learn a policy to control the RL Tactician, we utilize NEAT
with a population of 100 policies and standard parameter set-
tings (Stanley & Miikkulainen 2002). Initially, every neural
network in the population has the same topology but a dif-
ferent set of random weights. The RL Tactician must handle
five distinct types of tactics and thus every policy is composed
of five networks (the 5 actions considered by the RL agent).
Each network has five inputs (the 5 state variables considered
by the RL agent as the current world state) and one output.

1This section is adapted from the original NEAT paper (Stanley
& Miikkulainen 2002).

• 1 bias input is set to always output 0.03.

• 1 input node for the productivity, a real-valued number,
scaled2 in the range of 0 to 1.

• 3 input nodes describe either the completeness or prefer-
ence level, depending on the tactic type. Each of these fea-
tures has three discreet preference levels, which correspond
to one input with a value of 0.97 and the other two inputs
with a value of 0.03.

• 1 output holds the network’s evaluation of the input tactic.

• Randomly weighted links fully connect the 5 inputs to the
output.

The output of the neural network is the evaluation of the in-
put tactic. Every tactic is independently evaluated to a real
number in the range of [0, 1] and all tactics are returned by
ResearchCyc in sorted order.

An appropriate fitness function must be chosen carefully
when using policy search RL as subtle changes in the problem
definition may lead to large changes in resultant behavior. To
reduce the time to first answer, a fitness based on the num-
ber of tactics used to find the first answer is most appropriate.
Although not all tactics types in Cyc take precisely the same
amount of time, they are approximately equivalent. An alter-
native approach would be to measure the CPU time needed
to find an answer, but this is a machine-dependant metric and
is significantly more complex to implement. Results suggest
that fitness based on tactics is appropriate by demonstrating
that the number of tactics used is closely correlated with the
total inference time.

Given a set of queries, our goal is to minimize the number
of tactics required to find an answer for each query (or decide
that the query is unanswerable). However, the RL Tactician
should be penalized if it fails to answer a query that the Bal-
anced Tactician was able to answer; otherwise, the RL Tac-
tician may maximize fitness by quickly deciding that many
queries are unanswerable. Thus we have a tunable parameter,
γ, which specifies the penalty for not answering an answer-
able query. When answering a set of queries, the fitness of a
RL Tactician is defined as

∑

queries

- (#Tactics) − (γ × #QueriesMissed). (1)

In our experiments, we set γ to 10,000; this is a significant
penalty, as most queries are answered by the Balanced Tacti-
cian with fewer than 10,000 tactics.

Experimental Methodology
This section details how the RL Tactician interfaces with Re-
searchCyc as well as how experiments were conducted. A
number of assumptions are made for either learning feasibil-
ity or ease of implementation:

2Valid productivity numbers range from 0 to 108 but low values
typically indicate superior tactics. Thus precision is much more im-
portant at the low end of the range and we use a double log function:
inproductivity = 0.01 + log(1 + log(1 + productivity)). This for-
mula was chosen after initial experiments showed that it was difficult
to learn with a linearly scaled productivity.

• The RL Tactician provides the inference Engine with an or-
dered list of tactics. However, the inference Engine may use
meta-reasoning to decide to execute only a subset of these
tactics. Ideally, the RL Tactician should be able to decide
directly which tactics to execute in reducing inference time.
However, this has been left to future work as we anticipate
that the improvement would be minor.

• The Inference Engine does a substantial amount of meta-
reasoning about what tactics should be discarded and not
given to the RL Tactician as a possible choice. Removing
this meta-reasoning has the potential to make the problem
more difficult, but may also increase the speed of inference
as the amount of higher-level reasoning required is reduced.

• The Cyc Inference Engine provides a large number of user-
settable parameters, which control a variety of factors (such
as defining what resource cutoffs to use or how to focus
search). This experiment used a fixed set of parameters
rather than those saved as part of the queries being used.
This simplifies experimental setup and has the advantage
that the longer-term goal is to have a single inference pol-
icy that works optimally in all cases, rather than requiring
users to hand-tune engine behavior.

• The RL Tactician does not handle conditional queries,
which are used to query for information about implications
(e.g. does being mortal imply being a man), nor is it used
when performing forward inferences (in which the conse-
quences of a rule are asserted explicitly into the knowledge
base). The RL Tactician should be able to learn appropri-
ate control policies for both types of queries utilizing the
same experimental setup, but the behavior is likely to be
qualitatively different from standard backward inference.

• Of the eight tactic types available in ResearchCyc, the RL
Tactician currently only handles five. Allowing one of
the three remaining types will make the learning task only
slightly harder but will require a substantial code change
to the Cyc Inference Engine; the last two tactic types are
transformations, and are discussed in the final point.

• No transformations are allowed during inference. Typi-
cally proofs which involve transformations are substantially
more difficult as many more steps are required and is en-
abled by a user setting. We leave removing this restriction
to future work as proofs with transformations are qualita-
tively different from removal-only proofs.

When transformations are enabled, the Tactician is allowed
to apply a rule in the KB to a single-literal problem to produce
a different problem. This increases the complexity of queries
that can be answered at the expense of significantly increasing
the inference space, and therefore the amount of time needed
to answer a query. This more difficult class of inferences will
likely benefit from similar learning techniques and will be ad-
dressed in future work.

When training, each policy must be assigned a fitness so
that NEAT can correctly evolve better policies. When train-
ing over n queries, each policy in a population is used to con-
trol the RL Tactician while it is directing inference for n se-
quential queries. Algorithm 1 details how the RL Tactician
interacts both with NEAT and ResearchCyc while learning.

Algorithm 1 EVALUATING TACTICIAN POLICIES

1: while learning do
2: for each policy to evaluate do
3: NumTactics← 0, NumMissed← 0
4: for each query q do
5: Direct the Inference Engine to find an answer to q
6: while q does not have an answer and the Inference En-

gine has not determined that q is unanswerable do
7: if only 1 tactic is available then
8: Place the tactic in list, l
9: else

10: Pass features to the RL Tactician for each tactic
11: RL Tactician evaluates each of the tactics with the

current policy by calculating the output for every
neural network, given the current state of the world

12: The RL Tactician returns ordered list of tactics, l, to
the Inference Engine

13: end if
14: Inference Engine executes tactics from l
15: end while
16: Increment NumTactics by the number of tactic(s) used

to answer query q
17: if Balanced Tactician answered q but RL Tactician did

not then
18: NumMissed← NumMissed + 1
19: end if
20: end for
21: PolicyF itness← NumTactics + NumMissed ∗ γ
22: end for
23: Evolve the population of policies with NEAT based on each

policy’s fitness
24: end while

When performing inference in ResearchCyc we use stan-
dard settings and a time cutoff of 150 seconds per query.
The queries used are contained within ResearchCyc; queries
that the RL Tactician cannot handle are filtered out (such as
queries that require transformation).

The NEAT algorithm requires every policy to be evaluated
to determine a fitness. However, this evaluation can be done
in parallel, and thus with a population of 100 policies, up to
100 machines can be used concurrently. Our setup utilized
15-25 machines with identical hardware in a cluster.

NEAT is run as an external C process and a learned RL Tac-
tician is fully described by the five neural networks that repre-
sent a policy. Thus it would be relatively easy to incorporate
a trained policy directly into the ResearchCyc infrastructure,
likely leading to additional speedup as communication over-
head is removed.

Results and Discussion
Following the methodology discussed in the previous section,
this section shows how the performance of a learning RL Tac-
tician improves over time. When evaluating the results in this
section, two points are important to keep in mind. The first
is that the Balanced Tactician is a well-tuned module and we
expect it to perform well, in general. The second is that RL
Tactician has a smaller set of features available than the Bal-
anced Tactician when making decisions. If the RL Tactician’s
features are augmented to be more similar to that of the Bal-
anced Tactician, it is likely that the performance of the RL

-2.60e+05

-2.40e+05

-2.20e+05

-2.00e+05

-1.80e+05

-1.60e+05

-1.40e+05

 0 2 4 6 8 10 12 14 16

A
v
e

ra
g

e
 F

it
n

e
s
s

Generation Number

Training Set Performance

Figure 1: For each generation, the fitness of the best policy from
three independent learning trials are averaged. This graph demon-
strates that learned policies can outperform the Balanced Tactician
on the training set of queries.

Tactician will increase.
Figure 1 shows the best policy’s performance of each gen-

eration on the training set of 382 queries. Three independent
trials are averaged together to form the learning curve and
error bars show a standard deviation. The line in the graph
shows the performance of the Balanced Tactician on the same
set of queries. Recall that we define the Balanced Tactician’s
fitness (Equation 1) as the number of tactics used, while the
RL Tactician’s fitness includes a penalty for missed queries.
When using 20 machines each generation roughly takes be-
tween twelve and three hours of wall clock time, where initial
generations take longest because the less-sophisticated poli-
cies take much longer to answer queries. We utilized a cluster
of 20 machines to make the experiments feasible.

Figure 2 shows the same two sets of policies on the inde-
pendent test set, made of 381 queries. After generation 14 all
three of the best policies in each of the learning trials were
able to outperform the Balanced Tactician. This shows NEAT
successfully trained neural networks to control inference such
that the fitness score for the RL Tactician outperformed the
hand coded tactician.

Although we measured performance based on the number
of tactics executed, our motivation for this work was reduc-
ing the amount of time needed to perform inference on a set
of queries. We took the top performing policies at the be-
ginning and end of the first training curve and ran each four
times over the set of test queries. CPU times for these two
policies are reported in Table 1. The Balanced Tactician out-
performs the RL Tactician because it is implemented within
the Cyc Inference Engine. However, as the number of tac-
tics are reduced between the first and twentieth generations
the time spent is reduced. A Student’s t-test confirms that the
difference between the two learned policies is statistically sig-
nificant (p < 3.7 × 10−6). This demonstrates that execution
time is indeed correlated with our fitness function and sug-
gests that once the learned RL Tactician is incorporated into
the ResearchCyc inference harness, wall clock time for an-
swering this set of test queries will be reduced.

-3.40e+05

-3.20e+05

-3.00e+05

-2.80e+05

-2.60e+05

-2.40e+05

 0 2 4 6 8 10 12 14 16

A
v
e

ra
g

e
 F

it
n

e
s
s

Generation Number

Test Set Performance

Figure 2: Each of the best policies found per generation, as mea-
sured on the training set, are used to perform inference on the test set.
The resulting fitnesses are averaged and show that the best learned
policies, as selected by training set performance, are also about to
outperform the Balanced Tactician on the novel set of test queries.

CPU Time
Policy Ave. Time (sec.) Std. Dev. (sec.)

Best of Gen. 1 2012.94 74.28
Best of Gen. 20 1356.01 33.63
Balanced Tactician 1270.76 24.74

Table 1: This table reports the average CPU time answering the test
query set. Polices used are: the highest fitness policy from the first
generation of the first trial, the highest fitness policy from the 20th

generation of the first trial, and the hand-coded Balanced Tactician.

Although the fitness formula does not explicitly credit an-
swering queries that were unanswerable by the Balanced Tac-
tician, we found that during trials a number of policies learned
to answer training queries that the Balanced Tactician did not
answer. This suggests that tuning the fitness equation would
allow the RL Tactician to maximize the number of queries that
it answered in the specified time limit rather than minimizing
the number of tactics used.

In a second set of experiments we modified the RL Tac-
tician so that only tactics with a score of at least 0.3 are
returned. We hypothesized that this second implementation
would allow the tactician to learn to discard poor tactics faster
and be able to give up on unanswerable problems by assign-
ing a low evaluation to all tactics. However, three independent
trials of this second implement produced results very similar
to our first implementation which did not exclude any tactics.
These supplemental results are omitted for space reasons.

Implementation in Cyc

When the RL Tactician was implemented within the Cyc in-
ference engine, the previously unseen test corpus was an-
swered faster, as expected. The RL Tactician was approxi-
mately twice as fast as the Balanced Tactician in time to first
answer by median averaging, but approximately 30% slower
when the mean was taken (see Figure 3). The RL Tacti-
cian successfully improved time to first answer for the major-
ity of the test cases, although the RL Tactician actually per-
formed less well on certain very long-running outliers which

Figure 3: The relative performance of time to first answer for the
learned RL Tactician and the Balanced Tactician. The learned tacti-
cian improves on the performance of the Balanced Tactician in the
most common (median) case, although the Balanced Tactician does
slightly better on average (mean).

accounted for a substantial fraction of the total time spent.
Completeness (total answers produced) was comparable—of
1648 queries, the Balanced Tactician answered 13 that the RL
Tactician failed to answer, and the RL Tactician answered 9
that the Balanced Tactician failed to answer.

Further analysis showed that a majority of the cases in
which the RL Tactician showed improvement were queries
in which a single high-level tactic was being selected differ-
ently by the two tacticians. The top-level tactic being selected
by the RL Tactician is an iterative problem-solver that pro-
duces initial results quickly, while the Balanced Tactician was
selecting a non-iterative version which produces all results
slightly more quickly, but the first few results more slowly.

These results represent successful learning, as the evalua-
tion function used to train the RL Tactician measured time to
first answer and total answerable queries. Since the first an-
swer to a query is frequently sufficient for the user’s purposes,
this also represents an improvement in the usability of the Cyc
inference engine for applications in which responsiveness in
user interactions is desirable.

Future Work

One future direction for this work is to further improve the RL
Tactician speed. The first step will be to enhance the feature
representation so that the learner may learn better policies.
One such enhancement would be to allow the RL Tactician to
directly compare tactics simultaneously, as the Balanced Tac-
tician does, rather than independently evaluating each tactic.
Another future direction is to adjust the evaluation function
being used by the learner to take total time, as well as time
to first answer, into account. Although requiring the learner
to speed up both measurements is a potentially complex prob-
lem, the success achieved in improving time to first answer
with relatively little training time is promising.

An additional goal is to handle more types of queries, par-
ticularly those that involve transformations and forward in-
ference, as these types of queries are likely to benefit substan-
tially. These different kinds of inference may require different
behavior from the RL Tactician. In this case, different types of
tacticians could be trained independently and then one would

be utilized, depending on the type of query the Inference En-
gine was currently processing.

As well as extending the evaluation function and training on
larger sets of queries, it would be worth attempting to optimize
over a more representative training corpus. This work has
utilized queries saved as part of the ResearchCyc infrastruc-
ture, but they are not necessarily representative of the types
of queries that Cyc is typically required to answer. A corpus
of queries may be constructed by recording the queries actu-
ally run by Cyc users and then used to train an RL Tactician.
Such a method is more likely to yield a tactician that is able to
decrease the running time of Cyc when interacting with users.

Related Work

Humans may inject meta-reasoning into the inference pro-
cess, such as with Logic Programming (Genesereth & Gins-
berg 1985), in order to speed up inference. Pattern matching,
a primary example being Rete (Forgy 1982), operates by con-
structing a network to determine which rules should be trig-
gered. Memory efficiency is sacrificed for lower computation
complexity. There are other algorithms which are able to per-
form faster or with less memory (e.g. Treat (Miranker 1987))
which rely on similar approaches. Our work differers from
that of logic programming and pattern matching as we rely on
learning techniques rather than static solutions.

More interesting are approaches that learn control rules via
learning, such as by using explanation-based learning (Minton
1990; Zelle & Mooney 1993). Another popular approach for
speeding up inference is that of chuncking, which is based
on a psychological theory about how humans make efficient
use of short term memory. Soar (Laird, Newell, & Rosen-
bloom 1987) is one system that makes use of chuncking by
deductively learning chunks. That is, it learns meta-rules in
the form of: if 〈situation〉 then use 〈rule〉, enabling the
inference module to bias its search through inference space
with rule preferences. This work differs because it utilizes an
“off the shelf” data-driven statistical learning method. Addi-
tionally, this work produces speedups over a large number of
complex queries in a large knowledge base, outperforming a
hand-tuned module designed to optimize inference time.

Most similar to our research is work (Asgharbeygi et al.
2005) that uses relational reinforcement learning (RRL) to
guide forward inference in an agent interacting with the world.
In this task, the agent greedily proves as many things as pos-
sible before time expires. Different proofs are given differ-
ent utilities by the task designers and the agent’s goal is to
maximize utility. Our work differs for three primary reasons.
Firstly, the RL Tactician learns to reduce the amount of time
needed to find a proof (if one exists), rather than trying to
determine which proofs are most useful out of a set of possi-
ble proofs. Secondly, by utilizing the existing Cyc knowledge
base rather than sensations from a simulated agent, many of
our proofs take thousand of inference tactics, as opposed to
learning only one- or two-step proofs. Lastly, RL is more
general than RRL, which relies on human-defined relation-
ships between different objects in the environment and thus
may be more broadly applicable.

Conclusion
This work demonstrates that an existing reinforcement learn-
ing technique can be successfully used to guide inference to
find answers to queries. Not only was the performance on
training and test sets of queries increased over time, but the
learned inference module was able to outperform the hand-
coded inference module within ResearchCyc. This work
shows that reinforcement learning may be a practical method
to increase inference performance in large knowledge base
systems for multi-step queries.

Acknowledgments
We would like to thank Robert Kahlert, Kevin Knight, and
the anonymous reviewers for helpful comments and sugges-
tions. This research was supported in part by NSF award EIA-
0303609 and Cycorp, Inc.

References
Asgharbeygi, N.; Nejati, N.; Langley, P.; and Arai, S. 2005. Guiding
inference through relational reinforcement learning. In Inductive
Logic Programming: 15th International Conference.

Etzioni, O.; Cafarella, M.; Downey, D.; Kok, S.; Popescu, A.-M.;
Shaked, T.; Soderland, S.; Weld, D. S.; and Yates, A. 2004. Web-
scale information extraction in KnowItAll (preliminary results). In
WWW, 100–110.

Forgy, C. 1982. Rete: A fast algorithm for the many pattern/many
object pattern match problem. Artificial Intelligence 19:17–37.

Genesereth, M. R., and Ginsberg, M. L. 1985. Logic programming.
Communications of the ACM 28(9):933–941.

Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987. Soar: an
architecture for general intelligence. Artif. Intell. 33(1):1–64.

Lenat, D. B. 1995. CYC: A large-scale investment in knowledge
infrastructure. Communications of the ACM 38(11):33–38.

Matuszek, C.; Witbrock, M.; Kahlert, R. C.; Jabral, J.; Schneider,
D.; Shah, C.; and Lenat, D. 2005. Searching for common sense:
Populating cyc from the web. In Proceedings of the 20th National
Conference on Artificial Intelligence.

Minton, S. 1990. Quantitative results concerning the utility of
explanation-based learning. Artificial Intelligence 42(2-3):363–
391.

Miranker, D. P. 1987. Treat: A better match algorithm for ai pro-
duction system matching. In AAAI, 42–47.

Puterman, M. L. 1994. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons, Inc.

Ramachandran, D., Reagan, P., and Goolsby, K. 2005. First-
orderized researchcyc: Expressivity and efficiency in a common-
sense ontology. In Papers from the AAAI Workshop on Contexts
and Ontologies: Theory, Practice and Applications.

Stanley, K. O., and Miikkulainen, R. 2002. Evolving neural net-
works through augmenting topologies. Evolutionary Computation
10(2):99–127.

Sutton, R. S., and Barto, A. G. 1998. Introduction to Reinforcement
Learning. MIT Press.

Taylor, M.; Whiteson, S.; and Stone, P. 2006. Comparing evolution-
ary and temporal difference methods for reinforcement learning. In
Proceedings of the Genetic and Evolutionary Computation Confer-
ence, 1321–28.

Zelle, J., and Mooney, R. 1993. Combining FOIL and EBG to
speed-up logic programming. In Bajcsy, R., ed., Proceedings of
the 13th International Joint Conference on Artificial Intelligence,
1106–1113. Morgan Kaufmann.

