
Automated Population of Cyc: Extracting Information about Named-
entities from the Web†

Purvesh Shah, David Schneider, Cynthia Matuszek, Robert C. Kahlert,
Bjørn Aldag, David Baxter, John Cabral, Michael Witbrock, Jon Curtis

Cycorp, Inc.

3721 Executive Center Drive, Suite 100
Austin, TX 78731, USA

{shah, daves, cynthia, rck, aldag, baxter, jcabral, witbrock, jonc} @cyc.com

Abstract

Populating the Cyc Knowledge Base (KB) has been a
manual process until very recently. However, there is
currently enough knowledge in Cyc for it to be feasible to
attempt to acquire additional knowledge autonomously.
This paper describes a system that can collect and validate
formally represented, fully-integrated knowledge from the
Web or any other electronically available text corpus, about
various entities of interest (e.g. famous people,
organizations, etc.). Experimental results and lessons
learned from their analysis are presented.

Introduction
The purpose of the Cyc project is to provide a computer
understandable knowledge base—a store of formally
represented “common sense,” or ubiquitous real world
knowledge (Lenat, et al. 1983). In the last twenty years,
over three million facts and rules have been added to the
Cyc Knowledge Base by ontologists fluent in CycL, the
formal representation language used in Cyc. The process
of adding large numbers of facts by manually formalizing
the content of unstructured text is tedious and slow.
Despite the implementation of methods for alleviating this
bottleneck (such as providing better tools to ontologists
(Genarri, et al. 2002), providing knowledge authoring
tools to subject matter experts (Panton, et al. 2002,
Witbrock, et al., 2003), creating methods for volunteers to
enter and vet various types of knowledge (Witbrock, et al.
2005)), the knowledge acquisition process remains time-
consuming and labor-intensive. However, as we shall
show, Cyc now has sufficient knowledge to allow it to
gather knowledge autonomously. Notably, this knowledge
is of high enough quality that it can be effectively used in
Cyc.
 The World Wide Web has emerged as a vast source of
electronic data in the form of unstructured text documents
that are information accessible to computers but knowledge
accessible only to humans. Various indexing systems, such
as Google and Yahoo!, have made this information
increasingly accessible (Brin and Page 1998) by
supporting ranked document retrieval. However, because
computer systems see these documents as more or less

opaque strings, they do not extract facts or fuse
information from multiple textual sources.
 This paper describes a method for finding facts from the
World Wide Web and a framework for validating
candidate facts. The work presented here differs in both
the approach and the goal from others (e.g. Etzioni, et al.
2004 and Pasca 2004) who have worked on discovering
and extracting information from the unstructured Web.
Our approach is similar to these other systems in that we
use simple text extraction patterns. Among the differences
is the fact that we leverage Cyc’s natural language
generation and parsing facilities (designed to support
learning from English corpora (Witbrock, et al. 2004))
through the use of hand-generated extraction templates to
generate search-strings and extract and formalize the
resulting knowledge. Like the work of Craven, et al.
(1999), our goal is to populate an existing ontology,
seeded by the knowledge and structure already present.
Our work differs from that of Craven, et al. in that we do
unsupervised information extraction. Preliminary work on
this system (Schneider, et al. 2005, Matuszek, et al. 2005)
has shown that it is capable of extracting knowledge about
famous people from the Web. In this paper, we show that it
is capable of acquiring high quality, targeted, contextually
relevant knowledge about a large number of relatively
obscure organizations.
 The types of facts targeted in this experiment, and
several aspects of the experiment itself, are grounded in a
desire to make comprehensive information about terrorist
organizations available for formal inference procedures
(and for display to users). The information is similar to the
sort of information that Dun & Bradstreet1 provides about
companies and Jane’s Information Group2 provides about
military equipment.

† This material is based upon work funded in whole or in
part by the U.S. Government and any opinions, findings,
conclusions, or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect the views of the U.S. Government.
1 http://www.dnb.com
2 http://www.janes.com

Figure 1: Fact Sheet (right) and associated fact
entry/edit page (above) for Mohamed Atta.

 Currently, the Cyc Analytical Environment (CAE)
includes both a mechanism for manually adding new facts
about an entity to the Cyc KB, as well as Fact Sheets
(HTML documents) that display the accumulated
knowledge about any particular entity (e.g. see Figure 1).
 The remainder of this paper is organized as follows. We
first introduce the main components of the fact gathering
system and then present experimental results and analysis.
We conclude with a summary and a discussion of known
issues and future work.

Fact Gathering
In order to gather facts about particular named entities, the
system uses the Web as its corpus (currently via the
Google API). Because the knowledge-gathering goals for
any entity are dependent on its type, the system first needs
to determine the type of the entity. The system then
determines which kinds of facts would be appropriate to
gather, gathers as many of them as it can, performs
automatic validation, and finally adds them to the Cyc KB.

Entity Typing
The first step is to determine the type of the named entity,
e.g. to determine whether the entity is a doctor, a terrorist,
a terrorist group, a company, or something else. Because
Cyc’s type hierarchy supports multiple-inheritance,
multiple types for an entity are possible (e.g. an entity
might simultaneously be a woman, a doctor and a CEO).
 The entity-typing process starts with a Web search for
sentences that mention the entity. A coarse typing of the
entity is done using off-the-shelf named entity recognition
systems (Klein, et al. 2003). Because the same named
entity may appear in multiple documents, it can receive
multiple inconsistent typings. In such cases, the system
abandons work on that entity and moves on to another.
When coarse typing yields consistent results, the sentences
mentioning the entity are syntactically analyzed using the

Charniak Parser (Charniak 2001) and the Link Parser
(Sleator and Temperly 1993) to find descriptive references
to the entities, such as the italicized portion of the sentence
“Palestinian militant group HAMAS says it will not
extend a ceasefire that expires at the end of this year.”
These descriptions are then semantically interpreted as Cyc
Collections (in this case, (SubcollectionOfWithRelationToFn
TerroristGroup hasHeadquartersInRegion Palestine-Region) or
“terrorist groups with headquarters in Palestine”). These
Collections are categories that are typically more specific
(e.g. military group, terrorist group) than the coarse types
(e.g. organization) of the entity, and so are compatible with
those types. The entity is assumed to be an instance of all
such categories that are consistent with the coarse typing.

What types of facts to look for?
Several different methods could be used for determining
which facts are relevant for any particular type of entity.
These include explicitly represented rules about types of
information that should be present for an entity to be fully
represented in the KB (e.g. medical professionals
commonly have specialties), frequency information (e.g. if
the system knows the CEO for 50% of companies
represented, it should try to find them for other
companies). For the experiment reported here, we chose to
focus on the types of facts gathered from CAE fact-entry
templates for entering knowledge about terrorist groups.

Finding the Facts
Three different methods are used to extract facts, based on
the linguistic characteristics that are commonly associated
with the fact-types in text. Each different type of fact is
manually classified according to the method believed most
likely to retrieve that type of fact. These methods are
described below.
Description Strings The descriptions that were used to
determine the type of the entity can be used to determine
certain facts, such as the ethnicity or religion of a person,

the ideology of an organization, etc. These types of facts
typically have no consistently recognizable text patterns,
but are very often mentioned in the descriptive references
to the entity.
 For example, the italicized descriptions in the following
sentences provide such facts:

Palestinian leader Yasser Arafat was laid to rest
after memorials in Cairo and Ramallah.
(ethnicity YassirArafat EthnicGroupOfPalestinians)

Parlak raised funds for Islamic terrorist group PKK
while living in West Germany in the 1980s.
(hasBeliefSystems KurdistanWorkersParty Islam)

Targeted Search-Strings In this most-frequently used
method, a CycL query (a specific knowledge goal) is
computed using knowledge about the target entity and its
type. Search-strings representing this knowledge goal are
generated by instantiating hand-written templates with pre-
existing lexical information (names, aliases, synonyms,
etc.) about the entity. Thus, even though there are a fixed
number of templates (on average, 2) per fact-type, the
number of search-strings varies from goal to goal (and
averaged 6.3 per goal in this experiment). For example,
search strings for the query (terroristOrgPoliticalWing
LebaneseHizballah ?X) are:
 “*, a | the political wing of Hezbollah”
 “* is the political wing of the Lebanese Hizbollah”
 After retrieval, the downloaded pages (between ten and
twenty per search) are converted into plain text and the
sentences that contain the search-string are selected. The
system tries to semantically interpret the possible fillers for
the knowledge goal, starting from the smallest constituent
(as determined by the Charniak parser and the named
entity recognizer) that appears immediately adjacent to the
search text (i.e. in place of the “*”), until an interpretable
filler has been found. Figure 2 illustrates this method.

Hypothesize and Verify If all the possible fillers for a
particular knowledge goal are known, the system generates
a list of potential facts for that fact-type and entity. The
English representations of each of these potential facts are
computed and then searched for on the Web. Verbatim

retrieval of one of the search strings for a hypothesized
fact is considered evidence for that hypothesized fact.
 For example, consider the knowledge goal
(maritalStatus YassirArafat ?X), where all possible values
of ?X are known (according to the Cyc Knowledge Base,
?X must range over the instances of
PersonTypeByMaritalStatus). Some of the generated
candidate facts and corresponding search-strings are:

(maritalStatus YassirArafat Married)
Yasser Arafat’s husband | wife

(maritalStatus YassirArafat Divorced)
Yasser Arafat divorced

A Web search for the first of these returns the sentence ‘A
controversy erupted between officials of the Palestinian
Authority and Suha Arafat, Yasser Arafat’s wife’. Thus,
there is evidence for the candidate fact (maritalStatus
YassirArafat Married).

Validating the Retrieved Facts
All candidate facts retrieved using the above methods are
tested for validity in a two-stage process that uses both the
Cyc Knowledge Base and the text corpus (the Web).
 The Cyc Knowledge Base is assumed to be an Oracle
and hence any candidate facts already in the KB are
assumed to be true. In such cases, the system records the
URL of the source webpage as a new support for the fact.
If Cyc can prove the candidate fact false, this is taken as
evidence that the system misunderstood the document, and
further processing of that candidate fact is abandoned.
 Consider the following example:

Knowledge Goal: (northOf ?X Germany)
Search-string: ____ is north of Germany
Candidate facts:
- Known to Cyc: (northOf Denmark Germany)
- Rejected by Cyc: (northOf Switzerland Germany)

In the case of Switzerland above, a webpage containing the
sentence “Switzerland is north of Germany” is retrieved
(the sentence is a true-false question on a quiz). Cyc is able
to reject it because of pre-existing knowledge that
Switzerland is south of Germany, not north.

Figure 2: Finding the founding date of Abu Sayyaf
using a targeted search string

(foundingDate AbuSayyaf ?X)

Abu Sayyaf was founded in the early 1990s
 ↓ Parse

(foundingDate AbuSayyaf (EarlyPartFn (DecadeFn 199)))

Search Strings

“Abu Sayyaf was founded in *”
“Al Harakat Islamiya, established in *”

 The second stage of validation involves searching the
Web. For each candidate fact, a number of English
representations of the fact are generated. The fact is
deemed validated if any of these English strings has an
exact match in the corpus. If the English representation of
a fact contains an acronym, a disambiguating search-term
is added to the search. The search-term is the word that
results in the fewest Google hits among all the words in all
the known phrasings for the entity.
 For example, EjercitoPopularDeLiberacion has the
acronym “EPL” and the disambiguating string
“Liberacion.” Thus one validation search-string for
(objectFoundInLocation EjercitoPopularDeLiberacion
Ontario-CanadaProvince), is ‘“EPL is located in Ontario”
+Liberacion.’ This results in no Google hits. However, had
the disambiguation string ‘+Liberacion’ been omitted, the

 The overall retrieval rate (RR) was 28%, the overall
parsing precision (PP) was 48%, and the overall
invalidation precision (IP) was 87%.

search would have resulted in 2 Google hits, incorrectly
validating the candidate fact.

Experimental Results Fact Type Retrieved
(RR%)

Auto-
validated (%
of retrieved)

Human-
validated

(PP%)
FoundingDate 459 (111%) 180 (40%) 102 (57%)
foundingAgent 133 (27%) 45 (34%) 16 (36%)
objectFoundIn-
Location

225 (54%) 39 (17%) 4 (10%)

hasMembers 83 (20%) 6 (7%) 4 (67%)
residenceOf-
Organization

76 (18%) 25 (33%) 9 (36%)

operatesIn-
Region

32 (8%) 13 (41%) 11 (78%)

possesses 14 (3%) 6 (43%) 0 (0%)
orgMilitaryWing 13 (3%) 6 (46%) 6 (100%)
terroristOrg-
PoliticalWing

10 (2%) 4 (40%) 4 (100%)

Total 1045 (28%) 324 (31%) 156 (48%)

Experiment
The system was used to find facts about terrorist groups
(n=413) that are known in the Cyc Terrorism Knowledge
Base (Deaton, et al. 2005). Because the Cyc Terrorism
Knowledge Base already contains a substantial amount of
information about terrorist groups, using such groups
makes computing precision easier.

Definitions
The following metrics were computed for this experiment:
Retrieval Rate (RR) is the ratio of the number of
candidate facts (r) retrieved and interpreted (but not
necessarily verified) for a given set E of entities to the
number of desired facts d that were searched for using all
the methods mentioned above. Note that r is functionally
related to d for any given entity, and may exceed 1 if
multiple facts are retrieved for a single query.

Table 1: The system retrieved 28% of the desired facts,
31% of which were validated by Google. 48% of these
auto-validated facts were then judged correct by human
reviewers.

∑
∑

∈

∈=

Ee
e

Ee
e

d

r
RR

Analysis of Results
In general, we see that the system had very high precision
for some types of facts, and somewhat lower, though still
usefully good, precision for many other types of facts. The
high amount of variability seen in both the precision and
retrieval numbers is not surprising, given the different
types of information that were searched for. Founding
dates and founders are generally fairly clear and
represented straightforwardly in text documents, and thus
we would expect relatively high retrieval (and at least
decent precision) for those facts. By contrast, some of the
relations (such as terroristOrgPoliticalWing) are only
applicable to a relatively small number of terrorist
organizations, while other types of facts (such as
operatesInRegion) are not typically expressed directly, but
rather need to be inferred on the basis of other statements
(e.g. “XXX claimed responsibility for the recent bombing
in YYY”).

Parsing Precision (PP) measures the ability of the system
to correctly interpret automatically validated facts (and
thereby also measures the correctness of automatic
validation). PP is the ratio of the number of human-
validated facts (hv) to the total number of automatically
validated facts (av). A fact is marked as human-validated if
the candidate fact is a reasonable interpretation of the
source document. We chose this criterion over checking
for the truth of the candidate facts because of the difficulty
inherent in determining the truth of some of these facts.

∑
∑

∈

∈

∩
=

Ee
e

Ee
ee

rav

rhvrav
PP

)(

)()(

Invalidation Precision (IP) is the ratio of the number of
facts that were correctly invalidated to the total number of
facts that were automatically invalidated. A large number of candidate facts were incorrectly

interpreted because of just a handful of terrorist groups that
have identical or extremely similar names and acronyms.
For example, there are two terrorist groups called National
Liberation Army—one in Bolivia and one in Colombia. So,
while searching for a fact about the National Liberation
Army in Bolivia, the system would find information about
the identically named group in Colombia and vice-versa.

{ } {

{ }∑
∑

∈

∈

−

−∩−
=

Ee
ee

Ee
eeee

ravr

rhvrravr
IP

)(

)()(}

Results This problem (groups with names that are either
extremely common or ambiguous between multiple
groups) affected five terrorist groups (RISE, Jannubi a.k.a.
the South, National Liberation Army, Ejercito de Liberacion

For this experiment, the system tried to find facts for
terrorist groups and succeeded in finding at least one fact
for 162 terrorist groups.

Nacional, and People’s Liberation Army) and accounted for
51 auto-validated facts (16% of all auto-validated facts)
that were judged incorrect by human reviewers.
 Due to an oversight involving objectFoundInLocation
and possesses, the system looked not only for a terrorist
group’s location and possessions, but also searched for
what is located in the group, and its owners. Here, it is
clear that the system should not have asked what possessed
a group or what was located in a group. Indeed, all the
answers to those questions were in fact incorrect
interpretations of the text. For example, the system used
the search string “*, located in Ku Klux Klan” when
looking for a filler for (objectFoundInLocation ?X
KuKluxKlan), and found “… a well-to-do suburb, Concord,
located in Ku Klux Klan country …”.
 Incorrect name chunking by the named entity recognizer
led to a large number of incorrect facts. For example, in
“Shri Harendra Debbarma, a member of ...” the named-
entity recognizer recognizes two separate named entities,
Harendra and Debbarma, as opposed to the (correct)
single entity Harendra Debbarma. Because of this
mistake, the system believed that a number of other people
named Debbarma (BinoyDebbarma, JagadishDebbarma,
KaminiDebbarma, LalitDebbarma, SureshDebbarma) are
also members of the organization.
 As mentioned above, the system finds the answer-text
by using progressively larger constituents that are adjacent
to the query text. The first constituent found that can be
semantically interpreted as an entity meeting the semantic
constraints on the filler is chosen as the filler for the
candidate fact. This occasionally results in the system
coming up with incorrect interpretations. In the sentence
“KKK is headquartered in Clark County, Ohio” the
italicized portion is the search-string. The system interprets
the nearest constituent “Clark County” to get the answer.
Thus, it does not try to interpret “Clark County, Ohio” and
ends up with an incorrect fact. This method also fails to
recognize the correct constituents when the entities are
mentioned in lists (e.g. “The MCC is active in Bihar,
Jharkhand and northern Chhatisgarh” or “... has locations
in Bloomington, Indiana and Chicago”).

Conclusions and Future Work
We have shown that this system of gathering facts from the
Web results in fairly high quality, formally represented
facts. The formal representation of these facts renders them
useful not just for human perusal (via Fact Sheets) but also
for use in a formal reasoning system. While it is clear that
there is still room for improvement, we believe this
represents a very promising start to being able to
automatically mine the Web for the extension of a formal
knowledge base.
 Given that the goal for this system is to be able to
automatically populate the Cyc Knowledge Base, the
precision rates for various types of facts are extremely
relevant. For types of facts correlated with high precision,
we intend to modify the system to automatically assert

those facts, with an appropriate notation, without the need
for human review. On the other hand, there are some types
of facts that the system does a good job of gathering (i.e.
the system achieves a high retrieval rate), but for which
precision is still too poor to warrant automatically asserting
the results into the Cyc KB. For these types of facts, we
will continue with manual review until such time as we are
able to raise the precision adequately. Of additional
concern is the quality of data found on the Web; a number
of pages can be found that report facts inaccurately.
 In light of the analysis of the experimental results, a
number of avenues for improvement present themselves.
One of the main improvements would be doing a better job
disambiguating high-frequency ambiguous names and
acronyms. For example, we might be able to get better
results by adding a term representing the type of the entity
(e.g. adding a string like “terrorist” or “revolutionary” to
searches for RISE). For organizations, adding the name of
a location associated with the group might also improve
precision. Alternatively, if the system can determine which
particular phrases for an entity are likely to yield
ambiguous results, it could simply not use those
ambiguous terms in its search strings. This would likely
have the effect of marginally lowering the retrieval rate,
but might raise the precision quite substantially.
 In order to determine what types of facts are being
gathered correctly and effectively, and in order to buffer
the system against poor-quality Web data, human
evaluations of results are currently required. To reduce the
burden of this task, an extension is being built that allows
untrained volunteers to verify or reject simple facts in a
game-like environment. When a sufficient number of
independent volunteers reach consensus, a fact can be
considered additionally verified. The ultimate goal of this
work is to provide a sufficient corpus of reviews for
machine learning. We believe that a system could learn to
identify quality sources of data as well as which types of
facts (knowledge goals) are most effective to gather.
 Additional extensions include the ability to target other
languages and other search engines. The system has
already been extended to use Chinese documents and the
Yahoo! search engine API, but those changes have not yet
been tested. Another possibility to improve results involves
restricting the search to certain corpora or Internet
domains. We hypothesize that this optimization would
result in much better results for some domains. Likewise,
limiting searches to specific, trusted Internet domains may
also help avoid “learning” falsehoods.
 Another problem faced by the system is not knowing
how to weigh the results that it gets back. In the current
implementation, a candidate fact found in just one
document is treated the same as a fact found in twenty
documents. By paying attention to the number of
documents a candidate fact is found in, the system could
estimate a probability for the fact, and focus its efforts (or
the efforts of human adjudicators) on candidate facts that
are more commonly represented in the corpus, and thus
more likely to be true. Source credibility is another factor
that could be used to estimate the probability of a fact. This

might also be used to weed out some of the answers for a
particular fact-type. If several documents say that Yasser
Arafat was born on August 24, 1929 and one document
says that he was born on August 4, 1929 (a real ambiguity
on the Web), it would not be unreasonable to discard the
latter fact. This would make the system robust against
typos in text, some false claims (though not widespread,
commonly accepted falsehoods) and, in some cases, failure
to determine the correct answer-text.
 Finally, one of the biggest and most important tasks in
extending this work is to use machine learning to
automatically determine additional knowledge extraction
patterns. Because Cyc already contains examples of the
types of knowledge it is looking for (e.g. it already knows
the birthdates of some people), it can use that knowledge
as a seed for finding other ways of expressing that
knowledge in text. Work is currently underway to expand
the system so that it can automatically acquire knowledge
and knowledge extraction patterns about events.

References
Brin, S., and Page, L. 1998. Anatomy of a Large-scale
Hypertextual Search Engine. In Proceedings of the 7th
International World Wide Web Conference, 108-117.
Brisbane, Australia.

Charniak, E. 2001. A Maximum-Entropy-Inspired Parser.
In Proceedings of the 1st Conference of the North
American chapter of the Association for Computational
Linguistics. Seattle, Washington, 132-139.

Craven, M., Dipasquo, D., Freitag, D., McCallum, A.,
Mitchell, T., Nigam, K., and Slattery, S. 1999. Learning to
Construct Knowledge Bases from the World Wide Web.
Artificial Intelligence 118: 69-113.

Deaton, C., Shepard, B., Klein, C., Mayans, C., Summers,
B., Brusseau, A., and Witbrock, M. 2005. The
Comprehensive Terrorism Knowledge Base in Cyc. In
Proceedings of the 2005 International Conference on
Intelligence Analysis. McLean, Virginia.

Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu,
A., Shaked, T., Soderland, S., Weld, S., and Yates, A.
2004. Web-Scale Information Extraction in KnowItAll. In
Proceedings of the 13th International Conference on
World Wide Web, 100-110. New York, New York: ACM
Press.

Gennari, J., Musen, M. A., Fergerson, R. W., Grosso, W.
E., Crubezy, M., Eriksson, H., Noy, N. F., and Tu, S. W.
2002. The Evolution of Protégé: An Environment for
Knowledge-Based Systems Development. Available at
http://smi-web.stanford.edu/auslese/smi-web/reports/SMI-
2002-0943.pdf.

Klein, D., Smarr, J., Nguyen, H., and Manning, C. 2003.
Named Entity Recognition with Character-Level models.
In Proceeedings of the Seventh Conference on Natural
Language Learning, 180-183.

Lenat D. B., Borning, A., McDonald, D., Taylor, C., and
Weyer, S. 1983. Knoesphere: Building Expert Systems
with Encyclopedic Knowledge. In Proceedings of the 8th
International Joint Conference on Artificial Intelligence,
167-169. Karlsruhe, Germany: William Kauffmann.

Matuszek, C., Witbrock, M., Kahlert, R., Cabral, J.,
Schneider, D., Shah, P., and Lenat, D. 2005. Searching for
Common Sense: Populating Cyc from the Web. In
Proceedings of the Twentieth National Conference on
Artificial Intelligence. Pittsburgh, Pennsylvania.

Panton, K., Miraglia, P., Salay, N., Kahlert, R. C., Baxter,
D., and Reagan, R. 2002. Knowledge Formation and
Dialogue Using the KRAKEN Toolset. In Eighteenth
National Conference on Artificial Intelligence, 900-905.
Edmonton, Canada.

Pasca, M. 2004. Acquisition of categorized named entities
for web search. In Proceedings of the 13th ACM
Conference on Information and Knowledge Management.
137-145. Washington, D. C.: ACM Press.

Schneider, D., Matuszek, C., Shah, P., Kahlert, R., Baxter,
D., Cabral, J., Witbrock, M., and Lenat, D. 2005.
Gathering and Managing Facts for Intelligence Analysis.
In Proceedings of the 2005 International Conference on
Intelligence Analysis. McLean, Virginia.

Sleator, D. and Temperly, D. 1993. Parsing English with a
Link Grammar. In Third International Workshop on
Parsing Technologies. Tilburg, Germany.

Witbrock, M., Baxter, D., Curtis, J., Schneider, D.,
Kahlert, R.C., Miraglia, P., Wagner, P., Panton, K.,
Matthews, G., Vizedom, A. 2003. An Interactive Dialogue
System for Knowledge Acquisition in Cyc. In Proceedings
of the Workshop on Mixed-Initiative Intelligent Systems.
138–145, Acapulco, Mexico.

Witbrock, M., Panton, K., Reed, S. L., Schneider, D.,
Aldag, B., Reimers, M., and Bertolo, S. 2004. Automated
OWL Annotation Assisted by a Large Knowledge Base. In
Workshop Notes of the 2004 Workshop on Knowledge
Markup and Semantic Annotation at the 3rd International
Semantic Web Conference. 71-80. Hiroshima, Japan.

Witbrock, M., Matuszek, C., Brusseau, A., Kahlert, R. C.,
Fraser, C. B., and Lenat, D. 2005. Knowledge Begets
Knowledge: Steps towards Assisted Knowledge
Acquisition in Cyc. In Papers from the 2005 AAAI Spring
Symposium on Knowledge Collection from Volunteer
Contributors (KCVC), 99-105. Stanford, California.

http://www.cyc.com/doc/white_papers/SemAnnot2004-20041001.pdf
http://www.cyc.com/doc/white_papers/SemAnnot2004-20041001.pdf

