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Abstract 

Populating the Cyc Knowledge Base (KB) has been a 
manual process until very recently. However, there is 
currently enough knowledge in Cyc for it to be feasible to 
attempt to acquire additional knowledge autonomously. 
This paper describes a system that can collect and validate 
formally represented, fully-integrated knowledge from the 
Web or any other electronically available text corpus, about 
various entities of interest (e.g. famous people, 
organizations, etc.). Experimental results and lessons 
learned from their analysis are presented. 

Introduction 
The purpose of the Cyc project is to provide a computer 
understandable knowledge base—a store of formally 
represented “common sense,” or ubiquitous real world 
knowledge (Lenat, et al. 1983). In the last twenty years, 
over three million facts and rules have been added to the 
Cyc Knowledge Base by ontologists fluent in CycL, the 
formal representation language used in Cyc. The process 
of adding large numbers of facts by manually formalizing 
the content of unstructured text is tedious and slow. 
Despite the implementation of methods for alleviating this 
bottleneck (such as providing better tools to ontologists 
(Genarri, et al. 2002), providing knowledge authoring 
tools to subject matter experts (Panton, et al. 2002, 
Witbrock, et al., 2003), creating methods for volunteers to 
enter and vet various types of knowledge (Witbrock, et al. 
2005)), the knowledge acquisition process remains time-
consuming and labor-intensive. However, as we shall 
show, Cyc now has sufficient knowledge to allow it to 
gather knowledge autonomously.  Notably, this knowledge 
is of high enough quality that it can be effectively used in 
Cyc. 
 The World Wide Web has emerged as a vast source of 
electronic data in the form of unstructured text documents 
that are information accessible to computers but knowledge 
accessible only to humans. Various indexing systems, such 
as Google and Yahoo!, have made this information 
increasingly accessible (Brin and Page 1998) by 
supporting ranked document retrieval. However, because 
computer systems see these documents as more or less 

opaque strings, they do not extract facts or fuse 
information from multiple textual sources. 
 This paper describes a method for finding facts from the 
World Wide Web and a framework for validating 
candidate facts. The work presented here differs in both 
the approach and the goal from others (e.g. Etzioni, et al. 
2004 and Pasca 2004) who have worked on discovering 
and extracting information from the unstructured Web. 
Our approach is similar to these other systems in that we 
use simple text extraction patterns. Among the differences 
is the fact that we leverage Cyc’s natural language 
generation and parsing facilities (designed to support 
learning from English corpora (Witbrock, et al. 2004)) 
through the use of hand-generated extraction templates to 
generate search-strings and extract and formalize the 
resulting knowledge. Like the work of Craven, et al. 
(1999), our goal is to populate an existing ontology, 
seeded by the knowledge and structure already present. 
Our work differs from that of Craven, et al. in that we do 
unsupervised information extraction. Preliminary work on 
this system (Schneider, et al. 2005, Matuszek, et al. 2005) 
has shown that it is capable of extracting knowledge about 
famous people from the Web. In this paper, we show that it 
is capable of acquiring high quality, targeted, contextually 
relevant knowledge about a large number of relatively 
obscure organizations. 
 The types of facts targeted in this experiment, and 
several aspects of the experiment itself, are grounded in a 
desire to make comprehensive information about terrorist 
organizations available for formal inference procedures 
(and for display to users). The information is similar to the 
sort of information that Dun & Bradstreet1 provides about 
companies and Jane’s Information Group2 provides about 
military equipment.  

                                                 
† This material is based upon work funded in whole or in 
part by the U.S. Government and any opinions, findings, 
conclusions, or recommendations expressed in this 
material are those of the author(s) and do not necessarily 
reflect the views of the U.S. Government. 
1 http://www.dnb.com 
2 http://www.janes.com 



Figure 1: Fact Sheet (right) and associated fact 
entry/edit page (above) for Mohamed Atta. 

 Currently, the Cyc Analytical Environment (CAE) 
includes both a mechanism for manually adding new facts 
about an entity to the Cyc KB, as well as Fact Sheets 
(HTML documents) that display the accumulated 
knowledge about any particular entity (e.g. see Figure 1). 
 The remainder of this paper is organized as follows. We 
first introduce the main components of the fact gathering 
system and then present experimental results and analysis. 
We conclude with a summary and a discussion of known 
issues and future work. 

Fact Gathering 
In order to gather facts about particular named entities, the 
system uses the Web as its corpus (currently via the 
Google API). Because the knowledge-gathering goals for 
any entity are dependent on its type, the system first needs 
to determine the type of the entity. The system then 
determines which kinds of facts would be appropriate to 
gather, gathers as many of them as it can, performs 
automatic validation, and finally adds them to the Cyc KB. 

Entity Typing  
The first step is to determine the type of the named entity, 
e.g. to determine whether the entity is a doctor, a terrorist, 
a terrorist group, a company, or something else. Because 
Cyc’s type hierarchy supports multiple-inheritance, 
multiple types for an entity are possible (e.g. an entity 
might simultaneously be a woman, a doctor and a CEO). 
 The entity-typing process starts with a Web search for 
sentences that mention the entity. A coarse typing of the 
entity is done using off-the-shelf named entity recognition 
systems (Klein, et al. 2003). Because the same named 
entity may appear in multiple documents, it can receive 
multiple inconsistent typings. In such cases, the system 
abandons work on that entity and moves on to another. 
When coarse typing yields consistent results, the sentences 
mentioning the entity are syntactically analyzed using the 

Charniak Parser (Charniak 2001) and the Link Parser 
(Sleator and Temperly 1993) to find descriptive references 
to the entities, such as the italicized portion of the sentence 
“Palestinian militant group HAMAS says it will not 
extend a ceasefire that expires at the end of this year.” 
These descriptions are then semantically interpreted as Cyc 
Collections (in this case, (SubcollectionOfWithRelationToFn 
TerroristGroup hasHeadquartersInRegion Palestine-Region) or 
“terrorist groups with headquarters in Palestine”). These 
Collections are categories that are typically more specific 
(e.g. military group, terrorist group) than the coarse types 
(e.g. organization) of the entity, and so are compatible with 
those types. The entity is assumed to be an instance of all 
such categories that are consistent with the coarse typing. 

What types of facts to look for? 
Several different methods could be used for determining 
which facts are relevant for any particular type of entity. 
These include explicitly represented rules about types of 
information that should be present for an entity to be fully 
represented in the KB (e.g. medical professionals 
commonly have specialties), frequency information (e.g. if 
the system knows the CEO for 50% of companies 
represented, it should try to find them for other 
companies). For the experiment reported here, we chose to 
focus on the types of facts gathered from CAE fact-entry 
templates for entering knowledge about terrorist groups. 

Finding the Facts 
Three different methods are used to extract facts, based on 
the linguistic characteristics that are commonly associated 
with the fact-types in text. Each different type of fact is 
manually classified according to the method believed most 
likely to retrieve that type of fact. These methods are 
described below. 
Description Strings The descriptions that were used to 
determine the type of the entity can be used to determine 
certain facts, such as the ethnicity or religion of a person, 



the ideology of an organization, etc. These types of facts 
typically have no consistently recognizable text patterns, 
but are very often mentioned in the descriptive references 
to the entity.  
 For example, the italicized descriptions in the following 
sentences provide such facts: 

Palestinian leader Yasser Arafat was laid to rest 
after memorials in Cairo and Ramallah. 
(ethnicity YassirArafat EthnicGroupOfPalestinians)  
 
Parlak raised funds for Islamic terrorist group PKK 
while living in West Germany in the 1980s. 
(hasBeliefSystems KurdistanWorkersParty Islam) 

Targeted Search-Strings In this most-frequently used 
method, a CycL query (a specific knowledge goal) is 
computed using knowledge about the target entity and its 
type. Search-strings representing this knowledge goal are 
generated by instantiating hand-written templates with pre-
existing lexical information (names, aliases, synonyms, 
etc.) about the entity. Thus, even though there are a fixed 
number of templates (on average, 2) per fact-type, the 
number of search-strings varies from goal to goal (and 
averaged 6.3 per goal in this experiment). For example, 
search strings for the query (terroristOrgPoliticalWing 
LebaneseHizballah ?X) are: 
 “*, a | the political wing of Hezbollah” 
 “* is the political wing of the Lebanese Hizbollah” 
 After retrieval, the downloaded pages (between ten and 
twenty per search) are converted into plain text and the 
sentences that contain the search-string are selected. The 
system tries to semantically interpret the possible fillers for 
the knowledge goal, starting from the smallest constituent 
(as determined by the Charniak parser and the named 
entity recognizer) that appears immediately adjacent to the 
search text (i.e. in place of the “*”), until an interpretable 
filler has been found. Figure 2 illustrates this method. 

Hypothesize and Verify If all the possible fillers for a 
particular knowledge goal are known, the system generates 
a list of potential facts for that fact-type and entity. The 
English representations of each of these potential facts are 
computed and then searched for on the Web. Verbatim 

retrieval of one of the search strings for a hypothesized 
fact is considered evidence for that hypothesized fact. 
 For example, consider the knowledge goal 
(maritalStatus YassirArafat ?X), where all possible values 
of ?X are known (according to the Cyc Knowledge Base, 
?X must range over the instances of 
PersonTypeByMaritalStatus). Some of the generated 
candidate facts and corresponding search-strings are: 

(maritalStatus YassirArafat Married)  
Yasser Arafat’s husband | wife 
 
(maritalStatus YassirArafat Divorced) 
Yasser Arafat divorced 

A Web search for the first of these returns the sentence ‘A 
controversy erupted between officials of the Palestinian 
Authority and Suha Arafat, Yasser Arafat’s wife’. Thus, 
there is evidence for the candidate fact (maritalStatus 
YassirArafat Married). 

Validating the Retrieved Facts 
All candidate facts retrieved using the above methods are 
tested for validity in a two-stage process that uses both the 
Cyc Knowledge Base and the text corpus (the Web). 
 The Cyc Knowledge Base is assumed to be an Oracle 
and hence any candidate facts already in the KB are 
assumed to be true. In such cases, the system records the 
URL of the source webpage as a new support for the fact. 
If Cyc can prove the candidate fact false, this is taken as 
evidence that the system misunderstood the document, and 
further processing of that candidate fact is abandoned. 
 Consider the following example: 

Knowledge Goal: (northOf ?X Germany) 
Search-string: ____ is north of Germany 
Candidate facts: 
- Known to Cyc: (northOf Denmark Germany) 
- Rejected by Cyc: (northOf Switzerland Germany) 

In the case of Switzerland above, a webpage containing the 
sentence “Switzerland is north of Germany” is retrieved 
(the sentence is a true-false question on a quiz). Cyc is able 
to reject it because of pre-existing knowledge that 
Switzerland is south of Germany, not north. 

Figure 2: Finding the founding date of Abu Sayyaf
using a targeted search string 

(foundingDate AbuSayyaf ?X) 

Abu Sayyaf was founded in the early 1990s 
 ↓ Parse 

(foundingDate AbuSayyaf (EarlyPartFn (DecadeFn 199)))

Search Strings 

“Abu Sayyaf was founded in *” 
“Al Harakat Islamiya, established in *” 

 The second stage of validation involves searching the 
Web. For each candidate fact, a number of English 
representations of the fact are generated. The fact is 
deemed validated if any of these English strings has an 
exact match in the corpus. If the English representation of 
a fact contains an acronym, a disambiguating search-term 
is added to the search. The search-term is the word that 
results in the fewest Google hits among all the words in all 
the known phrasings for the entity. 
 For example, EjercitoPopularDeLiberacion has the 
acronym “EPL” and the disambiguating string 
“Liberacion.” Thus one validation search-string for 
(objectFoundInLocation EjercitoPopularDeLiberacion 
Ontario-CanadaProvince), is ‘“EPL is located in Ontario” 
+Liberacion.’ This results in no Google hits. However, had 
the disambiguation string ‘+Liberacion’ been omitted, the 



 The overall retrieval rate (RR) was 28%, the overall 
parsing precision (PP) was 48%, and the overall 
invalidation precision (IP) was 87%. 

search would have resulted in 2 Google hits, incorrectly 
validating the candidate fact. 

Experimental Results Fact Type Retrieved 
(RR%) 

Auto-
validated (% 
of retrieved) 

Human-
validated 

(PP%) 
FoundingDate 459 (111%) 180 (40%) 102 (57%) 
foundingAgent 133 (27%) 45 (34%) 16 (36%) 
objectFoundIn-
Location 

225 (54%) 39 (17%) 4 (10%) 

hasMembers 83 (20%) 6 (7%) 4 (67%) 
residenceOf-
Organization 

76 (18%) 25 (33%) 9 (36%) 

operatesIn-
Region 

32 (8%) 13 (41%) 11 (78%) 

possesses 14 (3%) 6 (43%) 0 (0%) 
orgMilitaryWing 13 (3%) 6 (46%) 6 (100%) 
terroristOrg-
PoliticalWing 

10 (2%) 4 (40%) 4 (100%) 

Total 1045 (28%) 324 (31%) 156 (48%) 

Experiment 
The system was used to find facts about terrorist groups 
(n=413) that are known in the Cyc Terrorism Knowledge 
Base (Deaton, et al. 2005). Because the Cyc Terrorism 
Knowledge Base already contains a substantial amount of 
information about terrorist groups, using such groups 
makes computing precision easier. 

Definitions 
The following metrics were computed for this experiment: 
Retrieval Rate (RR) is the ratio of the number of 
candidate facts (r) retrieved and interpreted (but not 
necessarily verified) for a given set E of entities to the 
number of desired facts d that were searched for using all 
the methods mentioned above. Note that r is functionally 
related to d for any given entity, and may exceed 1 if 
multiple facts are retrieved for a single query. 

Table 1: The system retrieved 28% of the desired facts, 
31% of which were validated by Google. 48% of these 
auto-validated facts were then judged correct by human 
reviewers. 
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Analysis of Results 
In general, we see that the system had very high precision 
for some types of facts, and somewhat lower, though still 
usefully good, precision for many other types of facts. The 
high amount of variability seen in both the precision and 
retrieval numbers is not surprising, given the different 
types of information that were searched for. Founding 
dates and founders are generally fairly clear and 
represented straightforwardly in text documents, and thus 
we would expect relatively high retrieval (and at least 
decent precision) for those facts. By contrast, some of the 
relations (such as terroristOrgPoliticalWing) are only 
applicable to a relatively small number of terrorist 
organizations, while other types of facts (such as 
operatesInRegion) are not typically expressed directly, but 
rather need to be inferred on the basis of other statements 
(e.g. “XXX claimed responsibility for the recent bombing 
in YYY”). 

Parsing Precision (PP) measures the ability of the system 
to correctly interpret automatically validated facts (and 
thereby also measures the correctness of automatic 
validation). PP is the ratio of the number of human-
validated facts (hv) to the total number of automatically 
validated facts (av). A fact is marked as human-validated if 
the candidate fact is a reasonable interpretation of the 
source document. We chose this criterion over checking 
for the truth of the candidate facts because of the difficulty 
inherent in determining the truth of some of these facts. 
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Invalidation Precision (IP) is the ratio of the number of 
facts that were correctly invalidated to the total number of 
facts that were automatically invalidated.  A large number of candidate facts were incorrectly 

interpreted because of just a handful of terrorist groups that 
have identical or extremely similar names and acronyms. 
For example, there are two terrorist groups called National 
Liberation Army—one in Bolivia and one in Colombia. So, 
while searching for a fact about the National Liberation 
Army in Bolivia, the system would find information about 
the identically named group in Colombia and vice-versa. 
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Results  This problem (groups with names that are either 
extremely common or ambiguous between multiple 
groups) affected five terrorist groups (RISE, Jannubi a.k.a. 
the South, National Liberation Army, Ejercito de Liberacion 

For this experiment, the system tried to find facts for 
terrorist groups and succeeded in finding at least one fact 
for 162 terrorist groups.  



Nacional, and People’s Liberation Army) and accounted for 
51 auto-validated facts (16% of all auto-validated facts) 
that were judged incorrect by human reviewers.  
 Due to an oversight involving objectFoundInLocation 
and possesses, the system looked not only for a terrorist 
group’s location and possessions, but also searched for 
what is located in the group, and its owners. Here, it is 
clear that the system should not have asked what possessed 
a group or what was located in a group. Indeed, all the 
answers to those questions were in fact incorrect 
interpretations of the text. For example, the system used 
the search string “*, located in Ku Klux Klan” when 
looking for a filler for (objectFoundInLocation ?X 
KuKluxKlan), and found “… a well-to-do suburb, Concord, 
located in Ku Klux Klan country …”. 
 Incorrect name chunking by the named entity recognizer 
led to a large number of incorrect facts. For example, in 
“Shri Harendra Debbarma, a member of ...” the named-
entity recognizer recognizes two separate named entities, 
Harendra and Debbarma, as opposed to the (correct) 
single entity Harendra Debbarma. Because of this 
mistake, the system believed that a number of other people 
named Debbarma (BinoyDebbarma, JagadishDebbarma, 
KaminiDebbarma, LalitDebbarma, SureshDebbarma) are 
also members of the organization. 
 As mentioned above, the system finds the answer-text 
by using progressively larger constituents that are adjacent 
to the query text. The first constituent found that can be 
semantically interpreted as an entity meeting the semantic 
constraints on the filler is chosen as the filler for the 
candidate fact. This occasionally results in the system 
coming up with incorrect interpretations. In the sentence 
“KKK is headquartered in Clark County, Ohio” the 
italicized portion is the search-string. The system interprets 
the nearest constituent “Clark County” to get the answer. 
Thus, it does not try to interpret “Clark County, Ohio” and 
ends up with an incorrect fact. This method also fails to 
recognize the correct constituents when the entities are 
mentioned in lists (e.g. “The MCC is active in Bihar, 
Jharkhand and northern Chhatisgarh” or “... has locations 
in Bloomington, Indiana and Chicago”). 

Conclusions and Future Work 
We have shown that this system of gathering facts from the 
Web results in fairly high quality, formally represented 
facts. The formal representation of these facts renders them 
useful not just for human perusal (via Fact Sheets) but also 
for use in a formal reasoning system. While it is clear that 
there is still room for improvement, we believe this 
represents a very promising start to being able to 
automatically mine the Web for the extension of a formal 
knowledge base. 
 Given that the goal for this system is to be able to 
automatically populate the Cyc Knowledge Base, the 
precision rates for various types of facts are extremely 
relevant. For types of facts correlated with high precision, 
we intend to modify the system to automatically assert 

those facts, with an appropriate notation, without the need 
for human review. On the other hand, there are some types 
of facts that the system does a good job of gathering (i.e. 
the system achieves a high retrieval rate), but for which 
precision is still too poor to warrant automatically asserting 
the results into the Cyc KB. For these types of facts, we 
will continue with manual review until such time as we are 
able to raise the precision adequately. Of additional 
concern is the quality of data found on the Web; a number 
of pages can be found that report facts inaccurately. 
 In light of the analysis of the experimental results, a 
number of avenues for improvement present themselves. 
One of the main improvements would be doing a better job 
disambiguating high-frequency ambiguous names and 
acronyms. For example, we might be able to get better 
results by adding a term representing the type of the entity 
(e.g. adding a string like “terrorist” or “revolutionary” to 
searches for RISE). For organizations, adding the name of 
a location associated with the group might also improve 
precision. Alternatively, if the system can determine which 
particular phrases for an entity are likely to yield 
ambiguous results, it could simply not use those 
ambiguous terms in its search strings. This would likely 
have the effect of marginally lowering the retrieval rate, 
but might raise the precision quite substantially.  
 In order to determine what types of facts are being 
gathered correctly and effectively, and in order to buffer 
the system against poor-quality Web data, human 
evaluations of results are currently required. To reduce the 
burden of this task, an extension is being built that allows 
untrained volunteers to verify or reject simple facts in a 
game-like environment. When a sufficient number of 
independent volunteers reach consensus, a fact can be 
considered additionally verified. The ultimate goal of this 
work is to provide a sufficient corpus of reviews for 
machine learning. We believe that a system could learn to 
identify quality sources of data as well as which types of 
facts (knowledge goals) are most effective to gather. 
 Additional extensions include the ability to target other 
languages and other search engines. The system has 
already been extended to use Chinese documents and the 
Yahoo! search engine API, but those changes have not yet 
been tested. Another possibility to improve results involves 
restricting the search to certain corpora or Internet 
domains. We hypothesize that this optimization would 
result in much better results for some domains. Likewise, 
limiting searches to specific, trusted Internet domains may 
also help avoid “learning” falsehoods. 
 Another problem faced by the system is not knowing 
how to weigh the results that it gets back. In the current 
implementation, a candidate fact found in just one 
document is treated the same as a fact found in twenty 
documents. By paying attention to the number of 
documents a candidate fact is found in, the system could 
estimate a probability for the fact, and focus its efforts (or 
the efforts of human adjudicators) on candidate facts that 
are more commonly represented in the corpus, and thus 
more likely to be true. Source credibility is another factor 
that could be used to estimate the probability of a fact. This 



might also be used to weed out some of the answers for a 
particular fact-type. If several documents say that Yasser 
Arafat was born on August 24, 1929 and one document 
says that he was born on August 4, 1929 (a real ambiguity 
on the Web), it would not be unreasonable to discard the 
latter fact. This would make the system robust against 
typos in text, some false claims (though not widespread, 
commonly accepted falsehoods) and, in some cases, failure 
to determine the correct answer-text. 
 Finally, one of the biggest and most important tasks in 
extending this work is to use machine learning to 
automatically determine additional knowledge extraction 
patterns. Because Cyc already contains examples of the 
types of knowledge it is looking for (e.g. it already knows 
the birthdates of some people), it can use that knowledge 
as a seed for finding other ways of expressing that 
knowledge in text. Work is currently underway to expand 
the system so that it can automatically acquire knowledge 
and knowledge extraction patterns about events. 
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