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Abstract 
 
CycSecureTM is a network risk assessment and network monitoring 
application that relies on knowledge-based artificial intelligence 
technologies to improve on traditional network vulnerability as-
sessment. CycSecure integrates public reports of software faults 
from online databases, data gathered automatically from computers 
on a network and hand-ontologized information about computers 
and computer networks. This information is stored in the Cyc® 
knowledge base (KB) and reasoned about by the Cyc inference 
engine and planner to provide detailed analyses of the security (and 
vulnerability) of networks. 

1 Introduction 
In maintaining secure computer networks, system adminis-
trators face an increasingly time-consuming task. Much of 
the difficulty derives from the burden of information man-
agement: the amount of information required is enormous, 
much of it changes rapidly, and the relevant information can 
be difficult to identify. Existing tools are difficult to keep 
completely updated, and the format in which they provide 
information can be unwieldy. In this paper we describe Cyc-
Secure, an emerging AI application in the domain of net-
work security. This work endeavors to address some short-
comings of existing security software by exploiting 
strengths in the Cyc® technology [Lenat, D. B. and Guha, R. 
V. 1990], [Lenat, D. 1995]: a large knowledge base (KB), 
natural language input and output modules, a well-
developed inference engine and an integrated planner. 

CycSecure is a combination of information gathering 
and AI technologies, integrated into the much larger and 
more general Cyc system. CycSecure operates by scanning a 
computer network to aggregate information that describes 
the network’s state. It then uses this information to build a 
formal representation or model of the network, based on 
Cyc’s pre-existing ontology of networking, security, and 
computing concepts. The model incorporates information 
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about what computers are on the network, what programs 
are installed or running on those computers, what privileges 
the running programs have, what users are logged into the 
computers, how the parameters of critical operating system 
files are set, etc. The formal model is stored directly in the 
KB, where it is accessible for inference and planning. This 
formal representation also allows users to interact directly 
with the model of the network using ontology editing tools, 
allowing testing of proposed changes or corrections to the 
network before implementation. 
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The planner has access to knowledge about software 
faults that have been reported on standard security tracking 
sites (primarily Bugtraq and CERT1). These faults are tax-
onomized according to a finely articulated ontology that 
includes knowledge about how to exploit each type of 
weakness. Users can direct the Cyc planner to assemble 
specific network attack plans that capitalize on one or more 
weaknesses in the modeled network. Cyc’s inference engine 
reasons about plan structures to identify critical nodes in 
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Figure 1.  CycSecure Architecture 



attack plans to propose single-step remedies (e.g., recom-
mending downloading software patches to fix critical faults, 
or recommending specific alternative programs with the 
same functionality).  
 
2 Application Description 

2.1 Cyc Technology Overview 
Cyc is composed of a large KB, an inference engine, a plan-
ner and natural language components. 

• The KB: common-sense knowledge encoded in the CycL 
language. Approximately (as of March 2005) three mil-
lion assertions (facts and rules) interrelating over a quar-
ter of a million concepts. 

• The inference engine: a resolution-based reasoning sys-
tem, consisting of a general theorem-prover and a grow-
ing regiment of over eight hundred special-purpose mod-
ules. Each module is an implementation of a pattern of 
reasoning for a common type of problem. 

• The planner: an extension of SHOP [Nau et al. 1999], 
which is an efficient hierarchical task network planner. 

• NL parsing and generation components: a general lexi-
con, parsing, generation and discourse modules. NL gen-
eration underpins all CycSecure interfaces. 

The common-sense knowledge in the KB consists, in part, 
of categorizations of objects and general truths about types 
of objects. Having this pre-existing framework simplifies 
encoding domain-specific knowledge, such as that required 
for CycSecure. CycSecure’s knowledge focuses on topics 
such as computer programs and their functionalities, com-
puter network vulnerabilities and network attack plan ac-
tions. The representations of these classes was facilitated by 
the existing representations of more “common-sense” con-
cepts: types of information-bearing things, such as prose 
text, emails, computer viruses, applications and operating 
systems; concepts of information flow and information 
transfer; and even the basic concept of a computer, as a 
temporal, tangible thing. It was also useful to draw on the 
pre-existing representations of human agents as having mo-
tives, drives and behavior patterns, many of which are rele-
vant to the way networks are used and thus affect security. 

Given the broad range of existing ontological distinc-
tions in the KB, it was clear how to incorporate the requisite 
new classes of security domain knowledge. A team of just 
3-4 trained knowledge enterers was able to add all relevant 
knowledge to the Cyc KB in under 18 month’s time. This 
rapidity was facilitated by the ability to forgo spending time 
stating relevant general facts, such as the fact that an elec-
tronic device that is turned on will stay turned on until its 
power supply is interrupted. 

2.2 CycSecure Architecture Overview 
The architecture of the CycSecure system is centered on a 

CycSecure server. The server in turn rests on a Cyc image, 
which includes the components described above, as well as 
a set of interfaces that allow users to interact with network 
models. The interfaces include an editor, a network statistics 
reporter, a viewer (for browsing information about different 
parts of the network) and an interface to the planner. The 
CycSecure server is designed to run on a dedicated machine. 
It handles all user interaction and KB interaction tasks. 

Each client machine on the network runs a daemon (or 
Sentinel) that gathers information about the software, hard-
ware and status of the machine it is running on. The server 
polls the Sentinels, gathers network information from them, 
and then represents that information in the KB. 

2.3 CycSecure Software Components 

CycSecure Sentinels and Server 
The Sentinels are small software daemons that run on each 
machine on the target network. They are designed to con-
sume very few system resources; such remote agents can be 
installed on even slow machines on a network without in-
curring a serious performance cost [Humphries, J. W. and 
Carver, C. A. Jr. 2000]. Each Sentinel is dormant until 
polled by the server. When polled, a Sentinel gathers infor-
mation about the machine it is running on and relays it to 
the server. Sentinels are extremely platform dependent, but 
they share a common XML protocol understood by the 
server; as a result, they can be written for multiple plat-
forms, potentially including dedicated firewall hardware or 
smart hubs.2 The server translates the information returned 
by the Sentinels into CycL and adds it to the KB. 

This approach is potentially vulnerable to an attack on 
the Sentinels themselves, or to spoofing of their communi-
cation. The latter concern can be addressed by encrypting 
the communication stream. However, since each Sentinel is 
sending unique information about the machine on which it 
is installed, the former concern is very real. Installing each 
Sentinel with a communications wrapper that contains a 
rolling key helps somewhat, but is still subject to some 
kinds of attacks and increases the complexity of upgrading 
the Sentinels over time.  

CycSecure’s architecture is not dependent on using Sen-
tinels. It could also utilize third-party daemons that may 
have already solved some of these problems. 

CycSecure User Interfaces 
Users access the CycSecure server via several interfaces: the 
Attack Planner, the Model Editor, the Network Viewer, the 
Query Tool and the Network Statistics tool. Each of these 
tools is presented to the user in a web-browsing framework: 
the CycSecure server dynamically generates HTML and 
JavaScript in response to user interactions. 
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The Attack Planner enables the user to state plan goals, 
launch the planner and view the attack plans generated. For 
example, a user can state the goal “An external user with no 
initial access gains administrator/root access to tar-
get.mynetwork.net.” The user then examines the plans re-
turned, using the browser to get more detail about any inter-
esting or unclear steps or components. (We discuss the At-
tack Planner in more detail in section 3.2, below.) 

The Model Editor lets users edit the automatically built 
network model (e.g., to add or remove machines or running 
programs from the model). CycSecure performs analysis 
against the model, so this tool lets users evaluate results of 
changes before deploying them to the actual network.  

The Network Viewer allows users to examine and drill 
into the network model. For example, a user can view a 
computer and see: hardware specifications for that com-
puter; programs running on it; information about a program, 
which may include links leading to known faults; informa-
tion about exploits which can then be followed to a defini-
tion of buffer overflow exploits in general, etc. 
 

The Query Tool allows users to construct queries over 
predefined elements of the represented network and back-
ground knowledge such as installed programs, running pro-
grams, operating systems and IP addresses. The query is 
passed to the inference engine, which returns lists of results. 

The Network Statistics tool provides a synopsis of the 
network state. It lists the number of machines on the net-
work, the number of vulnerabilities on the machines, etc. 
This view of the network’s security state is useful for ob-
serving general patterns, but it does not indicate how any of 
the vulnerabilities may be exploited to compromise network 
resources. The Attack Planner imparts that more sophisti-
cated capacity (see section 3.2, below). 

3 The Ontology and The Planner 

3.1 Ontology 
The general knowledge already represented in the KB facili-
tates deep reasoning about security: it includes knowledge 
of communication protocols, computers, networks, firewall 
rules, corporate policies, employee/employer relationships 
and date and time functions, all of which are relevant to 
interesting questions pertaining to security. 

Cyc’s KB underpins all of CycSecure’s capabilities. 
Some of the most pertinent portions are the ontology of pro-
gram types and their functionalities and the ontology of 
software faults and their corresponding vulnerabilities. 

There are currently 12,409 computer programs repre-
sented in the Cyc KB. At the top of this hierarchy stands the 
collection ComputerProgram-CW,3 which is partitioned 
into ApplicationProgram and OperatingSystem. Im-
portant facetings of ComputerProgram-CW are Com-
puterProgramTypeByPlatform and ComputerPro-
gramTypeByFunction. The latter faceting has 389 in-
stances and includes collections such as Screensaver, 
EmailClientProgram, NameServerProgram and Log-
inProgram. This functionality-based faceting helps Cyc-
Secure present information in a structured (and therefore 
easily comprehensible) manner. E.g., users can select a view 
of computer that shows a list of its installed programs or-
ganized into a hierarchy of program types. Without a princi-
pled organization this list would be too verbose to be useful. 

The hierarchy of program types is also used in vulner-
ability assessment and planning, since the same kind of 
software fault can lead to different vulnerabilities, depend-
ing on what kind of program has the fault. Security faults in 
software (as well as parameter misconfigurations) underpin 
vulnerabilities of physical systems; an email program with a 
buffer overflow fault yields a vulnerability that is function-
ally distinct from that of a printer driver with a buffer over-
flow fault. The planner takes these distinctions into account 
when generating attack plans, which are multi-step ways of 
capitalizing on vulnerabilities to achieve goals. 

CycSecure’s ontologies of faults and vulnerabilities are 
novel because they are integrated into a much larger general 
ontology and are closely tied to planner rules. In the latter 
sense, the existing work most similar to CycSecure’s fault 
and vulnerability ontologies is that of Undercoffer and 
Pinkston [2002]. Their ontology of attacks is “target-
centric,” emphasizing the means, consequences and loca-
tions of attacks as attack-type discriminators. CycSecure’s 
ontology of faults and vulnerabilities is likewise target-
centric, in the sense that it has been built with the intention 
of supporting the generation of attack plans. An important 
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zation of ConceptualWork, the collection of deliberately cre-
ated things that lack a location in space but have a beginning in 
time and an associated abstract information structure. 

Figure 2.  The Network Viewer Tool 
In this screenshot, the tool displays NL descriptions  

of deduced vulnerabilities of a computer in the model;  
an explanation for one deduction is expanded into the view. 



distinction between CycSecure’s ontology and that of Un-
dercoffer and Pinkston is that the first is intended to support 
vulnerability analysis, whereas the second offers an ontol-
ogy of attack types in support of intrusion detection. 

Currently 354 classes of software fault are represented in 
the Cyc KB. At the top of the relevant multiple-inheritance 
hierarchy is the general collection, ProgramFault, which 
has eighteen direct specializations such as the collection of 
denial of service faults, the collection of readable mail faults 
and the collection of input validation faults. Many faults in 
the hierarchy are direct specializations of multiple other 
faults. For example, MountRequestForwardingFault is 
a direct specialization of both InsecureFilesystem-
Fault and CommandFilteringBypassFault.4 If a mount 
request is for a filesystem that is mountable, a valid filehan-
dle will be returned. This filehandle in turn can be used to 
access a filesystem that would otherwise not be accessible to 
a remote user. Because an unauthorized mount request 
should have been blocked, MountRequestForwarding-
Fault is a specialization of CommandFilteringBypass-
Fault, which is the collection of faults had by programs 
that fail to reject certain requests. A MountRequestFor-
wardingFault can be exploited to gain unauthorized ac-
cess to a file system, so it is a specialization of Insecure-
FilesystemFault, the collection of faults had by pro-
grams that can be made to yield a copy of a filesystem to an 
unauthorized user. 

There are 683 classes of vulnerability represented in the 
KB. The most general is ComputerVulnerability, which 
has 28 direct specializations, including the collection of 
vulnerabilities to bounce attacks and the collection of vul-
nerabilities due to insecure login systems. A significant 
faceting of the specializations of ComputerVulnerabil-
ity distinguishes remotely exploitable vulnerabilities from 
locally exploitable ones. To generate a complete plan in 
which a hypothetical attacker exploits a merely locally ex-
ploitable vulnerability, the planner must incorporate prior 
steps that grant the attacker local access.  

3.2 Planner 
Cyc’s planner is a variant of SHOP, an efficient hierarchical 
task network planner [Nau et al. 1999]. The planning do-
main is a representation of actions that could be performed 
using a computer system, especially those that could be per-
formed by malicious hackers or disgruntled employees. Ac-
tions are represented as CycL formulæ with instances of 
ActionPredicate as their operators. For example,  
 (runProgramOnAs 

NetworkUser033 Workstation010 
(SoftwareVersionFn Mozilla 1.4) 
(UserAccountFn LocalWindowsLAN "33")) 

                                                 
4 A program has a MountRequestForwardingFault if an unau-
thorized remote user can send a mount request to it that will then 
be forwarded to the mount daemon. 

means that NetworkUser033 is running Mozilla 1.4, on 
workstation 10, with the privileges of the account with the 
unique identifier “33,” on the local Windows network. 

ActionPredicate is partitioned into ComplexAc-
tionPredicate and SimpleActionPredicate. Com-
plex actions are tasks that can be decomposed into se-
quences composed of other complex actions or simple ac-
tions. Complex actions have preconditions and decomposi-
tions, and simple actions have preconditions and effects. 

Users initiate planning by giving the planner a complex 
action sentence as a goal (Figure 3). For example, the goal 
(doGetLoginInfoForAccount Hacker ?ACCT) would 
cause the planner to find all sequences of actions that result 
in Hacker acquiring login information for any account. The 
predicate doGetLoginInfoForAccount itself decom-
poses into a sequence of actions, one or more of which may 
also be complex. Ultimately a plan will be returned only if, 
when each action is fully decomposed, the resultant linear 
sequence of simple actions is such that the preconditions of 
its components can be satisfied in the order of the sequence. 

Here is an example CycL planner rule: 
(preconditionForMethod 
 (and (isa ?A LoginAccount) 
      (privilegedAccountForSystem ?PRV ?S) 
      (accountForSystem ?A ?S)) 
 (methodForAction 
  (doGetLoginInfoForAccount ?AG ?A) 
  (actionSequence 
   (TheList (doGetCodeToExecuteAsOn ?AG 
             HackersPacketSniffer ?PRV ?S)  
            (waitForOccurrenceOfEventOfType 
             ?AG (LogInToAccountOnFn ?A ?S)) 
            (sniffAccountLoginInformation  
             ?AG ?A ?S)))))5 

This rule says that one way to acquire login information 
(i.e., the username and password) for a privileged account 
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discussed by Shrobe [2002]. Like Shrobe, we aim to make the rule-
base as general as possible. 

Figure 3.  Selecting an Attack Plan 



(e.g., a root or administrator account) on a computational 
system is to run a packet sniffer on the system, wait for 
someone to log into a privileged account, and then sniff the 
login information. The first action in this sequence is 
doGetCodeToExecuteAsOn, which is itself a complex 
action; a variety of additional planner rules state how to 
accomplish it under various circumstances. The second and 
third actions are simple actions (a waiting and a sniffing); 
there is no multi-step way that Cyc knows of to accomplish 
these acts. However, they do have effects that Cyc knows 
about. For every simple action represented in the planning 
domain, the effects of that action are also represented. For 
example, Cyc knows that sniffing login information implies 
knowing that information: 

(effectOfAction-Props 
    (sniffAccountLoginInformation 

  ?AGENT ?ACCOUNT ?SYSTEM) 
    (knowsLoginInformationForAccount 

  ?AGENT ?ACCOUNT)) 

There are dozens of rules in the KB that state decompo-
sitions or effects of actions relevant to computer security. 
Using these, the planner will typically find a variety of 
plans, each of which exploits one or more vulnerabilities in 
the network. When run against a model of an in-house test 
network, the planner generated some plans that exploited 
multiple vulnerabilities and which our in-house security 
expert found plausible and surprising (see Figure 4). 

We modified the SHOP algorithm for CycSecure in a 
number of ways. First, we retooled precondition matching to 
use the KB as the primary knowledge source. This change 

allows the planner to make full use of the Cyc inference 
engine. The second change was driven by the homogeneity 
of the network model. Networks are frequently populated 
with nearly identical machines running nearly identical 
software; it would not be unusual to see a network of a hun-
dred computers, each running four distinct programs that 
have faults of the same class. If there is one successful at-
tack plan on this network that exploits faults of that class, 
four hundred uninterestingly distinct plans result. To avoid a 
combinatorial explosion, we implemented multi-binding of 
variables. When the inference engine returns the bindings 
for a precondition, the planner retains them in groups by 
variable. This simulates the exploration of each branch of 
the search tree, done in parallel, with some reasonable over-
head at each node. This approach to precondition binding 
ensures that the user is not overwhelmed with nearly identi-
cal plans. 

Storing inference supports for each plan also enables an 
extra phase of analysis. Often the existence of possible at-
tack plans is not interesting in itself; rather, system adminis-
trators care about determining what the dangerous vulner-
abilities of the system are and prioritizing them in order of 
urgency. By analyzing plans’ inference supports, CycSecure 
can answer the question, “What is the minimal set of condi-
tions to address to block this set of plans?” 

Plan generation takes on the order of minutes (or, in the 
case of very complex plans, a few hours). The time taken by 
the planner correlates with the number of plans returned, but 
given the complexity of the search space, the exact correla-
tion is not readily predictable.6  

4 Validation Field Trial 
For a period of six months, members of the US 
STRATCOM Computer Emergency Response Team 
(STRATCERT) tested CycSecure. Feedback received dur-
ing this process helped refine the capabilities of the tool. 
Although the data gathered during initial deployments was 
primarily qualitative, the results were quite positive. One 
interesting aspect was the ability to monitor compliance 
with IAVAs (Information Assurance Vulnerability Alert) 
issued by the Defense Department. (A sample IAVA might 
require that no workstation running Windows 9x run any 
version of RealPlayer earlier than 7.0.) Estimates of poten-
tial time spent on IAVA compliance monitoring (without 
CycSecure) are in the vicinity of hundreds of staff-hours per 
alert. To address this issue, CycSecure’s querying capability 
was modified to allow users to define and save queries that 
correspond to specific compliance goals. For example, an 
IAVA can be converted into a query that finds machines in 
the model that are not in compliance with it. This capability 
                                                 
6 Scaling to large networks can be addressed by adding computing 
hardware (since the planning process is highly amenable to paral-
lelization). In addition, the use of dynamic multi-bindings enables 
planning times to remain relatively independent of network size. 

Figure 4.  Sample planner output, generated (in NL) by 
CycSecure running against a test network 

Step 1. Hypothetical Hacker sends an email to ws.testnet.com, inviting 
its user to a particular website. 
Step 2. Hypothetical Hacker constructs a data string designed to over-
flow the memory buffer for Real Player Version 7.0. 
Step 3. Hypothetical Hacker sends the malicious data string to Real 
Player Version 7.0 running on ws.testnet.com. 
Step 4. Hypothetical Hacker overflows the memory buffer for Real 
Player Version 7.0 running on ws.testnet.com. 
Step 5. Hypothetical Hacker installs a sniffer program on 
ws.testnet.com. 
Step 6. Hypothetical Hacker waits for the user of work-
station.testnet.com to enter the account password. 
Step 7. Hypothetical Hacker uses sniffer program to sniff the login 
information for a user account on the TestNet LAN on ws.testnet.com.
Step 8. Hypothetical Hacker uses remote hacking computer to send a 
valid username and password to ws.testnet.com. 
Step 9. Hypothetical Hacker uses remote hacking computer to login to 
ws.testnet.com. 
Step 10. Hypothetical Hacker downloads the MSIEXEC exploit pro-
gram onto ws.testnet.com. 
Step 11. Hypothetical Hacker runs MSIEXEC to compromise 
ws.testnet.com’s operating system, Windows NT. 
Step 12. Hypothetical Hacker gets access to an account with SYSTEM 
privileges on ws.testnet.com. 
Step 13. Hypothetical Hacker can now read or write any file on 
ws.testnet.com. 



addresses part of the compliance issue by providing a rapid 
detector for non-compliance. In future trials, more quantita-
tive data will be collected on the system’s speed, usability 
and accuracy. 

5 Future Work 

5.1 Planner improvements 
CycSecure has proven to be a successful application of AI 
planning technology in a real-world domain. Logical next 
steps include applying CycSecure to larger networks and 
increasing the breadth and depth of our planning domain. 
We expect its knowledge-intensive planning approach to 
scale up to even the largest enterprise-level networks. 

5.2 Software fault representation issues 
Representing software fault reports in the KB is substan-
tially faster than coding scripts to exploit them7, but it still 
requires substantial time from a trained ontologist (about 10 
to 20 minutes per report) because the task presents the usual 
ontology-building challenges encountered when building a 
very large knowledge base (i.e., ensuring consistency, pre-
venting redundancy, etc.). Cyc’s underlying structure and 
knowledge entry tools are designed to make that task sim-
pler, but it still requires expertise. 

Although knowledge enterers’ time need be spent only 
once, and can be shared across installations of CycSecure, a 
mechanism for automatically retrieving information from 
reports – either by parsing the natural language reports cur-
rently prevalent, or by taking advantage of a more structured 
reporting system – would be a logical improvement in the 
process. Current work is focusing on improving natural lan-
guage retrieval mechanisms and providing better tools for 
ontologizing semi-structured information. 

5.3 Configuration representation 
The information currently gathered by CycSecure from net-
works focuses on data required for adequate vulnerability 
assessment, based primarily on knowledge of software 
faults, installed software and high-level descriptors of run-
ning computers. One extension should be the inclusion of 
representations of configuration options chosen for common 
applications, particularly those that offer communication 
capabilities, such as web servers and browsers, mail servers 
and clients, and remote login programs. Such programs, if 
misconfigured, can affect the security of a computer or a 
network as a whole. 

                                                 
7 Most vulnerability assessment software operates by running 
canned attack scripts against a network.  The Nessus scanner 
(http://www.nessus.com/) is one of the best open-source examples 
of this kind of software. Due to the difficulty of writing exploit 
modules for this kind of system, unfortunately, Nessus currently 
covers only a fraction of the faults reported on Bugtraq.  

6 Conclusion 
By providing a semantic underpinning for information col-
lected from a computer network combined with a rich exist-
ing corpus of more general information, CycSecure gives its 
users a deep analysis of the state of their network, particu-
larly by demonstrating feasible attack plans that could be 
launched against it. Widespread application of CycSecure 
and adoption of its suggested remedies should provide better 
system security and substantial timesavings. Test users have 
found the technology to be valuable, and its extensibility 
will enable it to provide more powerful analyses as the 
breadth of relevant information represented grows. There 
are a number of interesting directions this technology could 
evolve. Some work has been done on modeling user access 
policies and on counterplanning, and interesting problems 
present themselves with respect to scalability and network 
management. However, the current application has the po-
tential to present immediate benefits to users. 
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