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Abstract— Task sharing between heterogeneous robots
currently requires a priori capability knowledge, a shared
communication protocol, or a centralized planner. How-
ever, in practice, when two robots are brought together, the
effort required to construct shared action and structure
models is significant. In this paper, we describe our
approach to determining the kinematic model of a robot
based purely on observation of unscripted movement.
We describe construction of large-scale data simulating
low-cost RGB-D camera output, and application of two
different RNN-based methods to the learning problem. Our
results suggest that this is an efficient and effective way
to determine a robot’s morphological structure without
requiring communication or pre-existing knowledge of its
capabilities.

I. INTRODUCTION

When multiple robots collaborate on solving some
problem, it is important to consider what role, or task,
each one will perform [1]. For more complex problem
spaces, efficient robot teams are frequently heteroge-
neous in both structure and capability [2]. Furthermore,
as collaborative robots become more ubiquitous, it be-
comes desirable to allow the formation of ad hoc teams,
with compositions potentially shifting over time.

While there are a number of ways to do this, task
assignment in heterogeneous groups often relies on
the existence of communication or shared models of
capability, either between members or on the part of
a centralized planner. However, in practice, when two
robots are brought together, the effort required to con-
struct shared action and structure models is significant;
in ad hoc teams, hand-crafting shared planning and
communication solutions on a per-team basis becomes
impractical. One approach to allowing such heteroge-
neous teams to work together scalably is to enable robots
to learn about one another solely from observation.

We describe work using deep learning methods to
derive a model of a robot’s capabilities by estimating
its physical structure from observations of its actions,
updating confidence as new observations occur. We
demonstrate this by continuously modeling the physical
structure of an unfamiliar manipulator arm based on
sensor observations. This morphology can then be used
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to plan an optimal strategy to achieve a cooperative goal.
We demonstrate the utility of this work by considering
a scenario where two robots, each with their own depth
sensor, have no shared communication. The robots are
instructed to accomplish the goal of relocating an object
to a new position. The goal is such that cooperation
between the robots is necessary. Planning and detection
is inherently passive, with each robot evaluating the goal,
observing the world, and building hypotheses about the
capabilities of nearby robots who may help accomplish
the goal. This research addresses one approach for how
a robot can build confidence in a nearby robot’s capabil-
ities through observation over time and potentially use
that information to plan an optimal strategy to achieve
a cooperative goal.

The core contributions presented in this work are as
follows. We have developed and made available a large
corpus of simulated point-cloud data of a variety of
manipulators of different size and degrees of freedom.
We describe an effective method of processing that
data for learning, and finally, we explore deep learning
approaches to estimate a kinematic model of those
manipulators from time-series observations. Our results
make it clear that this is an effective approach and a
promising area for further research.

II. RELATED WORK

The goal of this research is to establish how robots
can gain an accurate representation of other robots in
their observation space. This will enable computation
of useful plans to achieve a cooperative goal. Applica-
tions of cooperative robotic agents include, but are not
limited to, scenarios such as exploring unknown envi-
ronments [3], [4], [5], safeguarding secure facilities [6],
and construction tasks [7]. Such planning requires am-
ple knowledge about the scene and robot’s potential
partners in completing the task [8], and even requires
on-line determination of how proactive or reactive a
robot should be in performing a cooperative task [9].
Given morphology, there are a number of approaches to
motion planning [10], [11], [12] and path planning [13],
[14], collaborative task assignment [15], [16], [17], and
behavior learning [18]. This work is also related to prior
work into robot-human motion detection and mimicry,



allowing the robots to leverage pre-trained supervised
learning models for optimal behavior [19].

Our research looks toward collaborative robotics by
extending prior work with human-robot teaming and
efficient task assignment [20], [21], as well as single-
coordinator action sequencing between connected robot
participants [22]. Shared planning will build on prior re-
search into implicit communication through motion [23].

We explore initializing learning models using a super-
vised approach in which we use a simulator to generate
a large number of arms with varying morphologies and
learn a mapping of observables (i.e., simulated point
clouds). We will possibly later also map to capabilities
using an auto-encoder for which the inputs are depth
images concatenated with a vector of link lengths padded
with zeroes [24] or recurrent neural networks. Similar
deep learning techniques have been applied with success
in the robotic grasp problem space [25], [26], as well
as generalized object recognition [27]. Prior research
also demonstrates successful use of neural net-based
deep learning for merged environment and behavior
evaluation [28], leveraging Long Short Term Memory
cells for sequential processing [29].

Our work is most similar to, and is informed by, a
rich body of work on articulated pose estimation [30]
and kinematic modeling [31]. Prior work proved it is
possible for a robot to actively learn a kinematic model
of its own manipulator using data from an attached depth
sensor [32], or to perform on-line tuning of its own
kinematics through internal sensing [33]. While there is
also extensive research into kinematic modeling during
gesture recognition [34], we are not aware of other work
on estimating the capabilities of an unknown robot by
learning its whole morphology through observation.

III. DATA CORPUS

An overview of our approach is as follows. First, we
present a large-scale corpus of time-series point cloud
observations showing the movement of a number of
differently structured robots. Second, we describe pro-
cessing this data to extract features suitable for learning
a model of morphology estimation.

A. Generated 3D Motion Sequences
To understand a robot’s morphology, we focus on

estimating its kinematic chain. For a non-forking, non-
cyclical ‘arm’ structure, this means determining the
number and length of a sequence of connected links,
as well as joint type (revolute vs. prismatic) and joint
angle limitations. In this work we focus on identifying
the first two values, which provide an outer bound on
the robot’s workspace. Our approach results in increas-
ing confidence in an observed manipulator’s structure
over time, as sequences of observations provide more
evidence. The initial probability space is uniform.

Deep learning approaches generally benefit from a
significant number of examples. For this problem, such
observations are difficult to obtain for a wide range
of possible arms going through a variety of motions.
Accordingly, we built a simulator which generated real-
istic observation sequences based on randomly selected
robot structures and motion, represented as an unknown
number of non-branching rigid links connected by joints
with an unknown range of motion. The observations
were designed to mimic those provided by a Kinect2
using pointclouds as described in section III-B [35].

The simulator varied the following parameters for
generating and animating robot movements: the link
count, n; the link diameter, d; and the individual link
lengths, described below. The simulator randomly gen-
erated robot structures according to those parameters,
using rotational joints, animating movements around
a normal vector at each joint. A robot with n links
has links numbered l0, representing the base, to ln−1

representing the end effector, and joints numbered j0 to
jn−2. The animation logic selected a joint at random
and rotated it in either a clockwise or counter-clockwise
direction for a minimum number of frames before rese-
lecting a joint at random.

To cover a range of structures while bounding clas-
sification complexity, the simulator randomly selected
a link count in the range [2, 6]. Each link received a
randomly generated length in the range [1000, 7500]
units (units are approximately 0.1 millimeters), with a
randomly generated radius in the range [200, 400]. These
values were chosen to provide a reasonable simulation
starting point. Similar to most available non-industrial
manipulators, all generated robots’ links were sequen-
tial and non-branching. Future work could extend the
simulator to produce movement of more complex robot
structures for greater generality.

At each frame in the animation sequence, the simula-
tor renders a cylindrical point cloud around each link in
the robot structure, then prunes any points occluded from
the fixed camera location by some part of the robot (that
is, self-occluded points). Culling the occluded points
was intended to mimic what a statically positioned
Kinect2 sensor experiences, as it can’t include rear-
facing surfaces in the point cloud. Lastly, the simulator
generated a representative “skeleton” of the point cloud
using k-means clustering to greatly reduce the number
of points a classifier must process. This skeletonization
process is described in detail below.

We set the simulator to generate 100 frames per
sequence, saving the skeleton and selected metadata
for each sequence into a single file. Each frame in a
sequence is comprised of the frame number, the ordered
link lengths, the ordered vertex locations of the link
endpoints (with joints located at internal vertices), or-
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Fig. 1. Obtaining the point cloud. (a) Original Kinect 3-D; (b)
RANSAC segmentation.

dered joint types, joint normals for calculating rotations
reliably, the camera location for calculating occlusion,
and the skeleton point locations.

TABLE I
VIDEO SEQUENCES FOR CHAINS OF DIFFERENT LENGTHS.

Number of links 2 3 4 5 6
Number of

video sequences 2,011 2,001 2,007 2,019 2,011

For this research, we generated a total of 10,049 se-
quences of 100 frames, subdivided as shown in table I.
This corpus is available publicly for unrestricted down-
load.1 In the near future, it is our intention to also make
the associated full point clouds available.

For a sufficiently representative corpus, the size of
unprocessed point clouds generated is unwieldy, and
the total set of points is redundant for structural iden-
tification. Accordingly, these sequences are reduced as
follows. Given a single observation, the point cloud is
skeletonized as described in section III-B. This decom-
position process generates a minimal set of points which
accurately trace the shape of the robot. These points
represent features used to predict hypothetical structures.

B. Data Preprocessing

The application runs a series of filtering steps on
each point cloud frame to segment out the manipulator.
Figure 1(a) shows a 3-D gray-scale rendering of Kinect2
sensor output of a Kinova JACO2 robot arm attached
to a table. The blue highlight on the robot arm is the
result of detecting the arm, and provides the classifier
with observation data. The Kinect2 publishes 3D point
clouds and RGB images.

We run the point cloud through a series of Random
Sample Consensus (RANSAC [36]) filters to prune
extraneous points. First, we attempt to detect and re-
move any large planes present, as these are likely to
represent walls or tables. Figure 1(b) shows the results
of RANSAC’s detection of the wall to the left of the
robot (dark blue) and the table on which the JACO2 robot

1https://tiny.cc/iral-arm-corpus/simulated_
robot_clouds.tar.gz
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Fig. 2. Application on a JACO2 arm using a Kinect 2. (a) Original
point cloud; (b) centroids after k-means decomposition; (c) hypothe-
sized morphology after one frame.

and Kinect2 sensor are sitting (magenta). The remaining
peach-colored portions are points which remain in the
dataset. We then remove smaller contiguous ‘blobs.’ The
remaining large contiguous sets of points are assumed to
be the robot. This approach is simple and effective in our
test scenarios. More complex segmentation approaches
could be easily substituted for more natural scenes,
which may be both dynamic and cluttered.

The remaining points are represented in a Cartesian
coordinate space anchored at the Kinect2’s depth sen-
sor. Post-filtering, this cloud generally contains many
thousands of points, most of which are redundant for
the classification task. This level of granularity may be
useful for other tasks where greater fidelity is needed.
However, for the purposes of this research, we ease
downstream computational complexity by performing
the k-means simplification step described in section III-
A, which reduces points while still accurately represent-
ing the robot’s core structure.

We generate this skeleton by running unsupervised
k-means clustering after plane removal, keeping only
the points representing the centroids of each cluster. We
used the elbow method for empirically determining an
optimal value for k, beginning with k = 5 and incre-
mentally increasing k until the cost evaluation identified
significantly diminished improvement.

Figure 2 shows a progression between (a) the JACO2’s
post-RANSAC point cloud, to (b) the skeleton points
obtained through k-means clustering, to (c) how output
from a trained classifier produces a hypothesis of the ac-
tual kinematic model. Ideally, hypotheses will represent
the observed robot without overestimating complexity,
while optimally fitting the original point cloud. Because
the Kinect2 can only see the surfaces of the robot that
are facing the sensor, the centroids are located on the
near surfaces rather than inside the robot’s links.

Each frame received by our C++ application from the
Kinect2 through the Robot Operating System (ROS) was
processed by the steps above, leaving only the skeleton
points as the final “observation” to be used by the
downstream models. We hypothesize that this skeleton is
sufficient for determining a robot’s structure and length,
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which may suffice for gross scene evaluation and the
eventual path planning for task completion.

IV. APPROACH

In this section, we describe the application of two
different learning approaches: a recurrent neural network
(RNN) that estimates the complete kinematic chain, and
a pipelined RNN-based approach that first estimates
degrees of freedom (links), followed by estimating their
lengths. Both RNN-based approaches had advantages
and disadvantages. Ultimately, the pipelined approach
with specialized models shows the most promise.

A. Complete-Structure RNN Prediction

Due to the complexity of observations of robot
movement from a depth sensor, we chose to use
neural network models rather than a hidden Markov
model (HMM). The potential branching factor and
non-determinism behind a robot’s movement implies
a likely intractable HMM implementation. Intuitively,
a sufficient state machine that could capture arbitrary
movement sequences may not generalize well to new
structures. In this section, we discuss the reasoning for
using a recurrent neural network (RNN) made up of
Long Short Term Memory (LSTM) cells to capture the
sequential nature of the observations.

We implemented an RNN capable of evaluating a
sequence of observations rather than outputting a pre-
diction one frame at a time. We trained the RNN to
determine if sequential observations avoided the inherent
weakness of the single-frame observations. An RNN’s
applicability to sequential time series data may avoid
failures resulting from sensor noise, occlusion, and other
causes.

The simulator described in section III-A outputs ob-
servation sequences and the ground truth about the robot
structure from which the sequences were generated. We
used LSTM cells for each of the RNN’s hidden layers
consisting of a width equal to the number of nodes per
layer. We used the rectified linear unit (RELU) activation
function for the entire network. The cost evaluation was
given by L2 Euclidean distance between the predicted
and true labels.

We first tune hyper-parameters on the RNN model
to determine an optimal number of hidden layers and
an appropriate number of nodes per layer. We intended
to determine a network shape that reduced complexity
and still generalized to new data. Figure 3 shows the
reduction in test cost following each training epoch for
selected parameter permutations.

Of note, networks with one or two hidden layers
appeared to fail to learn enough about the input data.
Also interesting was the behavior of the network with
two layers and 180 nodes per layer. It appeared to learn

up to an asymptote before suddenly discovering a route
to a better optimum at epoch 38. This drastic behavior
change was something we hoped to avoid, and instead
decided to use the three layer network with 140 nodes
per layer, as this configuration provided smooth and
consistent learning behavior.

B. RNN Pipelining

The initial approach with the RNN models was to
train a single model capable of receiving an observation
and predicting both the number of links and the length
of each link. We later attempted a pipelined approach
such that these two predictions became decoupled and
occurred systematically. We trained a classifer to only
predict the correct number of links for the robot, out-
putting a one-hot vector of the format {l2 = 0, l3 =
1, l4 = 0, l5 = 0, l6 = 0} with all values equal to 0
except for a single 1, with this example signifying that
the specific observation was representative of a robot
with three links (l3 = 1). We then trained several multi-
output regression models, one for each of the possible
number of links. Our goal was to first have the one-hot
classifier determine the correct number of links before
passing the same observation to the appropriate second-
phase model which could then estimate the lengths of
those predetermined links. By specializing the models,
we hoped to more accurately predict the correct number
of links and their lengths.

V. EXPERIMENTAL RESULTS

Our first round of experiments were with the holistic
RNN model, where a single learner was fed observa-
tion sequences, each of 100 frames. The model was
trained to output a prediction vector of the format
[n, l0, l1, l2, l3, l4, l5], representing the number of links
and their predicted link lengths. Links with sufficiently
small lengths are dropped from the kinematic model.
Figure 4 shows the performance of the multi-learner
RNN model in terms of decrease in test error loss (red)

Fig. 3. Improvement during hyper-parameter tuning of the RNN.
Permutations of parameters shown are chosen to provide insights into
how various structural categories perform.



Fig. 4. Performance of RNN multi-learner. Red shows link count
error and blue shows test loss after each training epoch.

as well as the improvement in average link count error
across all test cases for each training epoch. The loss
against the test batch decreased each epoch as expected,
with a significant rate of improvement until it slowed
around epoch 20.

To calculate the average link count error shown in
Figure 4 (blue), the number of predicted links were
summed together across all test instances, before being
subtracted from the same calculation against the true
label. The calculation of the average link count error
for epoch i with t test observations is as follows, where
truthi and predi are the number of links for the true
label and predicted labels respectively for observation i:

errori =
|
∑t

n=1 truthn −
∑t

n=1 predn|
n

Figure 4 shows that test loss significantly decreased

Fig. 5. Performance of RNN one-hot link count classifier. Each line
shows the prediction accuracy for a particular link count.

(red), however it took longer for the model’s link count
accuracy to converge (blue). After 80 training epochs,
the tested average link count difference was still ap-
proximately 0.6 links, showing difficulty in accurately
predicting discrete link counts. This result led us to
decouple the classification logic into the pipelined ap-
proach explained in section IV-B, because we hypothe-
sized that specialized models would perform better when
only trained to perform a single specific task.

The pipelined RNN system consisted of two separate
layers of ordered learners. First, we trained a one-hot
classifier on the entire simulated data corpus in order
to output a discrete link-count prediction. Second, we
trained individual models to receive the same observa-
tion as the one-hot classifier and output a vector of link-
lengths. At a high level, the individual length prediction
models performed very well, but the overall accuracy
was limited by the model predicting the number of links.

Figure 5 shows the prediction accuracy for each of
the possible discrete link counts. This shows how many
observations the one-hot learner correctly predicted by
link count. This accuracy of this initial number of links
model varied depending on the true number of links,
showing the best performance at the extremes (two and
six-link manipulators). In practice, robots with three,
four, and five links are more difficult to differentiate
during a motion sequence. In cases where relatively few
bent joints are observed—that is, links are in a straight
line—it is still possible to make informed predictions
about extremely long or extremely short arms. Our
intention is to further investigate the performance and
training of the first stage of the model, initially by
exploring the use of more dynamic sequences of motion.

We then trained five models, each seeing only
data consisting of one of the five link-count values
(l = {2, 3, 4, 5, 6}). Figure 6 plots the test loss after

Fig. 6. Test loss reduction while training RNN per-link-count models,
one line per model.



Fig. 7. Mean discrepancy between true and predicted total length.

each of 100 training epochs. Each of the models showed
improvement until hitting an asymptote, although the
two-link model did continue to improve beyond where
the others leveled out. The two-link learner showed
slower learning during the first few epochs before it
found a faster improvement gradient.

Next, we focused on capturing the ability of the per-
link-count models to accurately predict the total length
of the observed robot. Figure 7 shows the reduction of
the average difference between the true and predicted
robot lengths after each epoch. The calculation for this
graph is as follows:

diff i =
|
∑t

n=1 len(truthn)−
∑t

n=1 len(predn)|
n

Despite the two-link learner making no progress early,
Figure 7 shows that all learners eventually converged to
a difference of approximately 1,000. We expected to see
an asymptote around that level resulting from how the
k-means skeletonizing dispersed centroids around the
robot’s point cloud. For n total skeleton points s0 to
sn−1 ordered from the robot’s base to the end-effector,
s0 can’t be located at the extreme end of the base as the
centroid must be in the middle of the points in its cluster.
Nor can sn−1 be at the tip of the end-effector since it
would be drawn inwards by the points in its cluster.
Consequently the skeleton points can’t fully capture the
entire length of the robot and this floor appears. With
higher values of k for k-means, one might expect this
discrepancy to decrease as skeleton centroids can more
closely approach the extreme ends of the robot.

Finally, Figure 8 shows the result of end-to-end
performance of the pipelined approach described in
section IV-B. The graph compares each robot’s true
total length (x) to the total length of the prediction
(y) following the one-hot classification and specialized

Fig. 8. Relationship between a simulated robot’s true total length
versus the post-pipeline prediction.

model evaluation. The points are colored based on their
respective predicted link counts, showing a trend up and
to the right following the growth of a robot’s potential
total length. The accuracy of the pipeline approach is
shown by the near-linear relationship between the true
and predicted lengths. There appears to be a ceiling in
the final 6-link series which is worth further investiga-
tion; however, Figure 8 demonstrates that our approach
can find useful morphologies through observation of
unscripted movement.

VI. CONCLUSION AND FUTURE WORK

In practice, even robots with shared capability in-
formation attempting to accomplish a shared goal can
require significant effort. Disconnected, heterogeneous
robotic systems can be made more adaptable and re-
silient by using a robust learning process. Two depth-
sensing robots who share a cooperative goal can learn
about each other by observation and use that morpho-
logical information to model capabilities.

In this paper we use supervised learning over observa-
tion of a specific, common structure, the non-branching
kinematic chain. We demonstrate that it is possible for
a recurrent neural network to use motion sequences
to determine a robot’s structure with some accuracy,
providing baseline context to a robot about the size
of its potential partner’s workspace. This method for
determining morphology from observation demonstrates
the promise of this area of research. In the future,
we will explore related subproblems. Specifically, the
behavior of the one-hot classifier stage of the pipeline
warrants additional study and experimentation, as does
formalizing a benchmark for the upper bounds on classi-
fication accuracy. Our future work will continue to focus
on the broad questions surrounding how robotic agents



with no initial shared structural knowledge can execute
cooperative tasks successfully.
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