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Abstract

This paper shows a complete upward collapse in the

Polynomial Hierarchy (PH) if for ZPP, two queries to a

SAT oracle is equivalent to one query. That is,

ZPPSAT[1] = ZPPSAT‖[2] =⇒ ZPPSAT[1] = PH.

These ZPP machines are required to succeed with prob-

ability at least 1/2 + 1/p(n) on inputs of length n for

some polynomial p(n). This result builds upon recent

work by Tripathi [16] who showed a collapse of PH to

SP
2 . The use of the probability bound of 1/2 + 1/p(n) is

justified in part by showing that this bound can be ampli-

fied to 1−2−nk
for ZPPSAT[1] computations. This paper

also shows that in the deterministic case,

PSAT[1] = PSAT‖[2] =⇒ PH ⊆ ZPPSAT[1]

where the ZPPSAT[1] machine achieves a probability of

success of 1/2−2−nk
.

1 Introduction

The two queries problem has been studied exten-

sively, beginning with Kadin [14] who showed that

PSAT[1] = PSAT‖[2] implies that the Polynomial Hierar-

chy (PH) collapses to the ΣP
3 level. Subsequent re-

sults [1, 8, 17, 18] brought the collapse further down,

to within ∆P
3 . A breakthrough in the proof techniques

came when Hemaspaandra, Hemaspaandra and Hempel

[13] showed that if the queries were made to a ΣP
3 or-

acle (instead of SAT), then PH ⊆ ΣP
3 which is a down-

ward collapse. Buhrman and Fortnow [2] improved this

technique and made it work for queries to a ΣP
2 oracle.

Fortnow, Pavan and Sengupta [11] then showed that

PSAT[1] = PSAT‖[2] =⇒ PH ⊆ SP
2
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which finally brought the collapse of PH below the ΣP
2

level.

One interesting thing about the class SP
2 is its relation-

ship to ZPPSAT [3, 4]:

ZPPSAT[1] ⊆ SP
2 ⊆ ZPPSAT.

Since Buhrman and Fortnow [2] also showed that

PSAT[1] = PSAT‖[2] =⇒ PSAT ⊆ PSAT[1],

we have the collapse

PSAT[1] = PSAT‖[2] =⇒

PSAT[1] = PSAT ⊆ ZPPSAT[1] ⊆ ZPPSAT‖[2]

= SP
2 = ZPPSAT = PH.

Note that PSAT[1] = PSAT‖[2] does not immediately im-

ply that ZPPSAT[1] = ZPPSAT‖[2] because a ZPP machine

can accept, reject or output “don’t know”. It takes two

queries to SAT to cover all three possibilities. How-

ever, this collapse is tantalizingly close to a complete up-

ward collapse of PH down to PSAT[1]. Indeed, Chang and

Purini [10] showed that under the NP Machine Hypoth-

esis, PSAT[1] = PSAT‖[2] implies that PH = PSAT[1] = NP.

This gives us some hope of proving a complete upward

collapse without the additional assumption of the NP

Machine Hypothesis.

Recently, Tripathi [16] considered the two queries

problem in the ZPP setting. He extended the result of

Fortnow, Pavan and Sengupta [11] and showed that

ZPPSAT[1] = ZPPSAT‖[2] =⇒ PH ⊆ SP
2 .

Here, the ZPP machines are required to achieve a proba-

bility of success of 1/2+1/poly. In this paper, we build

on Tripathi’s result and show a complete upward col-

lapse for ZPP:

ZPPSAT[1] = ZPPSAT‖[2] =⇒ PH ⊆ ZPPSAT[1].

Thus, we are able to prove in the ZPP setting what has

not been achieved in the deterministic setting.

These results require the ZPP machines to have a

probability of success of at least 1/2 + 1/poly. Without



any oracle queries, ZPP with 1/poly probability is equiv-

alent to ZPP with 1−1/exp probability by amplification.

However, amplification is difficult for ZPPSAT[k] because

directly simulating a ZPPSAT[k] machine t times uses tk

queries. Tripathi points out that the same 1/2 + 1/poly

bound was used by Cai and Chakaravarthy [4] to show

that BPP ⊆ ZPPSAT[1] and ZPPSAT[1] ⊆ SP
2 .

On the other hand, ZPPSAT[1] with just 1/poly proba-

bility of success is enough to collapse PH:

PSAT‖[2] ⊆ ZPP
SAT[1]
1/poly

=⇒ PH ⊆ ΣP
3 .

This is because PSAT‖[2] ⊆ ZPP
SAT[1]
1/poly

induces an ≤
rp
m -

reduction from SAT∧SAT to SAT∨SAT with probabil-

ity 1/poly, which is enough to collapse PH [9, 15].

(We use ZPP
SAT[q(n)]
α to denote languages recognized by

ZPPSAT[q(n)] machines which achieve a success probabil-

ity of at least α when the probability bound is not clear

from context.)

So, is there a correct probability bound to consider

for ZPPSAT[1]? Is there a natural choice? We are not able

to fully answer these questions. However, we are able to

narrow down the choices, because it turns out that you

can amplify ZPPSAT[1]. We show that:

ZPP
SAT[1]
1/poly

= ZPP
SAT[1]
1/4

and

ZPP
SAT[1]
1/2+1/poly

= ZPP
SAT[1]
1−1/exp

.

Without these amplifications, it might be the case that

ZPP
SAT[1]

1/2+1/n2 differs from ZPP
SAT[1]

1/2+1/n3, which would

make the definitions of these complexity classes highly

non-robust. The difficulty in these constructions is find-

ing a way to simulate several paths of a ZPPSAT[1] com-

putation without making additional queries. Here we

rely on the fact that SAT and SAT both have ORs. I.e.,

F1 ∨F2 ∨·· ·∨Ft ∈ SAT ⇐⇒ ∃i, Fi ∈ SAT

F1 ∧F2 ∧·· ·∧Ft ∈ SAT ⇐⇒ ∃i, Fi ∈ SAT.

(In general, we assume that formulas do not share any

variables.) Thus, these techniques would not extend to

ZPPSAT[k], for k ≥ 2, since they would require SAT∧SAT

to have ORs.

Nevertheless, these amplifications shed some light on

the two queries problem in the deterministic setting. We

can show that

PSAT[1] = PSAT‖[2] =⇒

PSAT[1] = PSAT

⊆ ZPP
SAT[1]
1−1/exp

= ZPP
SAT[1]
1/2+1/poly

⊆ ZPP
SAT[1]
1/2−1/exp

= ZPPSAT = PH.

Thus, the two “gaps” in the upward collapse can be

viewed as gaps in the probabilistic amplification of

ZPPSAT[1]. One gap occurs at

PSAT[1] = PSAT ⊆ ZPP
SAT[1]
1−1/exp

.

Can we use the polynomially more queries in PSAT to

offset the ability of ZPP
SAT[1]
1−1/exp

to output “don’t know”

very infrequently? This first gap can also be viewed as

a question about derandomizing ZPPSAT[1]. The second

gap occurs at

ZPP
SAT[1]
1/2+1/poly

⊆ ZPP
SAT[1]
1/2−1/exp

= PH.

Is it possible to amplify a ZPPSAT[1] computation with

less than 1/2 probability of success to 1/2+1/poly? Can

this be done with the assumption that PSAT[1] = PSAT‖[2]?

Answers to these questions would lead to the final reso-

lution of the two queries problem.

The rest of the paper is organized as follows. In Sec-

tion 2, we provide the usual definitions and discuss the

classification of the 1-query trees in a ZPPSAT[1] com-

putation. In Section 3, we show the amplification of

ZPPSAT[1]. In Section 4, we prove that PH collapses to

ZPPSAT[1] if ZPPSAT[1] = ZPPSAT‖[2]. Then in Section 5,

we show the ramifications of amplifying ZPPSAT[1] to

the two queries problem in the deterministic setting. Fi-

nally, we discuss the limits of amplification in Section 6

and pose some open problems in Section 7.

2 Preliminaries

Definition 1 Let q(n) be a polynomial-time computable

function and X be any language. We use PX [q(n)] to de-

note the class of languages recognized by deterministic

polynomial-time Turing machines which make at most

q(n) serial queries (a.k.a. adaptive queries) to the oracle

X on inputs of length n. When the queries are made in

parallel (non-adaptively), we use the notation PX‖[q(n)].

Also, when the machines are allowed any polynomial

number of queries, we simply use PSAT and PSAT‖.

Definition 2 We use ZPP
X [q(n)]
α to denote the class of

languages recognized by a ZPP machine with success

probability α which makes at most q(n) serial queries

to the oracle X on inputs of length n. Note that ZPP

machines can outputacc, rej or dk (for “don’t know”)

but are never allowed to give an incorrect output. Thus,

if M is a ZPP
X [q(n)]
α machine and L = L(M) then

x ∈ L =⇒ M(x) outputs acc or dk on all paths

x 6∈ L =⇒ M(x) outputs rej or dk on all paths.

Furthermore,

x ∈ L =⇒ Prob[M(x) outputs acc] ≥ α

x 6∈ L =⇒ Prob[M(x) outputs rej] ≥ α.



We use ZPP
X‖[q(n)]
α to denote the analogous class of

languages recognized by ZPP machines that make par-

allel queries to X . When the ZPP machines are allowed

any polynomial number of queries, we drop the query

bound q(n) from our notation. We also drop the proba-

bility bound α when it is clear from context or does not

matter.

We assume that the reader is familiar with the usual

probabilistic complexity classes such as RP and BPP.

We also assume familiarity with the use of Chernoff

bounds to amplify BPP computations.

Since ZPPSAT and ZPPSAT‖ are allowed polynomially

many queries to SAT, these computations can be ampli-

fied in the usual way. Thus,

ZPPSAT
1/poly

= ZPPSAT
1−1/exp

and

ZPP
SAT‖
1/poly

= ZPP
SAT‖
1−1/exp

.

Here we use 1/poly to denote 1/p(n) for some polyno-

mial p(n) and 1/exp to denote 2−nk
for some constant

k ≥ 1. Using the usual census trick [12], one can show

that for any α

ZPP
SAT‖
α = ZPP

SAT[O(logn)]
α .

Thus, ZPPSAT[O(logn)] can also be amplified:

ZPP
SAT[O(logn)]
1/poly

= ZPP
SAT[O(logn)]
1−1/exp

.

We think of a ZPPSAT[q(n)] computation as proceeding

in two stages. First the ZPP machine makes all of its

random moves. Then, at the end of each random path,

the ZPP machine asks q(n) queries to SAT forming an

oracle query tree. At each node of the tree, the machine

asks SAT whether some formula φ ∈ SAT. If the oracle

answers no, the computation proceeds to the left subtree

of the oracle query tree. If the oracle answers yes, the

right subtree is taken.

For ZPPSAT[1], the oracle query tree at the end of each

random path makes only 1 query. We classify these

1-query trees into 6 types. (See Figure 1.) The three

types of 1-query trees not shown produce the same out-

put regardless of the outcome of the oracle query (e.g.,

the machine outputs acc when the oracle says no and

when the oracle says yes). Such trees can be converted

to one of the 6 types without changing the behavior of

the ZPPSAT[1] machine. For convenience, we will also

say that a random path in the ZPPSAT[1] computation has

Type X if the 1-query tree at the end of the random path

has Type X .

Definition 3

SAT∧SAT = {(F,G) | F ∈ SAT and G ∈ SAT}.

SAT∨SAT = {(F,G) | F ∈ SAT or G ∈ SAT}.

Clearly, SAT∧SAT and SAT∨SAT are both lan-

guages in PSAT‖[2]. These two languages also have a spe-

cial role in the analysis of bounded query classes.

Given an oracle query tree T for a PSAT[q(n)] compu-

tation, the true path in the tree is the path taken using

the replies from the SAT oracle. Given a path π and

an oracle query tree T , the function ISTRUEPATH(T,π)
returns a pair of formulas (F,G) such that π is the true

path in T if and only if (F,G) ∈ SAT∧SAT. Here, F is

simply the conjunction of all the queries on the path π

that π assumes is satisfiable (the positive queries) and G

is the disjunction of all the queries that π assumes is un-

satisfiable (the negative queries). If π is indeed the true

path, then all of its positive queries must be satisfiable

and all of its negative queries must be unsatisfiable.

Definition 4 Let L be any language. We define OR(L)
and AND(L) as follows:

OR(L) = { 〈x1, . . . ,xt〉 | for some i, xi ∈ L }.

AND(L) = { 〈x1, . . . ,xt〉 | for all i, xi ∈ L }.

If OR(L)≤P
m L via a polynomial-time function f , we say

that L has ORs and call f the OR function. Similarly, if

AND(L)≤P
m L via f , we say that L has ANDs and call f

the AND function.

Clearly, both SAT and SAT have ORs and ANDs.

Chang and Kadin [7] observed that SAT∧SAT has

ANDs but does not have ORs unless PH collapses. Sim-

ilarly, SAT∨SAT has ORs but not ANDs unless PH col-

lapses.

Now, suppose that SAT∧SAT≤P
m SAT∨SAT. Using

the standard hard/easy argument, it follows that PH col-

lapses [14]. Chang, Rohatgi and Kadin [9] showed that

the hard/easy argument can be generalized to work for

≤
rp
m -reductions with probability 1/poly (defined below).

SAT∧SAT ≤
rp
m SAT∨SAT with prob. 1/poly

=⇒ PH ⊆ ΣP
3 .

The proof exploits the fact that SAT∨SAT has ORs since

the OR function can be used to combine the output of

polynomially many outputs of the ≤rp
m -reduction. Thus,

the success probability of the ≤
rp
m -reduction can be am-

plified from 1/poly to 1−1/exp.

Definition 5 We say that a language A ≤
rp
m -reduces to

B with probability α via a randomized polynomial-time

function f if

x ∈ A =⇒ Prob[ f (x) ∈ B] ≥ α

x 6∈ A =⇒ f (x) 6∈ B.

For the results in this paper, it is the hypothesis that

ZPPSAT[1] = ZPPSAT‖[2] which gives us an ≤
rp
m -reduction
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Figure 1. Six types of ZPPSAT[1] 1-query trees.

from SAT∧SAT to SAT∨SAT. (N.B.: we get an ≤
rp
m -

reduction and not a ≤
zpp
m -reduction.) This ≤

rp
m -reduction

will allow us to show in Section 4 that ZPPSAT[O(logn)] ⊆

ZPP
SAT‖[2]
1/2+1/poly

if for ZPP two queries to SAT is equiva-

lent to one.

3 Amplifying ZPPSAT[1]

Theorem 6 ZPP
SAT[1]
1/poly

= ZPP
SAT[1]
1/4−1/exp

.

Proof: Let L ∈ ZPP
SAT[1]
1/poly

via machine M. We say that

M(x) produces a definitive output on a random path if

it outputs either acc or rej on that path. Thus, for

some polynomial p(n), M(x) produces definitive output

on 1/p(n) of the random paths, where n = |x|. Now,

choose t(n) to be a polynomial large enough so that

(1−1/p(n))t(n) ≤ 2−n. Consider a set S of t(n) ran-

dom paths of M(x) chosen randomly. Then, with prob-

ability at least 1−2−n, M(x) produces definitive output

on at least one of the paths in S. Our new machine M′

produces definitive output on at least 1/4−1/exp of its

paths. We will have a special case when S contains a

Type ra or Type ar path, because M always produces a

definitive output on these paths.

M′(x):

1. Randomly sample t(n) random paths of M(x). Call

this set of paths S.

2. If S contains a Type ra or Type ar path, simulate

M(x) along the first such path and produce the same

output as M.

3. Let Qda, Qad, Qdr and Qrd be respectively the

queries asked on Type da, Type ad, Type dr and

Type rd paths in S. Construct the formulas:

φda =
∨

q∈Qda

q, φad =
∧

q∈Qad

q,

φdr =
∨

q∈Qdr

q, φrd =
∧

q∈Qrd

q.

As usual we assume that none of the formulas share

variables.

4. Choose one of the following 4 steps with equal

probability.

(a) Ask the SAT oracle if φda ∈ SAT.

If yes, output acc, otherwise output dk.

(b) Ask the SAT oracle if φad ∈ SAT.

If not, output acc, otherwise output dk.

(c) Ask the SAT oracle if φdr ∈ SAT.

If yes, output rej, otherwise output dk.

(d) Ask the SAT oracle if φrd ∈ SAT.

If not, output rej, otherwise output dk.

Clearly, M′(x) uses only 1 query to SAT. Also, M′(x)
only outputs acc or rej when it has confirmed that

M(x) has done the same. For example, if M′(x) out-

puts acc in Step 4b, then it has confirmed that one of

the queries on a Type ad path is unsatisfiable, which

means M(x) output acc on that path. Thus, M′(x) never

produces incorrect output. Finally, if S contains a path

where M(x) produces definitive output but S does not

have any Type ra or Type ar paths, then M(x) must do



so on a Type da, ad, dr or rd path. So, M′(x) has a

1/4 probability of picking the right formula in Step 4.

Thus, M′(x) outputs acc or rej with probability at

least 1/4 · (1−2−n) = 1/4−1/exp. 2

In the proof above, we can bump up the probability

of M′(x) slightly, by guessing a satisfying assignment

for the queries in Type da and Type dr paths before

proceeding to Step 4. Although the probability of find-

ing a satisfying assignment can be as low as 2−m where

m is the number of variables in the queries of M(x), it

allows M′(x) to output acc or rej without asking any

queries. Thus, we can lower the probability of choosing

φda and φdr to 1/4− 1/exp and raise the probability of

choosing φad and φrd to 1/4 + 1/exp, which pushes the

overall probability of success above 1/4. Intuitively, in

the cases where the only paths of S where M(x) produces

definitive output are of Type da or Type dr, M′(x) has

a 2−m + 1/4− 1/exp > 1/4 probability of success. We

omit the formal calculations here, but note that t(n) must

be chosen carefully.

Corollary 7 ZPP
SAT[1]
1/poly

= ZPP
SAT[1]
1/4

.

Theorem 8 ZPP
SAT[1]
1/2+1/poly

= ZPP
SAT[1]
1−1/exp

.

Proof: Let M be a ZPP
SAT[1]
1/2+1/poly

machine for some lan-

guage L. For some polynomial p(n), M succeeds with

probability 1/2+1/p(n) on inputs of length n. We con-

struct a new ZPPSAT[1] machine M′ that succeeds with

probability 1− 1/exp. Steps 1 to 3 of M′ is identical to

those in Theorem 6 except for the choice of t(n). In the

new Step 4, we choose φda, φad, φdr or φrd as follows:

4. Let tda, tad, tdr and trd be respectively the number

of Type da, ad, dr and rd paths in S.

(a) If tda + tad ≥ tdr + trd and tda ≥ tad then ask

if φda ∈ SAT. If yes, output acc, otherwise

output dk.

(b) If tda + tad ≥ tdr + trd and tda < tad then ask

if φad ∈ SAT. If not, output acc, otherwise

output dk.

(c) If tda + tad < tdr + trd and tdr ≥ trd then ask

if φdr ∈ SAT. If yes, output rej, otherwise

output dk.

(d) If tda + tad < tdr + trd and tdr < trd then ask

if φrd ∈ SAT. If not, output rej, otherwise

output dk.

Note that the four cases in Step 4 partition all possi-

bilities. As before, M′ uses only one query to SAT and

never produces incorrect output. Thus, we only need to

check that M′ succeeds with probability 1−1/exp.

Suppose that x ∈ L. Then, M′ might output acc or

dk. We need to show that M′ outputs dk on at most

1/exp of the random paths. So, let A be the set of ran-

dom paths where M(x) outputs acc and let B be the

paths where M(x) outputs dk. (Since x ∈ L, M(x) can-

not output rej.)

Also, since x ∈ L, at least 1/2+1/poly of the paths of

M(x) are in A. Using Chernoff bounds, for any constant

k, we can choose t(n) to be a polynomial large enough

such that

ProbS [ |S∩A| ≤ |S∩B| ] ≤ 2−nk

.

When |S∩A| ≤ |S∩B| we say that S is bad. It suffices

to show that S is bad whenever M′(x) outputs dk.

So, suppose M′(x) outputs dk for a fixed S. Since

M′(x) never outputs dk in Step 2, it can only do so in

Step 4. Thus, S does not have any Type ra or Type ar

paths. In general, A contains only Type da, ra, ar and

ad paths and B contains only Type da, ad, dr and rd

paths. So, tdr + trd ≤ |S∩B|. Also, since there are no

Type ra and Type ar paths in S, |S∩A| ≤ tda + tad.

Now, suppose that M′(x) outputs dk in Step 4c or in

Step 4d. Then, tda + tad < tdr + trd. Therefore,

|S∩A| ≤ tda + tad < tdr + trd ≤ |S∩B|

and S is bad.

Next, suppose that M′(x) outputs dk in Step 4b.

Then, φad ∈ SAT. That means every query q ∈ Qad is

satisfiable, so none of the Type ad paths in S are in

A. Hence, all of the Type ad paths in S are in B, so

tad ≤ |S ∩B|. Furthermore, since S ∩A does not have

any Type ad paths, the only remaining type in S ∩ A

is Type da. Thus, |S ∩ A| ≤ tda. For Step 4b to be

executed, tda < tad. Putting it all together, we have

|S∩A| ≤ tda < tad ≤ |S∩B| and S is bad.

Finally, suppose that M′(x) outputs dk in Step 4a.

Then, φda 6∈ SAT. That means none of the Type da paths

in S output acc. So, S∩A has no Type da paths. Then

all of the Type da paths in S are in B, which implies

tda ≤ |S∩B|. Since S∩A has no Type da paths, the only

remaining type in S∩A is Type ad. Then, |S∩A| ≤ tad.

For Step 4a to be executed, tad ≤ tda. Therefore, we have

|S∩A| ≤ tad ≤ tda ≤ |S∩B| and S is bad.

We have checked that when x ∈ L, in every case

where M′(x) outputs dk, S is bad. The proof for x 6∈ L

is symmetrical. Since S being bad occurs with 1/exp

probability, ZPP
SAT[1]
1/2+1/poly

= ZPP
SAT[1]
1−1/exp

. 2

The statement ZPP
SAT[1]
1/2+1/poly

= ZPP
SAT[1]
1−1/exp

only re-

quires that for every polynomial p(n), that ZPP
SAT[1]
1/2+1/p(n)



is contained in ZPP
SAT[1]

1−2−nk for some constant k. The

proof above actually shows containment for all con-

stants k.

Corollary 9 For any polynomial p(n) and for all con-

stants k, ZPP
SAT[1]
1/2+1/p(n) ⊆ ZPP

SAT[1]

1−2−nk .

4 Two Queries for ZPP

Our main theorem, Theorem 16, shows that for

ZPP machines with success probability 1/2 + 1/poly,

if ZPPSAT[1] = ZPPSAT‖[2] then we have a complete up-

ward collapse of PH down to ZPPSAT[1]. We will prove

this upward collapse in two steps. First, we show in

Theorem 11 that ZPPSAT[O(logn)] collapses to ZPPSAT‖[2].

Then in Theorem 15 we show that ZPPSAT collapses to

ZPPSAT[O(logn)].

Lemma 10 If ZPP
SAT‖[2]
1/2+1/poly

⊆ ZPP
SAT[1]
1/2+1/poly

, then

SAT∧SAT≤
rp
m SAT∨SAT

with probability 1−1/exp.

Proof: Since SAT∧SAT can be recognized with two par-

allel queries to SAT, the hypothesis of the lemma gives

us SAT∧SAT∈ZPP
SAT[1]
1/2+1/poly

via some machine M. Our

first ≤
rp
m -reduction h1 guesses a random path of M(F,G)

and reduces the 1-query tree at the end of the path to

SAT∨SAT:

h1(F,G):

1. Guess a random path y of M(x). Let q be the query

to SAT asked on y.

2. Consider the type of the random path y:

Types da and ra: output (true,q).

Types ar and ad: output (q,false).

Types dr and rd: output (true,false).

It is easy to check that h1 is an ≤
rp
m -reduction from

SAT∧SAT to SAT∨SAT with probability 1/2 + 1/poly.

We can amplify the probability of h1 by combining the

output of h1 on nk random paths using the OR function

for SAT∨SAT. The resulting ≤
rp
m -reduction h succeeds

with probability at least 1−2−nk
. 2

Theorem 11 If ZPP
SAT‖[2]
1/2+1/poly

⊆ ZPP
SAT[1]
1/2+1/poly

then

ZPPSAT[O(logn)] ⊆ ZPP
SAT‖[2]
1−1/exp

.

Proof: Since SAT∨SAT can be recognized using two

queries to a SAT oracle, the hypothesis of this theo-

rem places SAT∨SAT in ZPP
SAT[1]
1/2+1/poly

. Furthermore,

since SAT∨SAT has ORs, the language OR(SAT∨SAT)

is also in ZPP
SAT[1]
1/2+1/poly

. Recall that OR(SAT∨SAT) is

defined as the set of tuples 〈(φ1,ψ1), . . . ,(φm,ψm)〉 such

that some pair (φi,ψi) ∈ SAT∨SAT.

By Corollary 9, we can amplify ZPP
SAT[1]
1/2+1/poly

and

increase the probability of success to 1− 1/exp. So let

M1 be a ZPP
SAT[1]
1−1/exp

machine for OR(SAT∨SAT) and let

h be the ≤
rp
m -reduction from SAT∧SAT to SAT∨SAT

given by Lemma 10. Then, given m pairs of formulas

(F1,G1),(F2,G2), . . . (Fm,Gm), we have:

• If there exists i, such that (Fi,Gi)∈ SAT∧SAT, then

M1(h(F1,G1), . . . ,h(Fm,Gm)) accepts with proba-

bility at least 1−1/exp.

• If for all i, we have (Fi,Gi) 6∈ SAT∧SAT, then

M1(h(F1,G1), . . . ,h(Fm,Gm)) rejects with proba-

bility at least 1− 1/exp and outputs dk on paths

where it does not reject.

The probability here is taken over the joint distribution

of the coin tosses of h and of M1. Note that this is not

a ZPPSAT[1] computation for OR(SAT∨SAT) because

there is a small chance that some (Fi,Gi) ∈ SAT∧SAT

but M1 outputs rej. This one-sided error is caused by

the one-sided error of the ≤
rp
m -reduction h. This does

not matter as long as our final ZPPSAT‖[2] machine does

not make any errors.

Let L be a language in ZPPSAT[O(logn)] via some ma-

chine M2. By amplification, we can assume that M2 suc-

ceeds with probability 1− 1/exp. We now construct a

ZPP
SAT‖[2]
1−1/exp

machine M3 for L.

M3(x):

1. Randomly choose a random path y of M2(x) and let

Ty be the O(logn) query tree on path y.

2. Collect the paths π1, ...,πs in Ty where M2 outputs

acc. Let (Fi,Gi) = ISTRUEPATH(Ty,πi).

3. Collect the paths ρ1, ...,ρt in Ty where M2 outputs

rej. Let (F ′
i ,G

′
i) = ISTRUEPATH(Ty,ρi).

4. In parallel, simulate the two computations [addi-

tional note below]:

M1(h(F1,G1), . . . ,h(Fs,Gs)) and

M1(h(F ′
1,G

′
1), . . . ,h(F ′

t ,G
′
t)).

5. If M1(h(F1,G1), . . . ,h(Fs,Gs)) outputs acc, M3

outputs acc.



6. If M1(h(F ′
1,G

′
1), . . . ,h(F ′

t ,G
′
t)) outputs acc, M3

outputs rej.

7. Otherwise, M3 outputs dk.

Since the query trees of M2 have O(logn) height,

Steps 2 and 3 take polynomial time. Also, the only

queries to SAT are the two queries asked in Step 4 where

M1 is simulated twice. We need to be careful here and

ask the queries from the two simulations in one parallel

step. More precisely, pick two random paths, r and r′ of

M1, then determine the query q asked by M1 on path r on

input 〈h(F1,G1), . . . ,h(Fs,Gs)〉 and the query q′ asked

by M1 on path r′ on input 〈h(F ′
1,G

′
1), . . . ,h(F ′

t ,G
′
t)〉. Ask

in parallel whether q and q′ are in SAT. Finally, using the

SAT oracle’s reply, determine M1’s output on the two in-

puts.

Now suppose that x ∈ L. Then, the vast majority of

the random paths of M2(x) output acc. On these paths,

the true path in the oracle query tree must output acc.

Hence, one of the (Fi,Gi) computed in Step 2 must be

in SAT∧SAT. Then, M3(x) will output acc in Step 5

with probability at least 1−1/exp. The probability that

x ∈ L but M2(x) outputs dk is only 1/exp, so the overall

probability that M3(x) accepts is still ≥ (1−1/exp)·(1−
1/exp) = 1−1/exp.

The case that x 6∈ L is symmetrical. On random paths

where M2(x) reject, the true path must outputrejwhich

means that one of the (F ′
i ,G

′
i) pairs is in SAT∧SAT.

Then, M3(x) will output rej in Step 6 with probabil-

ity at least 1−1/exp.

Finally, because the ≤
rp
m -reduction h makes one-

sided errors (on the correct side) and because M1 is

a ZPPSAT[1] machine that never gives incorrect output,

when M1 outputs acc in Step 5 or Step 6, we have a

witness for M2(x) accepting or rejecting. Thus, M3(x)
never outputs acc or rej incorrectly. Therefore, L ∈

ZPP
SAT‖[2]
1−1/exp

. 2

Our next theorem will show that if ZPPSAT[1] =
ZPPSAT‖[2] then ZPPSAT ⊆ ZPPSAT[O(logn)]. The out-

line of the proof is similar to the proof in Buhrman

and Fortnow [2] that PSAT[1] = PSAT‖[2] implies PSAT ⊆
PSAT[O(logn)]. That is, we define hard and easy strings

then use O(logn) queries and binary search to find the

level of the first query on the true path of a PSAT com-

putation that is a hard string. Once this level number

has been found, it can be incorporated in one more SAT

query which allows an NP machine to find this hard

string. With a hard string, the NP machine can recog-

nize SAT and thereby simulate the PSAT computation to

the end.

The complication we have here is that the hard strings

we define do not always result in an NP algorithm

for SAT. We can end up with a BPP algorithm for

SAT. This BPP algorithm can make two-sided errors,

which is problematic because we want to construct a

ZPPSAT[O(logn)] machine that makes no errors. Correct-

ing for the two-sided error of the BPP algorithm is the

main innovation in the proof. We now give the formal

definition of easy for this proof.

Definition 12 Suppose that SAT∧SAT ∈ ZPP
SAT[1]

1−2−n3 via

M1. For a fixed length n, we say a formula G of length n

is easy if there exists a formula F , |F |= n, and a random

path r of M1(F,G) such that r is Type da or Type ra and

the query q on r is satisfiable.

Note that an NP machine can check whether a given

formula G is easy by guessing a formula F , a random

path r and a satisfying assignment for the query q on

path r of M1(F,G). Furthermore, since M1 outputs acc

in Type da and Type ra paths when the query is sat-

isfiable, the NP machine has also verified that (F,G) ∈
SAT∧SAT and, in particular, that G ∈ SAT. Thus, for

easy G, unsatisfiability can be verified by an NP ma-

chine.

Definition 13 A formula H of length n is hard if H ∈
SAT and H is not easy.

Typically, in hard/easy arguments, a hard string of

length n also gives us a way to verify the unsatisfiability

of formulas of length n. However, using our definitions

of hard and easy, we might only have probabilistic “evi-

dence” of unsatisfiability.

To see this, suppose that SAT∧SAT ∈ ZPP
SAT[1]

1−2−n3 via

M1. Let H be a hard string of length n, let F be some

formula we would like to verify is unsatisfiable and let r

be a random path in M1(F,H).

Case 1: Suppose r is a Type ra path in M1(F,H).
Since H is hard, the query q on r must be in SAT.

Thus, M1 outputs rej on r. This verifies that (F,H) 6∈
SAT∧SAT and we can conclude that F ∈ SAT (since

H ∈ SAT). Thus, a Type ra random path in M1(F,H)
witnesses the unsatisfiability of F . (Note that we do not

need to check whether q ∈ SAT in this case.)

Case 2: Suppose r is a Type ar path in M1(F,H). Let

q be the query on r. If q ∈ SAT, then M1(F,H) outputs

rej and (F,H) 6∈ SAT∧SAT. Since H ∈ SAT, we have

F ∈ SAT as well. Conversely, if q 6∈ SAT, then M1(F,H)
outputsacc, which implies that (F,H)∈ SAT∧SAT and

in particular, F ∈ SAT. Thus, when we find a Type ar

path, we get F ∈ SAT ⇐⇒ q ∈ SAT. So, a satisfying

assignment for F witnesses F ∈ SAT and a satisfying

assignment for q witnesses F ∈ SAT.



Case 3: Suppose that r is a Type dr or Type rd path

in M1(F,H). If F ∈ SAT, then (F,H) ∈ SAT∧SAT and

M1(F,H) must output acc with probability 1 − 2−n3
.

Since M1 cannot output acc on Type dr and rd paths,

it is unlikely that F ∈ SAT and a randomly chosen r is

Type dr or rd:

F ∈ SAT =⇒ (1)
Probr[ r is Type dr or rd in M1(F,H) ] ≤ 2−n3

.

So, r being Type dr or rd is probabilistic “evidence”

that F ∈ SAT.

Case 4: Suppose that r is a Type da or Type ad path

in M1(F,H). Here, we have probabilistic evidence that

F ∈ SAT, since F ∈ SAT means (F,H) 6∈ SAT∧SAT and

M1 cannot output rej on Type da and ad paths.

F ∈ SAT =⇒ (2)
Probr[ r is Type da or ad in M1(F,H) ] ≤ 2−n3

.

Note that Equations 1 and 2 hold regardless of the

existence of Type ra and Type ar random paths in

M1(F,H). We might combine Case 3 and 4 into a BPP

algorithm for SAT. However, such an algorithm will

make two-sided errors and cannot be used directly in the

construction of a ZPPSAT[O(logn)] machine that must not

make any error. We take two measures to correct these

potential errors.

First, we identify the random paths r where we have

a satisfiable formula F of length n but r is nevertheless

Type dr or rd. We call such r bad:

Definition 14 We call a random path r bad with respect

to a hard string H and a length n if there exists a for-

mula F , |F| = n, such that F ∈ SAT but r is Type dr

or Type rd in M1(F,H).

There are indeed very few bad r. By Equation 1 and

the fact that there are less than 2n satisfiable formulas of

length n

Probr





∃F ∈ SAT, |F | = n,
and r is Type dr or rd

in M1(F,H)



 ≤ 2−n2
. (3)

Thus, the probability that a randomly chosen r is not bad

is at least 1−2−n2
.

Checking whether a particular r is bad can be done

in NP by guessing a formula F with length n, guess-

ing a satisfying assignment for F and checking that r is

Type dr or rd. Otherwise, if r is not bad, then we have

a guaranteed witness for the unsatisfiability of F :

∀F, |F | = n, (4)
[

r is Type dr or rd in M1(F,H) =⇒ F ∈ SAT
]

.

Our strategy is to have our ZPPSAT[O(logn)] machine

guess an r and ask SAT if r is bad. If r is indeed bad, the

machine outputs dk and gives up. Otherwise, it uses r

in subsequent queries as a witness for unsatisfiability.

Our second measure involves Case 4. Here an er-

ror might occur if F ∈ SAT but r is Type da or ad in

M1(F,H) which would cause us to infer that F ∈ SAT.

So, we simply have an NP machine guess a satisfying

assignment for F whenever we find that r is Type da

or ad. The concern here is that if F is actually in SAT,

then all branches of the NP machine will terminate and

the NP machine will not be able carry out more simu-

lations. However, the probability of this event is again

very low. Using Equation 2 we have

Probr





∃F ∈ SAT, |F | = n,
and r is Type da or ad

in M1(F,H)



 ≤ 2−n2

. (5)

Finally, we still have to contend with the issue of find-

ing a hard string H. We look for a hard string in the PSAT

oracle query tree T at the end of a ZPPSAT random path.

To do this, we ask the NP question:

Are the first k queries on the true path of T

either satisfiable or easy?

The trick here is that we do not have to provide the true

path of T . An NP machine N1 can guess a path from the

root of T to a node in level k. For each positive query

on the path (i.e., those queries that the path assumes are

satisfiable), N1 can guess a satisfying assignment for the

query. For each negative query, N1 will verify that it

is easy (since the assumption is that none of the first k

queries are hard). This simultaneously verifies that the

path N1 guessed is an initial segment of the true path and

that each of the first k queries is satisfiable or easy. Using

N1 and binary search, the level of the first hard query on

the true path can be found using O(logn) queries to SAT.

Theorem 15 If ZPP
SAT‖[2]
1/2+1/poly

⊆ ZPP
SAT[1]
1/2+1/poly

then

ZPPSAT ⊆ ZPPSAT[O(logn)].

Proof: Let L ∈ ZPPSAT. By amplification, we can as-

sume that there is a ZPPSAT machine M5 that recog-

nizes L with success probability 1−2−n3
. Furthermore,

for notational convenience, assume that all the queries

to SAT made by M5 on inputs of length n have the

same length m. By Corollary 9, we can assume that

SAT∧SAT ∈ ZPP
SAT[1]

1−2−n3 via some machine M1. Now,

we can construct a ZPPSAT[O(logn)] machine M6:

M6(x):

1. Guess a random path y of M5(x) and consider the

oracle query tree Ty at the end of the random path

y. [Note: The tree Ty can be exponential in size, so

we do not want to actually construct it.]



2. Guess a random path r for M1 long enough for for-

mulas of length m.

3. Use binary search and N1 (as described above) to

find the first query on the true path of Ty that is a

hard string. [This uses O(logn) queries to SAT.]

4. If the true path of Ty does not have any hard queries,

use 2 more queries to SAT to determine if M5(x) on

random path y output acc, rej or dk at the end of

the true path of Ty, then output the same value and

terminate.

5. Otherwise, let k be the level in Ty where the first

hard query appears on the true path.

6. Construct an NP machine N2 that on input (r,k)
finds the hard string H on level k of the true path

and accepts if r is bad with respect to H and m.

Ask SAT whether N2(r,k) accepts. If yes, output

dk and terminate (because r is bad).

7. Construct an NP machine N3 that accepts input

(x,r,y,k) if M5(x) on random path y outputs acc

at the end of the true path for Ty. Similarly, con-

struct an NP machine N4 that accepts (x,r,y,k) if

M5(x) outputs rej on random path y. [Detailed

descriptions of N3 and N4 are given below.]

8. Ask the SAT oracle whether N3(x,r,y,k) accepts

and whether N4(x,r,y,k) accepts. If N3 accepts,

output acc. If N4 accepts, output rej. Otherwise,

when both N3 and N4 reject, output dk.

It is clear from the description of M6 that it makes

at most O(logn) queries to SAT. To check that M6 does

not make any errors — i.e., output acc when x 6∈ L or

output rej when x ∈ L — we need to examine the NP

machines N3 and N4 more closely:

N3(x,r,y,k):

1. Simulate M5(x) on random path y until the oracle

query tree Ty is reached.

2. Assume that the first k−1 queries on the true path

of Ty are either satisfiable or easy. Guess and verify

the first k−1 queries of the true path. This recovers

the initial k−1 segment of the true path.

3. Recover the k-th query on the true path of Ty. Use

this query as a hard string H.

4. If more queries remain [on what will turn out to be

the true path], let φ be the next query.

(a) If r is Type ra in M1(φ ,H) conclude that φ ∈
SAT. Repeat Step 4.

(b) If r is Type ar in M1(φ ,H), let q be the

query M1(φ ,H) asks on r. Conclude that φ ∈
SAT ⇐⇒ q ∈ SAT. Guess whether φ ∈ SAT

or φ ∈ SAT, then verify by guessing a satisfy-

ing assignment for φ or for q. Repeat Step 4.

(c) If r is Type dr or rd conclude that φ ∈ SAT.

Repeat Step 4.

(d) If r is Type da or ad, conclude that φ ∈ SAT.

Confirm that φ is indeed satisfiable by guess-

ing a satisfying assignment for φ . Repeat

Step 4.

5. Accept if M5 outputs acc on the true path.

The NP machine N4 does the same thing as N3 except

the last step where N4 accepts if M5 outputs rej.

Correctness of M6: We claim that N3 correctly recovers

the true path in Ty as long as r is not bad and k is in-

deed the level of the first hard query on the true path in

Ty. The correctness of the first k steps of the true path is

guaranteed by the correctness of k. For queries after the

k-th query, if r is Type ra or Type ar, then correctness

is guaranteed by the hardness of H. (See Cases 1 and 2

above.) If N3 concludes that φ ∈ SAT in Step 4c, then φ

must indeed be in SAT because M6 has already checked

that r is not bad relative to the hard string H and formu-

las with length m. (See the justification for Equation 4.)

If N3 concludes that φ ∈ SAT in Step 4d, it also finds a

satisfying assignment for φ .

Thus, if N3 accepts, then it has verified that M5 out-

puts acc on random path y. Note that if N3 fails to find

a satisfying assignment for some φ ∈ SAT in Step 4d, it

could only cause M6 to output dk. Similarly, N4 accepts

only when it has verified that M5 outputsrej on random

path y. Thus, M6 only outputs acc or rej when it has

confirmed that M5 has done the same. Therefore, M6

never outputs acc when x 6∈ L and never outputs rej

when x ∈ L.

Probabilistic Analysis of M6: Now we can bound the

probability that M6(x) outputs dk. First, for all choices

of a random path y where M5(x) outputs dk, M6(x) will

also output dk. The probability that M5(x) outputs dk

is at most 2−n3
. Second, M6(x) might output dk be-

cause r is bad, but r is bad with probability at most

2−m2
by Equation 3. Finally, M6 might output dk be-

cause all nondeterministic paths of N3 or N4 terminated

in Step 4d while trying to guess a satisfying assignment

for some φ ∈ SAT. By Equation 5, this event occurs with

probability at most 2−m2
. Therefore, the probability that

M6(x) outputs dk is no more than 2−n3
+ 2−m2

+ 2−m2
.

Hence, M6 succeeds with probability 1−1/exp. 2



Theorem 16 If ZPP
SAT[1]
1/2+1/poly

= ZPP
SAT‖[2]
1/2+1/poly

then

PH ⊆ ZPP
SAT[1]
1/2+1/poly

.

Proof: Tripathi [16] showed that

ZPP
SAT[1]
1/2+1/poly

= ZPP
SAT‖[2]
1/2+1/poly

=⇒ PH ⊆ SP
2 .

By Cai’s result [3], SP
2 ⊆ ZPPSAT, so PH collapses

to ZPPSAT. Theorem 15 brings the collapse down

ZPPSAT[O(logn)] which Theorem 11 shows is contained

in ZPP
SAT‖[2]
1/2+1/poly

. Finally, using the hypothesis of the

theorem, PH ⊆ ZPP
SAT[1]
1/2+1/poly

. 2

5 Two Queries for P

Lemma 17 If PSAT[1] = PSAT‖[2] then

ZPPSAT[O(logn)] ⊆ ZPP
SAT[1]
1/2−1/exp

.

Proof Sketch: Since PSAT[1] = PSAT‖[2] does not imme-

diately imply that ZPP
SAT[1]
α = ZPP

SAT‖[2]
α , Theorem 16

does not help us. Instead, this proof is similar to the

proof of Theorem 11. Here, we exploit the fact that

PSAT[1] = PSAT‖[2] implies that SAT∧SAT≡P
m SAT∨SAT.

This in turn implies that SAT∧SAT has OR’s and, more

importantly, that there exists a PSAT[1] machine M1 which

takes as input (F1,G1), . . . ,(Fn,Gn) and accepts if and

only if one of the (Fi,Gi) is in SAT∧SAT.

Let M2 be a ZPPSAT[O(logn)] machine for some lan-

guage L. By amplification, we can assume that the prob-

ability of success for M2 is 1− 1/exp. As in the proof

of Theorem 11, we construct an M3 that simulates M2

along a random path and collect together paths in the or-

acle query tree where M2 outputs acc and paths where

M2 outputrej. Then, we use the ISTRUEPATH function

to reduce each path to SAT∧SAT. Instead of simulating

two ZPPSAT[1] computations in parallel, we simply guess

with 1/2 probability whether M2 accepts or rejects, and

confirm this guess using M1. Since M1 is a PSAT[1] ma-

chine, which is deterministic, there is no error involved

in using M1. The only errors are from guessing whether

M2 accepts or rejects and from M2 producing output dk

on 1/exp of the paths. Thus, the overall probability of

success of M3 is (1/2) · (1−1/exp) = 1/2−1/exp. 2

Note that the “bumping” trick we used in Corollary 7

to prove that ZPP
SAT[1]
1/poly

= ZPP
SAT[1]
1/4

does not work here

because there is no analog of “guessing a satisfying as-

signment” for SAT∧SAT. As we mentioned in the in-

troduction, the following theorem allows us to interpret

the gaps in the collapse of PH when PSAT[1] = PSAT‖[2] in

terms of gaps in the amplification of ZPPSAT[1].

Theorem 18 If PSAT[1] = PSAT‖[2] then

PSAT[1] = PSAT

⊆ ZPP
SAT[1]
1−1/exp

= ZPP
SAT[1]
1/2+1/poly

⊆ ZPP
SAT[1]
1/2−1/exp

= ZPPSAT = PH.

Proof: We know PSAT[1] = PSAT‖[2] implies PSAT[1] =
PSAT from Buhrman and Fortnow [2]. Fortnow, Pa-

van and Sengupta [11] give us PH ⊆ SP
2 . Cai showed

SP
2 ⊆ ZPPSAT. Since PSAT[O(logn)] = PSAT does imply

ZPPSAT[O(logn)] = ZPPSAT, we just need Lemma 17 to

bring PH down to ZPP
SAT[1]
1/2−1/exp

. Finally, ZPP
SAT[1]
1−1/exp

=

ZPP
SAT[1]
1/2+1/poly

is Theorem 8 and PSAT ⊆ ZPP
SAT[1]
1−1/exp

be-

cause PSAT[1] ⊆ ZPP
SAT[1]
1−1/exp

and PSAT = PSAT[1]. 2

6 The Limits of Amplification

We know that we can amplify the success probabil-

ity for ZPP, ZPPSAT, ZPPSAT‖ machines from 1/poly

to 1 − 1/exp. But what can we say about amplifying

ZPPSAT[k] and ZPPSAT‖[k] machines, when k is a con-

stant? For ZPPSAT[1] machines, we have shown that

ZPP
SAT[1]
1−1/exp

= ZPP
SAT[1]
1/2+1/poly

⊆ ZPP
SAT[1]
1/4

= ZPP
SAT[1]
1/poly

.

This leaves us with a gap between the complexity classes

ZPP
SAT[1]
1/2+1/poly

and ZPP
SAT[1]
1/4

. Can these two complexity

classes be equal? If we conjecture they are not equal,

can we show some supporting evidence? Perhaps PH

collapses if these two complexity classes are equal? For

ZPPSAT[1] machines we do not have an answer in either

direction. However for ZPPSAT‖[k] machines and k ≥ 2,

we give a partial answer using results by Rohatgi [15]

who showed a trade-off between success probability and

the number of queries. We start with some definitions.

Definition 19 For constant k, we define the languages

BLk, coBLk and ODDk as follows. First, BL1 = SAT.

BL2k = { 〈x1, . . . ,x2k〉 | 〈x1, . . . ,x2k−1〉 ∈ BL2k−1

and x2k ∈ SAT }

BL2k+1 = { 〈x1, . . . ,x2k+1〉 | 〈x1, . . . ,x2k〉 ∈ BL2k

or x2k+1 ∈ SAT }

coBLk = {〈x1, . . . ,xk〉 | 〈x1, . . . ,xk〉 6∈ BLk}

ODDk = {〈x1, . . . ,xk〉 | the number of xi ∈ SAT is odd}.

The languages BLk and ODDk are ≤P
m -complete lan-

guages for the kth level of Boolean Hierarchy [5, 6].



Definition 20 We say that a sequence of Boolean for-

mulas 〈F1, . . . ,Fk〉 is nested if for all i, 2 ≤ i ≤ k,

Fi ∈ SAT =⇒ Fi−1 ∈ SAT.

Given any sequence of formulas 〈F1, . . . ,Fk〉 we can

construct a sequence of nested formulas 〈F ′
1, . . . ,F

′
k〉 in

polynomial time such that 〈F1, . . . ,Fk〉 ∈ ODDk ⇐⇒
〈F ′

1, . . . ,F
′
k〉 ∈ ODDk. Simply let F ′

j = Fj ∨·· ·∨Fk.

Theorem 21 (Rohatgi [15]) For k ≥ 1,

BL2k+2≤
rp
m BL2k, BL2k+1≤

rp
m BL2k and

BL2k+2≤
rp
m BL2k+1

with success probability σk = 1− 1/(k + 1). Further-

more, improving the probability of success from σk to

σk + 1/poly in any of the ≤rp
m -reductions above implies

PH collapses.

Rohatgi’s theorem above gives us an indication of

the best success probability that can be shown for ≤
rp
m -

reductions between adjacent levels of Boolean Hierar-

chy. It also provides insight on the limits of probabil-

ity amplification for RPSAT‖[k] machines. For example,

since BL2k+1 is contained in RP
SAT‖[2k]
σk

, we have

RP
SAT‖[2k]
σk

⊆ RP
SAT‖[2k]
σk+1/poly

=⇒ PH collapses.

Similarly, BL2k+2 ∈ RP
SAT‖[2k+1]
σk

, so

RP
SAT‖[2k+1]
σk

⊆ RP
SAT‖[2k+1]
σk+1/poly

=⇒ PH collapses.

For RPSAT‖[2k] and RPSAT‖[2k+1] machines, we get

RP
SAT‖[2k]
σk+1/poly

( RP
SAT‖[2k]
σk

and

RP
SAT‖[2k+1]
σk+1/poly

( RP
SAT‖[2k+1]
σk

unless PH collapses. Here, we prove similar results for

ZPPSAT‖[2k] and ZPPSAT‖[2k+1] machines. But for techni-

cal reasons we have to work with ODDk instead of BLk.

Lemma 22 For k ≥ 1 and σk = 1−1/(k + 1),

ODD2k+2 ∈ ZPP
SAT‖[2k]
σk

,

ODD2k+1 ∈ ZPP
SAT‖[2k]
σk

, and

ODD2k+2 ∈ ZPP
SAT‖[2k+1]
σk

.

Furthermore improving the success probability of any of

the above machines from σk to σk + 1/poly implies PH

collapses.

Proof: We shall prove that ODD2k+2 ∈ ZPP
SAT‖[2k]
σk

which implies ODD2k+2 ∈ ZPP
SAT‖[2k+1]
σk

. Furthermore,

since we know ODD2k+1≤
P
m ODD2k+2, we will also

have ODD2k+1 ∈ ZPP
SAT‖[2k]
σk

.

Consider 〈F1, . . . ,F2k+2〉, a (2k + 2)-tuple of formu-

las. W.l.o.g., assume the formulas are nested. Now con-

sider the set S = { (F2i−1,F2i) | 1 ≤ i ≤ k + 1 }. The

ZPPSAT‖[2k] machine uniformly randomly picks an ele-

ment from S and drops the corresponding pair from the

(2k + 2)-tuple 〈F1, . . . ,F2k+2〉. Then, the machine uses

the SAT oracle to determine the satisfiability of the re-

maining 2k formulas.

Next, let us assume that in the input (2k + 2)-tuple

〈F1, . . . ,F2k+2〉, that Fl is the rightmost satisfiable for-

mula. If l is odd, the machine can figure out that

〈F1, . . . ,F2k+2〉 ∈ ODD2k+2 unless it dropped (Fl,Fl+1).
Similarly if l is even, the machine can figure out that

〈F1, . . . ,F2k+2〉 6∈ ODD2k+2 unless it dropped (Fl−1,Fl)
or (Fl+1,Fl+2). Therefore the probability that the ma-

chine outputs dk is max{1/|S |,2/|S |} which is equal

to 2/(2k + 2). Therefore the success probability of the

ZPPSAT‖[2k] machine is 1−1/(k + 1)= σk.

Now we prove that the success probability cannot

be increased by any 1/poly additive term. Suppose

that ODD2k+2 ∈ ZPP
SAT‖[2k]
σk+1/poly

. Then, by converting the

dk’s in the ZPPSAT‖[2k] machine into rej’s, we get an

RP
SAT‖[2k]
σk+1/poly

machine for ODD2k+2. This gives us an

≤rp
m -reduction from BL2k+2 to BL2k with success prob-

ability σk +1/poly, which is not possible unless PH col-

lapses (by Theorem 21). The proofs for the other cases

are similar. 2

Lemma 23 For k ≥ 1 and σk = 1−1/(k + 1),

• ZPP
SAT‖[2k]
σk+1/poly

( ZPP
SAT‖[2k]
σk

unless PH collapses.

• ZPP
SAT‖[2k+1]
σk+1/poly

( ZPP
SAT‖[2k+1]
σk

unless PH

collapses.

Proof: Suppose that ZPP
SAT‖[2k]
σk+1/poly

= ZPP
SAT‖[2k]
σk

.

Then, we have ODD2k+2 ∈ ZPP
SAT‖[2k]
σk+1/poly

. Then, by

Lemma 22, PH collapses. Similarly, if we are given

that ZPP
SAT‖[2k+1]
σk+1/poly

= ZPP
SAT‖[2k+1]
σk

, then ODD2k+2 ∈

ZPP
SAT‖[2k+1]
σk+1/poly

which collapses PH by Lemma 22. 2

One consequence of these results concerns deran-

domization. While it might be possible to derandom-

ize ZPPSAT so it equals PSAT, can we derandomize

ZPPSAT‖[k] so it equals PSAT‖[k]? The results above show

that such derandomization cannot be accomplished for

some probability bounds unless PH collapses. For ex-

ample, if we can derandomize ZPP
SAT‖[k]
σk

and keep the

same number of queries, then

PSAT‖[k] = ZPP
SAT‖[k]
σk+1/poly

= ZPP
SAT‖[k]
σk

which collapses PH.



7 Open Problems

Lemma 23 gives us, for every k, a probability bound

α ∈ (0,1) such that ZPP
SAT‖[k]
α+1/poly

( ZPP
SAT‖[k]
α , assum-

ing PH does not collapse. We obtained α by showing

that α is the optimum success probability with which

a ZPPSAT‖[k] can recognize ODDk+2 (or ODDk+1 if k

is odd). Would it be possible to find a sequence of

αi’s, α1 > α2 > · · · > αi > · · ·, such that ZPP
SAT‖[k]
αi+1/poly

(

ZPP
SAT‖[k]
αi

? Perhaps by showing that αi is the opti-

mal probability with which a ZPPSAT‖[k] can recognize

ODDk+2i or ODDk+2i−1 ? Our current proof techniques

based on hard/easy arguments do not seem to help us in

this pursuit.

As we mentioned in Section 2, we know that if

SAT∧SAT≤
rp
m SAT∨SAT with even 1/poly probability,

then PH collapses to ΣP
3 . This gives us

RP
SAT[1]
1/poly

= RP
SAT‖[2]
1/poly

=⇒ PH ⊆ ΣP
3 .

Can we show for some α that RP
SAT[1]
α = RP

SAT‖[2]
α im-

plies PH collapses all the way down to RP
SAT[1]
α ?

Now, consider the two queries problem for BPP. We

know that SAT∧SAT≤
corp
m SAT∨SAT with probability

1/2. We can convert this ≤
corp
m -reduction into a ≤

bpp
m -

reduction with success probability 2/3. Rohatgi [15]

showed that this is indeed the optimal probability of suc-

cess for the ≤
bpp
m -reduction — i.e., any improvement

of the probability of success from 2/3 to 2/3 + 1/poly

would collapse PH. Thus,

BPP
SAT‖[2]
α ⊆ BPP

SAT[1]
2/3+1/poly

=⇒ PH collapses

for all α ≥ 1/2 + 1/poly. But we cannot prove such re-

sults when the success probability of the BPPSAT[1] ma-

chine is less than 2/3.
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