A MACHINE MODEL FOR THE COMPLEXITY OF
NP-APPROXIMATION PROBLEMS

RICHARD CHANG
UMBC

This paper investigates a machine-based model for the complexity of approximating
the CLIQUE problem. The model consists of nondeterministic polynomial time
Turing machines with limited access to an NP-complete oracle. Approximating the
CLIQUE problem is complete for classes of functions computed by such machines.

1 Introduction

Many introductions to the theory of NP-completeness make some mention of
approximating NP-complete problems. The usual story line says that even
though solving an NP-complete problem exactly may be intractable, it is
sometimes possible to find an approximate solution in polynomial time. The
intuitive assumption is that finding an approximate solution should be eas-
ier than finding the exact solution. While this assumption holds for a long
list of approximable problems (Bin Packing, Euclidean Travelling Salesman
Problem, Set Cover, Subset Sum, etc.), recent works have shown that for the
CLIQUE problem, even coarse approximations are not achievable in poly-
nomial time unless P = NP.123 Furthermore, these non-approximability re-
sults extend to other NP-complete problems; most notably to Graph Coloring,
Set Cover, MAX3SAT and all MAXSNP-complete problems.?* Nevertheless,
showing that an NP-approximation problem cannot be solved in polynomial
time only shows that the problem is difficult to compute; it does not show that
solving the approzimation problem is just as hard as finding the exact solution.
Thus, it remains possible that approximating CLIQUE is in fact easier than
finding the exact solution to CLIQUE.

In this paper, we point out that for several NP-optimization problems,
we can prove, not just intuit, that finding the exact solution is harder than
finding an approximate solution, under the assumption that the Polynomial
Hierarchy (PH) does not collapse. To keep the exposition simple, we focus on
determining the precise complexity of finding approximations to the CLIQUE
problem, but the results extend to many other NP-approximation problems.

TDepartment of Computer Science and Electrical Engineering, University of Maryland Bal-
timore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA. Email: chang@umbc.edu
Supported in part by National Science Foundation research grants CCR-9309137 and CCR-
9610457 and by the University of Maryland Institute for Advanced Computer Studies.

revenge: submitted to World Scientific on October 29, 2007 1

Our first question is:

Question 1: Is finding the vertices of the largest clique more difficult than
merely finding the vertices of a 2-approximate clique (that is, a clique
with at least half the size of the largest clique)?

Answer: You cannot reduce finding the largest clique to finding a 2-approx-
imate clique, unless PH collapses.

Three recent studies have addressed this question in one form or an-
other. The first approach, by Chang, Gasarch and Lund, obtains upper and
lower bounds on the number of queries to a SAT oracle needed to approx-
imate the size of the maximum clique.®>%7 Specifically, approximating the
clique size within a factor of 2 is complete for PFSATlogloen+OM] “the class of
polynomial-time Turing machines which ask at most loglogn + O(1) queries
to SAT. A consequence of this result is that finding the size of the maximum
clique cannot be reduced to approximating the size, unless P = NP. However,
these results deal with the complexity of approximating the size of the largest
clique and not on the complexity of finding the vertices of an approximate
clique. Thus, these results do not resolve Question 1.

A second set of results does consider the difficulty of finding the solu-
tions to NP-approximation problems.® Khanna, Motwani, Sudan and Vazi-
rani showed that every problem in APX can be reduced to MAX3SAT using
an approximation preserving reduction. APX is the set of NP-optimization
problems which have constant-factor polynomial-time approximation algo-
rithms. Similarly, they showed that every NP-optimization problem which has
a polynomial-factor polynomial-time approximation algorithm can be reduced
to CLIQUE. These results do not address Question 1 directly, because they
are more useful for comparing the complexities of different NP-optimization
problems than for comparing the complexities of a single NP-optimization
problem with different approximation factors. However, they do provide us
with some very robust gap-creating reductions which we will need later.

In a third approach, Crescenzi, Kann, Silvestri and Trevisan also consid-
ered problems complete for APX under various types of approximation pre-
serving reductions.®'® However, they took a novel direction and measured the
complexity of NP-approximation problems by looking at which languages can
be recognized by polynomial-time machines which have a function oracle that
solves the approximation problem. Then, using a classic census argument,
they were able to show that finding the maximum clique cannot be reduced
to finding an approximate clique unless PH collapses. Thus, Question 1 is
finally resolved. In Section 3, we will review these results in greater detail.

revenge: submitted to World Scientific on October 29, 2007 2

The answer to Question 1 tells us that our intuition is indeed correct—
finding an exact solution to CLIQUE is harder than merely approximating
CLIQUE. However, this answer only tells us the relative complexity of ap-
proximating CLIQUE. It does not provide us with a framework for comparing
the complexity of approximating CLIQUE with respect to the complexity of
other problems (especially with respect to problems that are not optimization
problems). Hence, we ask ourselves a second question:

Question 2: What computational resources can be used to find the vertices
of a 2-approximate clique?

Answer: Nondeterminism and loglogn + O(1) queries to SAT.

It turns out that by combining the techniques used in the three studies de-
scribed above, we can show that an NPFbS ATfloglogntOM] 12 chine (that is,
an NP machine which asks at most loglogn + O(1) queries to SAT in the en-
tire computation tree) can compute a multivalued function that outputs the
vertices of a 2-approximate clique. Moreover, every multivalued function com-
puted by an NPFbS ATlloglog ntOMI 15 chine can be reduced to approximating
CLIQUE within a factor of 2. Thus, we obtain a nice contrast between the
complexity of finding the size of an approximate clique versus the complexity
of finding the vertices of an approximate clique. Namely:

e Finding a number = such that the size of the largest clique is between x
and 2z is complete for PFSATleglogn+OL)]

e Finding the vertices of a clique X such that the size of the largest clique
FSAT[log log n+0O(1)]
b .

is less than 2| X]| is complete for NP
Thus, the difference between approximating the clique size and approximating
the clique itself is just nondeterminism. These results can be extended to other
approximation factors (e.g., constants, logn, n'/%, etc.) and to other NP-
approximation problems. In general, closer approximations can be obtained
using more queries.

However, this result by itself does not show that approximating CLIQUE
within a factor of 2 requires loglogn queries or that we need to use a nonde-
terministic Turing machine. So, we arrive at our third question:

Question 3: Could fewer resources be used to find a 2-approximate clique?

Answer: You need to have nondeterminism, unless P = NP, and you need
at least loglogn — ¢ queries for some constant ¢, unless PH collapses.

revenge: submitted to World Scientific on October 29, 2007 3

In the deterministic case, we know that for all f(n) € O(logn)
PRSATU (] ¢ ppSATU (W ypless P = NP.

For technical reasons, the methods used to prove these results do not extend to
nondeterministic machines. However, we can prove similar results by relying
on the substantial body of research on the Boolean Hierarchy. It turns out
that for f(n) € O(logn), NPbSAT[f(n)], the set of languages accepted by an NP
machine making f(n) queries to SAT, is exactly the 2/(™+1 — 1 level of the
Boolean Hierarchy. Furthermore,

NPFbSAT[f(n)] _ NPFbSAT[f(")Jrl] — NPbSAT[f(")] _ NPbSAT[f(n)Jrl].

Thus, using the techniques of Chang, Gasarch and Lund, we can show that

if CLIQUE can be approximated within a factor of 2 using only loglogn —
. SAT[log log n—c] SAT[log log n—c+1]

¢ queries, then NPE; = NPE, . Therefore, the

Boolean Hierarchy collapses which in turn implies that PH collapses. This

result is a refinement of the proof by Crescenzi, Kann, Silvestri and Trevisan

and yields a slightly deeper collapse of PH.

It is interesting to see that the Boolean Hierarchy, which was studied
mostly for its mathematical elegance, is actually needed to resolve natural
questions about the complexity of approximation problems. In fact much of
the intricacy of the Boolean Hierarchy can now be interpreted in this new
framework. For example, we know that a deeper collapse of the Boolean Hier-
archy results in a deeper collapse of PH.1112 Interpreted as an approximation
result, these theorems say that a reduction from CLIQUE to a coarser approx-
imation of CLIQUE results in a deeper collapse of PH. Similarly, theorems
about the behavior of the complete languages in the Boolean Hierarchy un-
der randomized reductions can now be used to investigate the possibility that
CLIQUE can be randomly reduced to approximating CLIQUE.!3'4 While
this is quite exciting for the few people who are still investigating the Boolean
Hierarchy, it is somewhat lamentable to note that some of the theorems that
we need now have never been properly written down because they were consid-
ered too esoteric even to the people who worked with the Boolean Hierarchy.

In the rest of the paper, we give a more detailed description of the results
we have mentioned. Where appropriate we will provide a sketch of the proof,
but more importantly we need to provide exact definitions of the terminol-
ogy we have been using. In particular, we have to define what we mean by
“reduction” in each situation.

revenge: submitted to World Scientific on October 29, 2007 4

2 Definitions and Notation

An NP-optimization problem is usually defined in four parts:

1. a polynomial-time decidable set of instances of the problem (e.g., undi-
rected graphs).

2. a polynomial-time decidable set of solutions for each instance where each
solution has length polynomial in the size of the instance (e.g., subgraphs
of the graph that are cliques).

3. a polynomial-time computable objective function (e.g., the size of the
subgraph).

4. whether the problem is a maximization or minimization problem.

Some examples of NP-optimization problems that we will work with are
CLIQUE, Graph Coloring and MAX3SAT. In this paper, we have to pay care-
ful attention to the difference between computing the size of the maximum
clique of a graph G, which we denote as w(G), and finding the vertices of a
maximum clique, which we denote as MAXCLIQUE(G). Now we can distin-
guish between approximating w(G) and approximating MAXCLIQUE(G).

Definition 1 Let G be an undirected graph with n vertices. We say that
a number z k(n)-approximates w(G) if ¢ < w(G) < k(n)z. We also say
that a function f k(n)-approximates w if f(G) k(n)-approximates w(G) for
all graphs G.

Definition 2 Let G be an undirected graph with n vertices. We say that a
subgraph X of G k(n)-approximates MAXCLIQUE(G) if X is a clique and | X|
k(n)-approximates w(G). We also say that a multivalued function f k(n)-
approximates MAXCLIQUE if every output of f(G) is a subgraph X of G such
that X k(n)-approximates MAXCLIQUE(G).

Similarly, we use x(G) to denote the chromatic number of a graph and
COLOR(G) to denote an assignment of colors to each node of a graph that
uses x(G) colors. We also use MAXSAT(F) to denote the largest number of
simultaneously satisfiable clauses in a 3CNF Boolean formula F. Then, we
can define approximating x(G), COLOR(G) and MAXSAT(F') analogously.

Most research on NP-optimization problems has been devoted to clas-
sifying the problems according to the degree of approximability in polyno-
mial time. For example, the class of NP-optimization problems which have
constant-factor polynomial-time approximation algorithms is usually called

revenge: submitted to World Scientific on October 29, 2007 5

APX and the class of NP-optimization problems that have polynomial-factor
polynomial-time approximation algorithms is called poly-APX.

Here, we look at NP-optimization problems in a different light. Instead of
asking for the degree of approximability in polynomial time, we fix the approx-
imation factor and ask for the least complex function that can approximate
the NP-optimization problem within that factor.® This approach is much
closer to the familiar resource-bounded complexity measures such as time
and space.'®16 This approach has not been used before because researchers
have not been able to define a machine model for NP-approximation prob-
lems whereby restricting the resources of the machine results in a restriction
of the degree of approximability achievable by the machine. The lack of a
good machine model was pointed out by Papadimitriou and Yannakakis when
they defined MAXSNP.'" They lamented that “computation is an inherently
unstable, non-robust mathematical object, in the sense that it can be turned
from non-accepting to accepting by changes that would be insignificant in any
metric.” Well, we have just such a robust machine model now. They are the
bounded query machines which we define below:

Definition 3 Let PFXU(] denote the set of functions computable by
polynomial-time Turing machines which ask at most f(n) queries to the oracle
X. For notational convenience n is the size of the input which might not be
the length of the encoding of the input. In particular, we consider the number
of vertices in a graph to be its size.

Definition 4 Let NPFbX V™1 denote the set of total multivalued functions
computable by nondeterministic polynomial-time Turing machines which ask
at most f(n) queries to the oracle X in the entire computation tree. Similarly,

let NPbX] he the set of languages recognized by such machines.

For the nondeterministic bounded query machines, the restriction that we
count queries in the entire computation tree has been studied by Wagner and
by Book, Long and Selman in the context of relativization.'®1? In this paper,
we are primarily interested in NP machines with a SAT oracle. In this case,
if we allowed every computation path just one query, then the NP machine is
as powerful as an NP machine that asks polynomially many queries in each
path. Hence, counting queries only makes sense when we look at the number
of queries in the entire tree.

Now that we have defined some function classes, we need to define re-
ductions between functions so we can talk about completeness. Again, our

@ Actually, the term NP-optimization problem is somewhat of a misnomer since in general,
an NP machine cannot find the optimal solution to an NP-optimization problem.

revenge: submitted to World Scientific on October 29, 2007 6

definition is a departure from the usual approximation preserving reductions,
because we want to consider reductions between all functions in the bounded
query classes, some of which might not be approximation problems.

Definition 5 Let f and g be two functions. We say that f many-one reduces
to g (written f <P, g) if there exist polynomial-time functions 77 and T such
that f(z) = Ta(g(Thi(z)), z). Intuitively, f reduces to g if the input to f can
be transformed into an input to g via T, so that the value of g on this input
along with the original input allows T3 to compute f. These reductions are
also known as metric reductions.

It would be most convenient for us to use the terms “k(n)-approximating
w” and “k(n)-approximating MAXCLIQUE” to represent functions rather than
properties of functions. However, these functions must be multivalued because
there could be many «’s such that < w(G) < k(n)z and we do not care which
particular z is given by the function. Similarly, approximating MAXCLIQUE
is also multivalued. Thus, we use “k(n)-approximating w” to refer to the
multivalued function which on input G with n vertices outputs all possible
values x, such that x k(n)-approximates w(G). There is a difference between a
multivalued function f that k(n)-approximates w and “k(n)-approximating w”
because f might produce only some of the values that k(n)-approximates w(G)
(maybe just one such value). The term “k(n)-approximating MAXCLIQUE”
is defined analogously. It may seem awkward to have to consider multival-
ued functions, but this is really the more natural approach. Note that even
computing MAXCLIQUE exactly is multivalued because the largest clique in
a graph might not be unique.

When we consider reductions between multivalued functions, we cannot
use the <P -reductions defined above. In this case, we want to say that f
reduces to g if every output of g helps us compute some output of f. We
define this reduction formally:

Definition 6 Let f and g be two multivalued functions. We say that f many-
one reduces to g (written f <P g¢) if there exist polynomial-time computable
functions T and T3 such that for all « and all possible outputs y of g(71(z)),
T5(y, x) is a possible output of f(z). This is an extension of metric reductions
for single-valued functions.

In this terminology, when a multivalued function f <P -reduces to k(n)-
approximating w then f <P -reduces to every multivalued function that
k(n)-approximates w. Also, when we say that k(n)-approximating w <P -
reduces to a multivalued function f then some of the functions which k(n)-
approximates w <P _reduce to f. It is not the case that every function

which k(n)-approximates w reduces to f, because there may be some g which

‘revenge: submitted to World Scientific on October 29, 2007 7

k(n)-approximates w whose values are never output by the 75 function. This
is not an anomaly because there are uncomputable functions which k(n)-
approximate w. Similar observations should be made about MAXCLIQUE and
k(n)-approximating MAXCLIQUE.

There is another point we should make about reductions between multi-
valued functions. As we mentioned above, it is possible for f to <P -reduce
to g via Ty and T5, but not all outputs of f are produced by T5. Thus, in
the case where some values of f are easier to compute than other values on
the same input, it is possible for f to <P -reduce to a function g with much
lower complexity. A stronger reduction from f to g will avoid this situation.

Definition 7 Let f and g be two multivalued functions. We say that f
strongly <P -reduces to g if f <P -reduces to g via Ty and T3 and for all
x, if z is an output of f, then there exists an output y of g(7Ti(x)) such that
To(y,z) = z.

Also, a reduction from MAXCLIQUE to 2-approximating MAXCLIQUE
does not immediately imply a reduction from w to 2-approximating w even
though, intuitively, the first reduction preserves more structure. The reason
is that the T3 function which computes the solution to MAXCLIQUE must be
given the vertices of a 2-approximate clique and not just the size.

With most of our terminology well-defined, we can finally phrase Ques-
tion 1 more accurately as:

Question 1:

Does MAXCLIQUE §£V -reduce to 2-approximating MAXCLIQUE?

3 Review of Results

3.1 Bounded Query Complezity of Approximations

We will first review a series of papers by Chang, Gasarch and Lund.?>%" These
papers consider the complexity of approximating the size of the largest clique
in a graph in terms of the number of queries to a SAT oracle. The results
in these papers show upper bounds and relative lower bounds on the number
of queries needed to compute a function which k(n)-approximates w. These
upper and lower bounds differ by a constant ¢ = 2 + log1/e. Here € is the
constant from the non-approximability result of Arora et al. and does not
depend on k(n). For example, under the assumption that RP # NP, the
constant ¢ is less than 6. Some niceness assumptions about k(n) are needed
to achieve these results, but they hold for all of the usual approximation

revenge: submitted to World Scientific on October 29, 2007 8

factors. For example:®

e There exists a function in PFSATIg108 7] which 2-approximates w, but no

function in PFX°8l8n=c] can 9 approximate w for any oracle X, unless
P = NP.

e There exists a function in PFSATloglogn—logloglogn] which 1o n-approxi-

mates w, but no function in PFX[loglogn—logloglogn=c| ., log n-approxi-
mate w for any oracle X, unless P = NP.

e For constant a, there exists a function in PESATHog] which nt/ 9-approx-

imates w, but no function in PFX1°8¢=¢l can nl/a_approximate w for any
oracle X, unless P = NP.

Recall that Krentel showed that computing w(G) exactly requires Q(logn)
queries to SAT.20 Hence, these results show that computing w(G) exactly is
harder than merely approximating w(G). Furthermore, closer approxima-
tions require more queries. An extension of these results show that, in fact,
approximating w(G) is equivalent to queries to SAT in the sense that a closer
approximation can be obtained using more oracle queries and also yields an-
swers to more oracle queries. For example:

e Computing w exactly is <P -complete for the class pESATIOUog)]

e Approximating w within a factor of 2 is <P -complete for the class
PFSAT[loglognJrO(l)]

e Approximating w within a factor of logn is <P -complete for the class
PFSAT[log log n—log log log n+0O(1)])

We know from results on bounded query function classes that each ad-
ditional query allows a polynomial-time machine to compute more functions
unless P = NP.2! Thus, we can conclude that w does not <P -reduce to
2-approximating w and 2-approximating w does not <P -reduce to logn-
approximating w unless P = NP.

These results provide a resource-bounded complexity measure for the dif-
ficulty of approximating w. One might even venture to argue that the connec-
tion between bounded queries and approximating w is a natural connection.
However, in applications where one would want to find the largest clique, it is
not sufficient merely to deliver the size of the largest clique. One would also

bSimilar results can be proven for Chromatic Number, Set Cover and MAX3SAT, but we
concentrate on Clique Size here.

revenge: submitted to World Scientific on October 29, 2007 9

want to know which vertices are in the largest clique. Now, for the purposes
of proving the non-approximability of CLIQUE, it is sufficient to show that
the size of the largest clique is not approximable, since knowing which vertices
are in the clique also provides the size of the clique. However, for our purpose,
which is to determine the precise complexity of approximating CLIQUE; it is
not at all obvious how the size of a clique relates to the complexity of finding
the vertices in the clique. In particular, the results mentioned above do not
preclude the possibility that finding the vertices of an approximate clique may
be just as hard as finding the vertices of the largest clique.

In general, it is difficult to construct reductions that preserve solutions.
For example, the results of mentioned above also show that there is a reduction
from 2-approximating the Chromatic Number x(G) to 2-approximating w
(since there is a function in PFSATHososn] which 9_approximates y). It is
much more difficult to construct a reduction which produces a 2-approximate
graph coloring (a coloring of the entire graph using no more than twice the
optimal number of colors) from the vertices of a 2-approximate clique. The
obvious approaches would result in an optimal coloring of half the vertices
rather than a twice optimal coloring of all the vertices. Fortunately, such
reductions are possible using results from Probabilistically Checkable Proofs
(PCP).

3.2 Some PCP Magic

The advertised results in the paper by Khanna, Motwani, Sudan and Vazi-
rani show that MAX3SAT is complete for APX under L-reductions with scal-
ing and that CLIQUE is complete for poly-APX under L-reductions with
scaling.® As a consequence, the closure of MAXSNP under these reductions,
MAXSNP, is equal to APX. Similarly, for the class RMAX(2), defined by
Panconesi and Ranjan, its closure is equal to poly-APX.?2 The significance
of these results lies in the fact that MAXSNP and RMAX(2) are defined as
syntactic classes rather than computational classes. Hence, we now have a
tight connection between approximability and syntax.

As we mentioned before, we are primarily interested in the gap-creating
reductions that Khanna et al. were able to derive from the recent PCP results
rather than the advertised results. They showed that there exists a constant
0, and a polynomial-time function f such that for all 3CNF formulas F' with n
clauses, f(F) produces a 3CNF formula F’ with m clauses, where m depends
only on n, such that:

F € SAT = MAXSAT(F') =m
F ¢ SAT = MAXSAT(F') = (1 — §)m.

revenge: submitted to World Scientific on October 29, 2007 10

Furthermore, given any assignment of truth values to the variables of F” which
satisfies more than (1 — §)m clauses, a satisfying assignment of F’ (where all
clauses are satisfied) can be found in polynomial time. This in turn produces
a satisfying assignment of F'. The full assignment can be found in polynomial
time because the probabilistically checkable proof of the satisfiability of F
uses an error-correcting code which guarantees that any assignment which
satisfies most of the clauses has a small Hamming distance from a unique full
assignment. The polynomial-time error-correcting algorithm will find this full
assignment.

A similar reduction from SAT to CLIQUE can also be obtained. Here we
have constants 0 < s < b < d and a polynomial-time function f such that
for all 3CNF formulas F with n clauses, f(F) produces a graph G with n?
vertices and

F € SAT = w(G) =n®
F ¢ SAT = w(G) = n".

In this case, if we are given a clique in G with n® + 1 vertices, then we
can construct a clique with n® vertices in polynomial time. This is possible
because the construction of Feige et al. and the properties of expander graphs
guarantee that the vertices of an n° + 1 clique represent an assignment which
satisfies at least (1 — §)m clauses of F’ in the previous reduction.! The
dispersal property of expanders is needed here to guarantee that we have
(1 — 9)m distinct clauses. The conversion to a fully satisfying assignment
of F’ in turn produces the clique with n’ vertices. As we shall see in the
next section, this reduction will allow us to construct a <P -reduction from
2-approximating COLOR to 2-approximating MAXCLIQUE.

Now, given the fact that we can take a relatively small clique and expand
it into the largest clique in the graph, we might be tempted to think that there
is a reduction from MAXCLIQUE to 2-approximating MAXCLIQUE. However,
the reduction above produces a large clique only when F' € SAT. Hence, the
existence of a large clique in G only gives us the answer to 1 query to SAT,
which is not enough to compute MAXCLIQUE.

3.8 That Census Trick Again

To answer Question 1, we need to use the techniques of Crescenzi, Kann, Sil-
vestri and Trevisan.?'® They showed that Maximum Polynomially Bounded
Weighted Satisfiability (MPBWS) is complete for APX under PTAS reduc-
tions. Again, we won’t use this main result here. Instead we are most inter-
ested in their use of bounded query languages to measure the complexity of

revenge: submitted to World Scientific on October 29, 2007 11

NP-approximation problems.

So, suppose that MAXCLIQUE does <P -reduce to 2-approximating
MaXCLIQUE. For now, let 2MC represent the multivalued function “2-
approximating MAXCLIQUE”, that is, the function which on input G out-
puts all possible X’s such that X 2-approximates MAXCLIQUE(G). Consider
PpMaxCLiQuell] “the class of languages recognized by polynomial-time machines
which asks one query string G and receives a string as a reply. The reply
string is one of the possible outputs of MAXCLIQUE(G). Since MAXCLIQUE
is a multivalued function, the machine must accept correctly for all possible
values of MAXCLIQUE(G). The class P2MCI is defined similarly.

By assumption MAXCLIQUE <) 2MC, so

PMAXCLIQUE[l] C PQMC[I] .

Krentel showed that computing w(G) is <P, -complete for PFSATIOUesn)],
Thus, it follows that PSATlogn] ¢ pMaxCLQUEL] YWe will show below that

P2MC[1] C PSAT[log log n+41] .

Therefore, we have

PSAT[logn] C PMAxCuQUE[l] C P2MC[1] C PSAT[log logn-i—l]7

which collapses the (extended) Boolean Hierarchy which in turn collapses
PH.18’23

Now, it is not obvious that P2MCl ¢ pSATloglogn+l] hecause the com-
putation of the P2MCM machine depends on the value of 2MC(G) for some
query string G' and there is no obvious way for a PSATleglogn+1] machine to
compute 2MC. However, we can find a number z that 2-approximates w(G)
using log log n queries to SAT, then armed with this information ask one more
NP question:

Assuming that z 2-approximates w(G), does the P?MCM machine
accept the input string?

This is an NP question because using z, an NP machine can guess a subgraph
X of G with z vertices, check that X is a clique, and simulate the P2MC[!]
computation using X as the answer to the oracle query. Thus, P?MCHI C
PSAT[log log n+1] .

The proof outlined above uses the same “census trick” that Hemachandra
used to show that PSATI = pSATlogn] 24 Tt i5 also related to Mahaney’s orig-
inal proof that the existence of a sparse NP-complete set collapses PH.25 In
both cases, the theorems can be tightened up using more sophisticated count-
ing techniques and we can expect the same in this situation.26-27 In the next

revenge: submitted to World Scientific on October 29, 2007 12

section, we show how to refine the proof by Crescenzi et al. and introduce
a new model so we can avoid having to talk about multivalued functions as
oracles.

4 A Machine Model for NP-Approximation

The results we reviewed so far describe the complexity of MAXCLIQUE in re-
lation to the complexity of approximating MAXCLIQUE, but they do not tell
us what computational resources are needed to solve these problems. In this
section, we develop a machine model that gives us the precise complexity of
computing MAXCLIQUE and approximating MAXCLIQUE. From these results
we can determine the tradeoff between the closeness of the approximation and
the amount of resources needed to compute the approximation. It also allows
us to compare the complexity of NP-approximation problems to the com-
plexity of problems that do not involve optimization or approximation. We
start by showing that with enough queries, an NP function can approximate
MAXCLIQUE.

Lemma 8 Let k(n) be a polynomial-time computable function such that

k(n) < n. Then, there exists a multivalued function in NPFSAT[[IOg[Ing(") n 1

that k(n)-approximates MAXCLIQUE.

Proof: Given a graph G with n vertices, we divide the numbers from 1 to n
into intervals that are separated by a factor of k(n):

[1,k(n)), [k(n), k(n)Q) , [k(n)Q, k(n)g) e

Since there are [logy(,) n]| intervals, we can use [log[log,) n]| queries to
do binary search and find the interval [z, k(n)x) that contains w(G). The
endpoint z k(n)-approximates w(G). So, an NP machine can guess a subgraph
X with z vertices, check that X is a clique, and output the vertices of X. O

The procedure described in the proof above obviously works for all NP-
optimization problems where the objective function is polynomially bounded
and for problems in poly-APX by first applying the polynomial-factor approx-
imation algorithm. One might wonder if the nondeterminism is necessary. In
the next lemma, we show that a deterministic machine with many more queries
cannot achieve even a coarse approximation of MAXCLIQUE.

Lemma 9 Let g(n) € O(logn) be a polynomial-time computable function.
There exists an € > 0, such that if some function in PFSATIAM] cap pe-
approximate MAXCLIQUE, then P = NP.

revenge: submitted to World Scientific on October 29, 2007 13

Proof Sketch: Use the same € in the theorem by Arora, Lund, Motwani,
Sudan and Szegedy which showed that no polynomial-time algorithm can
nf-approximate w unless P = NP.3 Given a PFSATIIM™] machine that ne-
approximates MAXCLIQUE, we search the entire oracle computation tree in
polynomial time. One of the outputs is a subgraph of G that is a clique with
more than n¢ vertices. Since we can check each output produced in the oracle
computation tree for this property, we can n®-approximate w(G) in polynomial
time. Thus, P = NP. O

It appears that we need to have nondeterminism to k(n)-approximate

MAaAXCLIQUE. The next question is whether we need to have log logy,(ny 1

queries to SAT. To do this, we must first show that every NPFbS ATl o

putation can be simulated by one which asks the queries deterministically.
We use the notation introduced by Kébler and Thierauf NPF //PESATIa(M)] ¢
denote these functions.?®

Lemma 10 Let g¢(n) € O(logn) be a polynomial-time computable function.
Then,

NPFZ)SAT[q(n)] — NPF//PFSAT[‘I(")] .

Proof Sketch: This is a mind change proof. Mind changes were used to
show that PSATIK — PSATIR2"~1] which improves upon Hemachandra’s result
mentioned in the previous section. Here we use ¢(n) queries to determine
the maximum number of mind changes made by the NPFbS ATl achine.
Given this additional information, an NPF machine can guess a set of com-
putation paths and verify that they represent the maximum number of mind
changes. This will produce the set of all queries to SAT that are answered
“yes” in the entire computation tree. Then, the NPF machine can simulate

SAT[g(n)]

the NPF, machine directly by oracle replacement. O

Corollary 11 MaAXCLIQUE is <P -complete for NPFbSAT[O(IOgn)].

—mv

Proof Sketch: MAXCLIQUE(G) can be computed by an NPFbSAT[O(log")]

machine that uses the logn queries to find w(G) then guesses a clique of that
size. Now, let f be a multivalued function computed by an NPFbS Alelogn] a0
chine. We use Lemma 10 to decompose the computation into a deterministic
query phase and a nondeterministic phase. The oracle computation tree of the
deterministic phase has at most polynomially many query nodes, each node
labelled by a query to SAT. We reduce each of these formulas to CLIQUE and
obtain the graphs G1,...,G;. Each leaf of the oracle computation tree is fol-
lowed by a nondeterministic computation which we turn into a formula using

revenge: submitted to World Scientific on October 29, 2007 14

Karp’s reduction (making the machine accept if the computation produces an
output). These formulas are again reduced to CLIQUE, producing the graphs
Hy,..., H;. Finally, we combine all the graphs G1,...,G; and Hy,...,H; to
form one big graph G so that the largest clique in G has components that are
maximum cliques of the subgraphs. Now, the sizes of the maximum cliques in
G1,...,G; will tell us how the oracle queries were answered. So, we can find
the leaf k, where the actual NP computation takes place. Then, the vertices
of the largest clique in Hy, will give us a particular accepting path of the com-
putation, which also represents a path where the original machine produced
an output. By simulating the NP computation along this computation path,
we can recover this output.

The procedure described above is an <P -reduction to MAXCLIQUE be-
cause the construction of G is the T function and recovering the output is
the Ty function. O

We can prove a similar theorem for k(n)-approximating MAXCLIQUE.” In
the proof sketch below, we omit most of arithmetic.

Theorem 12 There exists €, with 0 < € < 1, such that for any non-decreasing
polynomial-time computable function g(n) € O(logn), if h is a function which
k(n)-approximates MAXCLIQUE, then every f € NPFbSAT[q(")] strongly <P -
reduces to h, where q(n) = loglogy,,yn — c and ¢ = 1 + log(1 + 1/e).

Proof Sketch: Here € is the same € described in Lemma 9. First we need
to show that the following promise problem is complete for NPFbS ATlg(n)]
given F, ..., F, with r = 290" —1_find a satisfying assignment of F, where
z = max{i | F; € SAT} under the promise that F;y; € SAT implies F; €
SAT. Then, we use the gap-creating reduction from SAT to CLIQUE (see
Section 3.2) and create the graphs Gy, ..., G, from Iy, ..., F.. We follow the
construction of Chang, Gasarch and Lund to build a big graph H with n
vertices and numbers y1, ..., y, such that k(n)y; < y;+1 and

Y Sw(Q) < y,41 < z=max{i | F; € SAT}.

Now, by the construction of H, we can guarantee that for any subgraph X of
H which k(n)-approximates MAXCLIQUE(H), X must include enough vertices
from G, so that X NG, approximates MAXCLIQUE(G,) sufficiently closely so
that the vertices of a maximum clique of G, can be recovered in polynomial
time (using some PCP magic). The maximum clique of G, can be used to
find a satisfying assignment of F, which can then be used to compute a value

FbSAT[‘I("

output by the original NP) function. O

revenge: submitted to World Scientific on October 29, 2007 15

Combining Lemma 8 and Theorem 12, we can show that 2-approximating
MaXCLIQUE is <P -complete for the appropriate bounded query class.

Corollary 13 2-approximating MAXCLIQUE is <P -complete for the class
NPFbSAT[log log n+0O(1)] '

Using Lemma 8, we can construct a function in NPFbS ATlloglognl which
2-approximates COLOR. Thus, we have the following corollary.

Corollary 14 There is a <P -reduction from 2-approximating COLOR to
2-approximating MAXCLIQUE.

In fact, Corollary 14 applies to every NP-optimization problem in poly-
APX, because Lemma 8 holds for these problems. We are tempted to
claim that every function that strongly <P -reduces to 2-approximating

MaxCLIQUE is in NPFbSAT[loglog"JrO(l)]. This is not the case for the fol-
lowing technicality. Lemma 8 only shows the existence of a function f in
NPFbS ATlloglognl 41,1t 2-approximates MAXCLIQUE. It does not show that
“2-approximating MAXCLIQUE” itself is a function in NPFbS ATlloglogn] o
distinction is that the function f on input G will output some of the 2-
approximate cliques in G not necessarily all of them. For most applica-
tions, this is a distinction that makes no difference. Mathematically, how-

FbS Alloglogn+OM] oyen when g strongly

ever, we cannot claim that g € NP
<P -reduces to 2-approximating MAXCLIQUE.

Now, we would like to show that we cannot approximate MAXCLIQUE
with fewer queries. As in the proof by Crescenzi et al., we rely on the Boolean
Hierarchy to help us. It turns out that the languages accepted by NPbS ATlg(n)]
machines fit precisely in the Boolean Hierarchy. For constant k, the k-th
level of the Boolean Hierarchy, BHy, is the class of all languages that can be
expressed as nested differences of k¥ NP languages.?3 That is, L € BH;
if there exist Lq,...,L; € NP such that L = Ly — (La — (--- — Lg)). To
define the levels of the Boolean Hierarchy beyond constants, note that in the
preceding case, x € L if and only if max{i | x € L;} is odd. Also, we can
restrict ourselves to NP languages such that L;y; C L;. Thus, to generalize
the Boolean Hierarchy, we say that L € BH(,) if there exists an NP machine

N such that on input x of length n
e for i >1, N(z,i+ 1) accepts => N(z,14) accepts.
e for i > q(n), N(x,1) rejects.

e v € L < max{i| N(z,i) accepts } is odd.

revenge: submitted to World Scientific on October 29, 2007 16

The Boolean Hierarchy over NPNF can be defined in the same manner by
replacing the NP languages with NpNP languages. We denote the k-th level
of this hierarchy with BH, (NPNF).

Now, we can prove a very tight connection between NPbS ATla(m] and the
Boolean Hierarchy.

Lemma 15 Let ¢(n) € O(logn) be a polynomial-time computable function.
Then,

BHyemy41_4 = NPbSAT[q(n)] '

Proof: By Lemma 10, the NPbS ATlg(n)] computation can be decomposed into
aNP// PFSATIM] computation. Then, the equality follows from a theorem by

Kobler and Thierauf.2® In their terminology, BHygm)11_; = NP //PFSATIa(m)]
is written as

NP(2¢M+1 _ 1) = NP //OptP|q(n)].

Their theorem only states the result for constant ¢(n), but the proof general-
izes easily for all g(n) € O(logn). O

Theorem 16 Let o be constant such that 0 < a < 1 and let ¢(n) <

alogn be a polynomial-time computable function. Then, NPFbS ATla(m)] _

NPFbSAT[q(n)H] implies that

NP n
PH g BHQq(n)+1_1(NPNP) e NPb(NP)[q()]

Proof Sketch: First note that NPFZ)SAT[Q(W)} = NPFbSAT[Q(n)H] implies that

PbSAT[q(")] = NPbSAT[q(")H]. This step is not entirely

SAT[g(n)]

the language classes N

obvious since the characteristic function of a language in NP, is not im-
mediately a function in NPE, ATlM] (hecanse NPF) ATIEO] fincetions must be
SAT[g(n)]

total). However, we can compute the characteristic function of an NP,
language using g(n) + 1 queries to SAT, because

NPI,SAT[q(n)] = BHyy(my+1_; C PSATIa(mHI],

Then, by our assumption the characteristic function of every NPbS ATlg(n)]
language and its complement are computable in NPFbS ATl Therefore,

NPbS ATl ig closed under complementation and the Boolean Hierarchy col-

lapses at level 2¢0")+1 — 1. The deepest collapse of PH due to this collapse
of the Boolean Hierarchy can be found in papers by Chang and Kadin and

revenge: submitted to World Scientific on October 29, 2007 17

by Beigel, Chang and Ogiwara.''?2 The proofs in these papers only mention
the constant levels of the Boolean Hierarchy, but they can be extended to the
more general case using the observations of Wagner.!8 0

Corollary 17 Suppose that MAXCLIQUE <P -reduces to 2-approximating
NPNP)[log 1 o
MAXCLIQUE. Then PH C NP)legloe O]

One advantage of having this machine model is that we can consider
situations where MAXCLIQUE could reduce to 2-approximating MAXCLIQUE.
The following corollary also suggests that we will not be able to prove that
MaXCLIQUE <P -reduces to 2-approximating MAXCLIQUE implies P = NP.

Corollary 18 If NP = co-NP, then there exists a strong <P -reduction
from MAXCLIQUE to 2-approximating MAXCLIQUE.

Proof: If NP = co-NP, then an NP machine does not need to use a

SAT oracle. Thus, NPFbSAT[pOly} = NPF. In particular, NPFbSAT[lOg"] =

NPFbS ATflog log "], so we can derive the reduction we need from Corollary 11

and Theorem 12. O

In summary, we have combined the proof techniques of Chang-Gasarch-
Lund, Khanna-Motwani-Sudan-Vazirani and Crescenzi-Kann-Silvestri-Trevi-
san and made heavy use of structural complexity theory to obtain the following
equivalences:

o PESATloglogn+OM] oqntyres the complexity of finding the size of a 2-

approximate clique.

° NPFbS ATlloglog n+0(1)] captures the complexity of finding the vertices of a

2-approximate clique.

Thus, the difference between finding the size and finding the vertices is exactly
nondeterminism. In retrospect, this makes perfect sense since nondeterminism
allows you to guess certificates. The proof, however, is much less obvious.

5 Discussion

There are several observations we can make at this point. The first is that
it is possible to have a machine-based resource-bounded complexity measure
for NP-approximation problems, remarks by Papadimitriou and Yannakakis
not withstanding. In fact, this should hardly be surprising, since much of the
study of NP-completeness and computational complexity involves embedding
computations into natural objects. What we’ve had to do here is embed

revenge: submitted to World Scientific on October 29, 2007 18

many NP-computations into one approximation problem. This has not been
possible for problems like CLIQUE until the non-approximability results have
been proven using probabilistically checkable proofs. Indeed, it would be more
surprising if NP-approximation problems could only be modelled syntactically
and not computationally, since that would run counter to most of complexity
theory where the typical complexity classes have both computational and
syntactic models.

A second observation is that we obtained a cleaner model by embrac-
ing rather than rejecting the “multivaluedness” of NP-approximation prob-
lems. For example, Chen and Toda used the isolation lemma to find the
vertices of a single maximum clique in randomized polynomial time with
polynomially many parallel queries to SAT.?! However, the isolation lemma
produces a unique solution with only low probability, so we have to repeat
the procedure many times to find the maximum clique with good enough
probability.32:33:3% 'While it is possible to determine the tradeoff between the
probability of success and the number of queries, combining this analysis with
the isolation lemma seems quite painful.'®'* As a result, the repeated use of
the isolation lemma makes it difficult to count the number of queries needed
to approximate MAXCLIQUE. Thus, insisting on a single output makes it dif-
ficult to distinguish the complexities of computing MAXCLIQUE exactly and
that of approximating MAXCLIQUE.

Our final observation is that the complexity of NP-approximation prob-
lems depend not just on the P versus NP question, but also on the NP versus
co-NP question. While it is intuitively obvious that finding the largest clique
should be harder than finding an approximate clique, this is only the case
if NP is not closed under complementation (q.v. Corollary 18). The connec-
tion between NP-approximation problems and the Boolean Hierarchy becomes
clearer when one thinks of the Boolean Hierarchy as a generalization of the
complementation operation (sometimes called “hardware over NP”). It is nice
to see that theorems about the Boolean Hierarchy have applications in other
areas — it has been many years since the Boolean Hierarchy has been defined
and many more since people have used the number of queries as a complexity

measure.35

References

1. U. Feige, S. Goldwasser, L. Lovész, S. Safra, and M. Szegedy. Interactive
proofs and the hardness of approximating clique. Journal of the ACM,
43(2):268-292, March 1996.

2. S. Arora and S. Safra. Probabilistic checking of proofs: A new charac-

revenge: submitted to World Scientific on October 29, 2007 19

10.

11.

12.

13.

14.

15.

16.

17

terization of NP. Journal of the ACM, 45(1):70-122, January 1998.

. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof

verification and hardness of approximation problems. Journal of the
ACM, 45(3):501-555, May 1998.

C. Lund and M. Yannakakis. On the hardness of approximating min-
imization problems. Journal of the ACM, 41(5):960-981, September
1994.

R. Chang and W. I. Gasarch. On bounded queries and approximation.
In Proceedings of the IEEE Symposium on Foundations of Computer Sci-
ence, pages 547-556, November 1993.

R. Chang, W. I. Gasarch, and C. Lund. On bounded queries and approx-
imation. SIAM Journal on Computing, 26(1):188-209, February 1997.
R. Chang. On the query complexity of clique size and maximum sat-
isfiability. Journal of Computer and System Sciences, 53(2):298-313,
October 1996.

S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus
computational views of approximability. SIAM Journal on Computing,
28(1):164-191, 1998.

P. Crescenzi and L. Trevisan. On approximation scheme preserving
reducibility and its applications. Theory of Computing Systems, 33(1):1—
16, 2000.

P. Crescenzi, V. Kann, R. Silvestri, and L. Trevisan. Structure in approx-
imation classes. SIAM Journal on Computing, 28(5):1759-1782, 1999.
R. Chang and J. Kadin. The Boolean hierarchy and the polynomial
hierarchy: A closer connection. SIAM Journal on Computing, 25(2):340—
354, April 1996.

R. Beigel, R. Chang, and M. Ogiwara. A relationship between difference
hierarchies and relativized polynomial hierarchies. Mathematical Systems
Theory, 26(3):293-310, July 1993.

R. Chang, J. Kadin, and P. Rohatgi. On unique satisfiability and the
threshold behavior of randomized reductions. Journal of Computer and
System Sciences, 50(3):359-373, June 1995.

P. Rohatgi. Saving queries with randomness. Journal of Computer and
System Sciences, 50(3):476-492, June 1995.

J. Hartmanis and R. E. Stearns. On the computational complexity of
algorithms. Transactions of the AMS, 117:285-306, 1965.

R. E. Stearns, J. Hartmanis, and P. M. Lewis II. Hierarchies of memory
limited computations. In Proceedings of the Sixth Annual Symposium on
Switching Circuit Theory and Logical Design, pages 179-190, 1965.

C. H. Papadimitriou and M. Yannakakis. Optimization, approximation,

revenge: submitted to World Scientific on October 29, 2007 20

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33

and complexity classes. In ACM Symposium on Theory of Computing,
pages 229-234, 1988.

K. Wagner. Bounded query computations. In Proceedings of the 3rd
Structure in Complexity Theory Conference, pages 260-277, June 1988.
R. V. Book, T. J. Long, and A. L. Selman. Quantitative relativizations
of complexity classes. SIAM Journal on Computing, 13:461-487, 1984.
M. W. Krentel. The complexity of optimization problems. Journal of
Computer and System Sciences, 36(3):490-509, 1988.

A. Amir, R. Beigel, and W. 1. Gasarch. Some connections between
bounded query classes and non-uniform complexity. In Proceedings of
the 5th Structure in Complexity Theory Conference, pages 232—243, 1990.
A. Panconesi and D. Ranjan. Quantifiers and approximation. Theoretical
Computer Science, 107(1):145-163, January 1993.

J. Kadin. The polynomial time hierarchy collapses if the Boolean hierar-
chy collapses. SIAM Journal on Computing, 17(6):1263-1282, December
1988.

L. Hemachandra. The strong exponential hierarchy collapses. Journal
of Computer and System Sciences, 39(3):299-322, 1989.

S. Mahaney. Sparse complete sets for NP: Solution of a conjecture of
Berman and Hartmanis. Journal of Computer and System Sciences,
25(2):130-143, 1982.

R. Beigel. Bounded queries to SAT and the Boolean hierarchy. Theoret-
ical Computer Science, 84(2):199-223, July 1991.

M. Ogiwara and O. Watanabe. On polynomial time truth-table reducibil-
ity of NP sets to sparse sets. SIAM Journal on Computing, 20(3):471—
483, 1991.

J. Kobler and T. Thierauf. @ Complexity-restricted advice functions.
SIAM Journal on Computing, 23(2):261-275, April 1994.

J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson,
K. Wagner, and G. Wechsung. The Boolean hierarchy I: Structural
properties. SIAM Journal on Computing, 17(6):1232-1252, December
1988.

J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson,
K. Wagner, and G. Wechsung. The Boolean hierarchy II: Applications.
SIAM Journal on Computing, 18(1):95-111, February 1989.

Z. Z. Chen and S. Toda. On the complexity of computing optimal
solutions. Unpublished manuscript.

L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique
solutions. Theoretical Computer Science, 47(1):85-93, 1986.

K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy

revenge: submitted to World Scientific on October 29, 2007 21

as matrix inversion. Combinatorica, 7(1):105-113, 1987.

34. S. Chari, P. Rohatgi, and A. Srinivasan. Randomness-optimal element
isolation, with applications to perfect matching and related problems.
SIAM Journal on Computing, 24(5):1036-1050, October 1995.

35. C.H. Papadimitriou and S.K. Zachos. Two remarks on the power of
counting. Technical Report MIT/LCS/TM-228, Massachusetts Institute
of Technology, Laboratory for Computer Science, August 1982.

revenge: submitted to World Scientific on October 29, 2007 22

