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Abstract

This paper demonstrates a connection between the complexity of finding approximate so-
lutions to the MaxClique problem and that of the Traveling Salesman Problem (TSP). The
main result of the paper is:

MaxClique≤P
m 2-approximating MaxClique =⇒ TSP≤P

m 2-approximating TSP,

where ≤P
m denotes many-one reductions between functions. Previously, it was known that TSP

≤P
m -reduces to (1+n− logn)-approximating TSP under the same assumption. The proof of the

main result uses a characterization of the complexity of NP-approximation problems by nonde-
terministic bounded query classes. The class NPFSAT[q(n)]

b is the class of multi-valued functions
computed by NP machines that have access to the NP-complete language SAT as an oracle.
These NP machines are limited to q(n) queries to the SAT oracle in the entire nondeterministic
computation tree (not just a single computation path). Since finding approximate solutions
to MaxClique and TSP are complete for NPFSAT[q(n)]

b classes, proving the main result is
equivalent to showing that

NPFSAT[O(logn)]
b = NPFSAT[log logn+O(1)]

b =⇒ NPFSAT[nO(1)]
b = NPFSAT[O(logn)]

b .

This improves upon the previously known result that

NPFSAT[O(logn)]
b = NPFSAT[log logn+O(1)]

b =⇒ NPFSAT[nO(1)]
b = NPFSAT[O(log2 n)]

b .
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1 Introduction

We investigate the internal complexity of NP-approximation problems and how the internal com-
plexities of two such problems are connected. An example of internal complexity is the self-
improvement property of the MaxClique problem. For example, if you are given an “oracle”
that finds the vertices of a 4-approximate clique, you can use that algorithm to find 2-approximate
cliques by running that same algorithm on the “square” of the input graph. This self-improvement
property for MaxClique has been known for a long time [GJ79] and another way to state this prop-
erty is to say that 4-approximating MaxClique ≤P

m -reduces to 2-approximating MaxClique.1

While the construction of this self-improvement reduction is fairly straightforward, one would not
suppose that solving MaxClique exactly could ≤P

m -reduce to 2-approximating MaxClique or
that 2-approximating MaxClique could reduce to (log n)-approximating MaxClique. In fact, if
such reductions existed then the Polynomial Hierarchy (PH) would collapse [CKST95].

In this paper, we consider the consequences to the complexity of other NP-approximation prob-
lems under the assumption that MaxClique does ≤P

m -reduce to 2-approximating MaxClique.
For problems that are closely related to MaxClique, we would expect that a similar reduction can
be constructed through the use of approximation-preserving reductions. For example, it is not too
surprising to find that Graph Coloring reduces to 2-approximating Graph Coloring under
this assumption. On the other hand, the Traveling Salesman Problem2 (TSP) has a very different
complexity from that of MaxClique. Nevertheless, we show that

MaxClique≤P
m 2-approximating MaxClique =⇒ TSP≤P

m 2-approximating TSP.

Previously, the best known result was that TSP ≤P
m -reduces to (1 + n− logn)-approximating TSP

under the same assumption [Cha97].
The proof of our main result uses a machine model to characterize the complexity of NP-

approximation problems with fixed approximation bounds. To see that this is needed, consider
a reduction from the decision problem for TSP to the decision problem for MaxClique. We
know such a reduction exists because the decision problem for MaxClique is an NP-complete
language. However, if we were asked to construct such a reduction, we would probably resort to
Cook’s reduction on an NP machine that recognizes the TSP language, and then reduce 3SAT to
the MaxClique language.

We have a similar situation here, except we need to extend the NP machine model beyond lan-
guage recognition. In particular, we need machines that output solutions for an NP-approximation
problem and guarantee that the solutions are within the specified approximation bound. For ex-
ample, given a graph that is an instance of TSP, a machine that 2-approximates TSP must output
an ordering of the vertices in the graph (i.e., a TSP tour) and guarantee that the tour is not more
than twice as long as the optimum tour. An NP machine is not sufficient for this task, because
an NP machine doesn’t know when the solution it has guessed is optimum or even close enough to
optimum.3 In order to guarantee the quality of its output, the NP machine needs assistance from
an oracle.

An NPFSAT[q(n)]
b machine is an NP machine that has access to the NP-complete language SAT

as an oracle. The machine is limited to q(n) queries to the SAT oracle in the entire nondetermin-
istic computation tree (not just a single computation path). In previous work [Cha97] we have
shown that the model is robust (in the sense that there are several equivalent definitions). Further-
more, there are natural complete problems for the classes of multi-valued functions computed by

1Note that the ≤P
m -reductions used here are many-one reductions between functions.

2We consider only the non-Euclidean version of TSP in this paper.
3Given a graph G and a TSP tour t, it is coNP-complete to determine whether the tour is optimum.
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NPFSAT[q(n)]
b machines — namely, NP-approximation problems with fixed approximation bounds.

The following are some examples of known completeness results for the NPFSAT[q(n)]
b classes:

1. Finding the optimum solution to TSP is ≤P
m -complete for NPFSAT[nO(1)]

b .

2. Finding a 2-approximate solution to TSP is ≤P
m -complete for NPFSAT[O(logn)]

b .

3. Finding the optimum solution to MaxClique is ≤P
m -complete for NPFSAT[O(logn)]

b .

4. Finding a 2-approximate solution to MaxClique is ≤P
m -complete for NPFSAT[log logn+O(1)]

b .

It is fairly easy to see that statements (1) and (3) above hold. Krentel showed that nO(1) queries to
SAT are sufficient to find the length of the optimum TSP tour [Kre88]. Once the length is known,
an NP machine can guess a tour with that length. Completeness follows from a straightforward
construction. Similarly, O(log n) queries are sufficient to find the size of largest clique in a graph and
then nondeterministic guessing can be used to find a clique with the optimum size. On the other
hand, proving that 2-approximating MaxClique is complete for NPFSAT[log logn+O(1)]

b required
the use of the witness-preserving version of the PCP proof of the non-approximability MaxClique

[FGL+96, AS98, ALM+98, Aro94]. The completeness results for 2-approximating TSP were proven
by direct construction.

Given these completeness results, proving the main result becomes equivalent to showing that

NPFSAT[O(logn)]
b ⊆ NPFSAT[log logn+O(1)]

b =⇒ NPFSAT[nO(1)]
b ⊆ NPFSAT[O(logn)]

b .

In previous work, we were only able to show that NPFSAT[nO(1)]
b ⊆ NPFSAT[O(log2 n)]

b using a rather
involved hard/easy argument. In this paper we use a different technique to show that

NPFSAT[O(logn)]
b = NPFSAT[log logn+O(1)]

b =⇒ NPFSAT[O(log2 n)]
b ⊆ NPFSAT[log logn+O(1)]

b .

Combined with the previous results, we have the desired main theorem:

MaxClique≤P
m 2-approximating MaxClique =⇒ TSP≤P

m 2-approximating TSP.

Our main theorem also demonstrates the utility of a machine model in the study of the com-
plexity of NP-approximation problems. The model we propose, the NPFSAT[q(n)]

b classes, might
not be the cleanest model, but all of its components appear necessary. For example, to 2-
approximate MaxClique, we use log log n queries to determine via binary search which of the
intervals [1, 2), [2, 4), [4, 8), . . . contains the size of the largest clique. Let that interval be [m, 2m).
Then, we nondeterministically guess a clique with m vertices. That clique is guaranteed to be a
2-approximate clique. Thus, we used nondeterminism to guess a feasible solution and the oracle
queries to SAT to check that the solution is close enough. Given that 2-approximating MaxClique

is ≤P
m -complete for the class of functions computed by NPFSAT[log logn+O(1)]

b machines, it seems
fairly safe to say that any complexity class that characterizes the complexity of 2-approximating
MaxClique must also capture the properties of these nondeterministic bounded query classes.
So, it would appear that nondeterminism and oracle queries are both sufficient and necessary to
produce solutions to these NP-approximation problems.

In fact there is a fairly long history of using bounded query complexity to measure the complexity
of NP-optimization problems. Krentel [Kre88] first used deterministic bounded query classes to
classify NP-optimization problems. Chang, Gasarch and Lund showed the relationship between
the number of queries to SAT and the complexity of approximating the size of the largest clique in
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a graph [CG93, CGL97, Cha96]. In general they showed that more oracle queries are needed to find
closer approximations. These results also extend to several NP-optimization problems including
Graph Coloring. Chang [Cha97] further extended these results to the case where one must
produce a witness for the NP-approximation problem — e.g., output the vertices in a 2-approximate
clique not just its size. Additional results connecting bounded queries and approximations can be
found in the works of Crescenzi, Trevisan, Kann and Silvestri [CT94, CKST95].

2 Definitions and Facts

In this section, we present the definitions and results from prior work that we need to prove the
main theorem. First, we formally define the terms “k(·)-approximate MaxClique” and “k(·)-
approximates TSP.” In the definition of TSP below, we do not require the weight function to
satisfy the triangle inequality. Thus, finding constant factor approximations of this version of TSP

is NP-hard. In particular, recent work on approximation schemes for Euclidean TSP [Aro96, Mit99,
Aro97] are not applicable.

Definition 1 Let G = (V,E) be an undirected graph with n vertices and let k(n) be an approx-
imation factor such that ∀n, 1 ≤ k(n) ≤ n. We use ω(G) to denote the size of a largest clique in
G. We say that a multi-valued function f k(·)-approximates MaxClique if for all graphs G every
output of f(G) is a set X ⊆ V such that X is a clique and |X| ≥ ω(G)/k(n).

Definition 2 Let G = (V,E) be a weighted undirected graph with n vertices and weight function
w : E → N. Without loss of generality, we assume that

∑

e∈E
w(e) ≤ 2n.

A TSP tour in the graph is a cycle that visits each vertex exactly once. The length of a TSP tour
is sum of the weights of the edges in the cycle. Let OptTSP(G) denote the length of a shortest
TSP tour in G and let k(n) be an approximation factor such that ∀n, 1 ≤ k(n) ≤ 2n. We say that
a multi-valued function f k(·)-approximates TSP if for all graphs G every output of f(G) is a TSP

tour of G with length ≤ k(n)OptTSP(G).

An approximation problem with a fixed approximation bound can be modeled mathematically
as a multi-valued function. A multi-valued function may have several outputs for each input string.
It may seem awkward to have to work with multi-valued functions. However, when we ask for a
2-approximate solution for an instance of MaxClique, we are inherently saying that we do not
care which of many possible solutions is produced. We use the following generalization of many-one
reductions for reductions between multi-valued functions.

Definition 3 Let f and g be two multi-valued functions. We say that f ≤P
m g if there exist two

polynomial-time computable functions T1 and T2 such that for every input x of f , T1(x) = y is a
string in the domain of g and for every output of z of g(y), T2(x, z) is an output of f(x).

For example, Graph Coloring ≤P
m MaxClique. By this we mean that given any graph G,

we can produce a graph G′ in polynomial time such that given the vertices of any maximum clique
G′ (there can be many maximum cliques), we can then produce in polynomial time a coloring of
G that uses a minimum number of colors.

In this paper, we use oracle Turing machines with limited access to the SAT oracle. We will
start with the definition for deterministic bounded query classes.

3



Definition 4 Let q(n) be a polynomial-time computable function. We use PFSAT[q(n)] to denote
the set of functions computed by deterministic polynomial-time Turing machines which ask at
most q(n) queries to the SAT oracle on inputs of length n. Functions in PFSAT[q(n)] must be
single-valued.

Definition 5 Let A be any language. We use A(x) to denote the characteristic function of the
set A at x. We define χAω (x1, . . . , xm) to be an m-bit string such that the ith bit is 1 if and only if
xi ∈ A. That is, χAω (x1, . . . , xm) = A(x1) · · ·A(xm), where juxtaposition means concatenation.

We will sometimes use a polynomial-time machine (deterministic or nondeterministic) without
access to a SAT oracle to simulate a PFSAT[q(n)] computation. If M is a PFSAT[q(n)] machine and
b ∈ {0, 1}q(n), then a polynomial-time machine M ′ given the string b can simulate M on input x as
follows. M ′ on input (x, b) simulates M(x) step by step until M makes an oracle query. Since M ′

does not have access to an oracle, M ′ uses the ith bit of b as the answer to the oracle query (1 means
the query string is in SAT). If M(x) makes the queries a1, . . . , aq(n) and b = χSAT

ω (a1, . . . , aq(n)),
then the behaviors of M(x) andM ′(x, b) are identical. If b �= χSAT

ω (a1, . . . , aq(n)), then the behavior
on M ′(x, b) is not predictable, but will nevertheless terminate in polynomial time.

Definition 6 Let q(n) be a polynomial-time computable function. We use NPFSAT[q(n)]
b to denote

the set of total multi-valued functions computed by nondeterministic polynomial-time Turing ma-
chines which ask at most q(n) queries to the SAT oracle in the entire nondeterministic computation
tree on inputs of size n. The class NPSAT[q(n)]

b is the analogous class of languages.

A potentially ambiguous point about the definition of NPFSAT[q(n)]
b is whether the same query

asked on two different computation paths counts as one query or two queries. It turns out that this
does not matter for our applications, but for the sake of mathematical rigor we will count this as
two queries.

It is not useful to limit the number of oracle queries made by an NP machine on each com-
putation path because in that case one query is as powerful as polynomially many queries and
NPSAT[1] would simply be ΣP

2 . Nevertheless, to avoid any potential confusion, we use the subscript
b in NPFSAT[q(n)]

b to indicate that q(n) is a bound on the number of oracle queries in the entire
computation tree (as is done in [BDG90]). Counting queries in this manner was also used by
Book, Long and Selman [BLS84, Lon85] and by Wagner [Wag90]. In addition, our restriction of
the NPFSAT[q(n)]

b classes to total functions is not overly limiting. For example, using Fact 11 one
can show that for q(n) ∈ O(log n) every partial function computable by a nondeterministic Turing
machine using q(n) queries to SAT has a total extension in NPFSAT[q(n)+1]

b . (On inputs where the
original function is undefined, the total extension outputs a new ⊥ symbol.)

Since a ≤P
m -reduction can stretch the length of its output by a polynomial factor, the class

NPFSAT[O(logn)]
b is closed under ≤P

m -reductions whereas the class NPFSAT[logn]
b is not. This poly-

nomial stretching can also be used to in a padding argument to show that for all c1 > c2 > 0,
every function in NPFSAT[c1 logn]

b reduces to some function f ′ in NPFSAT[c2 logn]
b . Similar closure

and padding properties hold for the classes NPFSAT[q(n)]
b , where q(n) = nO(1), q(n) = O(loga n) and

q(n) = log log n+O(1).
We will use the following results which show that approximating MaxClique and TSP are

≤P
m -complete for various NPFSAT[q(n)]

b classes.
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Fact 7 [Cha97]

• MaxClique is ≤P
m -complete for NPFSAT[O(logn)]

b .

• (1 + 1/ loga n)-approximating MaxClique is ≤P
m -complete for NPFSAT[(a+1) log logn+O(1)]

b .

• 2-approximating MaxClique is ≤P
m -complete for NPFSAT[log logn+O(1)]

b .

• (log n)-approximating MaxClique is ≤P
m -complete for NPFSAT[log logn−log log logn+O(1)]

b .

Fact 8 [Cha97]

• TSP is ≤P
m -complete for NPFSAT[nO(1)]

b .

• (1 + n− loga n)-approximating TSP is ≤P
m -complete for NPFSAT[O(loga+1 n)]

b .

• (1 + n− logn)-approximating TSP is ≤P
m -complete for NPFSAT[O(log2 n)]

b .

• For constant k, k-approximating TSP is ≤P
m -complete for NPFSAT[O(logn)]

b .

It turns out that NPFSAT[q(n)]
b computations can be put into a very convenient normal form

where all the queries are made in an initial deterministic phase. We will make use of the following
facts in the proof of the main theorem.

Definition 9 Let C be a class of functions. Then, NPF//C is the set of total multi-valued functions
f defined by a function g ∈ C and an NP machine N such that the outputs of f(x) are the outputs
of N(x, g(x)).

Fact 10 [Cha97] Let r(n) ∈ nO(1) be a polynomial-time computable function, then

NPF//PFSAT[r(n)] ⊆ NPFSAT[r(n)]
b ⊆ NPF//PFSAT[2r(n)].

Fact 11 [Cha97] Let r(n) ∈ O(log n) be a polynomial-time computable function, then

NPF//PFSAT[r(n)] = NPFSAT[r(n)]
b .

Fact 12 [Cha97]

NPFSAT[O(logn)]
b ⊆ NPFSAT[log logn+O(1)]

b =⇒ NPFSAT[nO(1)]
b ⊆ NPFSAT[O(log2 n)]

b .

The preceding fact is sufficient to show that if MaxClique≤P
m -reduces to 2-approximating

MaxClique, then TSP≤P
m -reduces to (1 + n− logn)-approximating TSP. In the next section, we

prove our main result which shows that in fact, TSP≤P
m -reduces to 2-approximating TSP.

3 Main Theorem

The proofs in this section are best described as oracle replacement proofs. Under the assumption
that NPFSAT[O(logn)]

b = NPFSAT[O(log logn+O(1)]
b , we can essentially replace log n queries to SAT with

log log n queries. However, there are some subtleties and complications that are best illustrated by
considering the deterministic case first. Although we do not use the statement of the next lemma
in the proof of the main theorem, we will use the proof of the lemma as a template.
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Lemma 13

PFSAT[O(logn)] = PFSAT[log logn+O(1)] =⇒ PFSAT[O(log2 n)] ⊆ PFSAT[log logn+O(1)].

It is tempting to try to prove Lemma 13 using the following erroneous approach. Let f be
a function in PFSAT[O(log2 n)] via a deterministic polynomial-time machine M . Fix an input x of
length n. Let g(x) = χSAT

ω (q1, . . . , qr) where r = log n and q1, . . . , qr are the first r queries asked
by M on input x. Obviously g(x) ∈ PFSAT[O(logn)] which is contained in PFSAT[log logn+O(1)] by
hypothesis. Now, we can construct a new machine M ′ that uses the PFSAT[log logn+O(1)] machine
for g(x) to obtain the answer to the first log n queries made by M on input x. This process reduces
the number of queries used to compute f(x) by about log n− log log n. We then repeat the process
until our machine uses fewer than log n queries in total. This would give us a procedure to compute
f(x) in PFSAT[O(logn)] which is equal to PFSAT[log logn].

The error in this approach is that each time we reduce the number of queries, we might increase
the length of some queries by a polynomial factor. For example, the PFSAT[log logn+O(1)] procedure
which computes g(x) might ask queries that have lengths that are the squares of the lengths of the
queries made by the original PFSAT[O(logn)] machine. Repeated application of this process results
in repeated squaring of the lengths of the oracle queries. The result is a super-polynomial running
time. We can correct this error by replacing the oracle queries in a uniform manner.

Proof: Let f be a function in PFSAT[k log2 n] via a deterministic polynomial-time machine M . For
x ∈ Σ* and bi ∈ {0, 1}, let h(x, b1 · · · bm) = χSAT

ω (q1, . . . , qr) where r = log |x| and q1, . . . , qr are the
(m + 1)th through the (m + r)th queries asked by M(x) assuming that b1 · · · bm are the answers
to the first m queries. We use the function h in the following way. Suppose that we already have
the answers to the first m queries asked by M(x) and these answers are b1, . . . , bm which we can
represent as a string in b ∈ {0, 1}m. Then, h(x, b) computes the answers to the next log |x| queries
made byM(x). Clearly, h(x, b) can be computed in PFSAT[logn]. Thus, there is a PFSAT[log logn+O(1)]

machine Mh for h. Hence, we have the following PFSAT[O(logn log logn)] algorithm for f(x).

Procedure 1

1. Let x be the input string of length n.

2. Let b := ε, m := 0 and r := log |x|.
3. Compute c := h(x, b) using Mh and log log n queries to SAT.

4. Let m := m+ r and b := bc

5. If m < k log2 |x|, goto Step 3

6. Simulate M(x) using b as the answers to the oracle queries.

Procedure 1 works by replacing blocks of log n queries with log logn queries. The queries
made by Mh may be much longer than the queries made by M . However, the length of the
queries are bounded by a single polynomial (namely, the running time of Mh on inputs of length
n+ log2 n). We can repeat this process one more time and replace blocks of log n queries made in
Procedure 1 with log log n queries. This time, there are only log log n blocks, so the total number
of queries is (log log n)2. Thus, f ∈ PFSAT[(log log n)2]. Since (log log n)2 ∈ O(log n), it follows that
f ∈ PFSAT[O(logn)] which equals PFSAT[log logn+O(1)]. Thus, PFSAT[O(log2 n)] = PFSAT[log logn+O(1)].

✷
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The proof of the main theorem follows the same outline as the proof of Lemma 13. We will
replace blocks of log n queries with log logn queries. We will do this in two phases to reduce the
log2 n queries used by the original machine to log n log log n queries and then to (log log n)2 queries.
There is a catch, however. If we copied Procedure 1 as is, each iteration of the loop will contain
a query step and a nondeterministic step. Since we are required to count the queries in the entire
nondeterministic computation tree, the number of queries would actually increase. To circumvent
this difficulty, we modify the procedure so all the queries are made deterministically.

Theorem 14

NPFSAT[O(logn)]
b = NPFSAT[log logn+O(1)]

b =⇒ NPFSAT[O(log2 n)]
b ⊆ NPFSAT[log logn+O(1)]

b .

Proof: By the normal forms for NPFSAT[q(n)]
b computations in Fact 10, for all constants c,

NPF//PFSAT[c log2 n] ⊆ NPFSAT[c log2 n]
b ⊆ NPF//PFSAT[2c log2 n].

Hence NPFSAT[O(log2 n)]
b = NPF//PFSAT[O(log2 n)]. Furthermore, by Fact 11, we have

NPFSAT[O(logn)]
b = NPF//PFSAT[O(logn)]

and

NPFSAT[log logn+O(1)]
b = NPF//PFSAT[log logn+O(1)].

Thus, it suffices to show that NPF//PFSAT[O(log2 n)] ⊆ NPF//PFSAT[O(logn)].
Let f be a function in NPF//PFSAT[k log2 n] via a PFSAT[k log2 n)] machine M and an NP machine

N . We define the function h as in Lemma 13. That is, h(x, b1 · · · bm) = χSAT
ω (q1, . . . , qr) where

r = log |x| and q1, . . . , qr are the (m+ 1)th through the (m+ r)th queries asked by M(x) assuming
that b1 · · · bm are the answers to the first m queries. Clearly, h ∈ PFSAT[logn] so by hypothesis there
exists an NPF//PFSAT[log logn+O(1)] computation for h via a PFSAT[log logn+O(1)] machine Mh and
an NP machine Nh. (We cannot assume here that h ∈ PFSAT[log logn+O(1)].)

Now consider the following procedure that computes the output of M(x) and uses the output
to compute f(x). We won’t run this procedure directly, but will eventually simulate it with an
NPF//PFSAT[O(logn log logn)] computation.

Procedure 2

1. Let x be the input string.

2. Let b := ε, m := 0 and r := log |x|.
3. Compute z := Mh(x, b) using log log n queries to SAT.

4. Compute c := Nh(x, b, z).

(Note that c = h(x, b), c ∈ {0, 1}r and that Nh(x, b, z) is single-valued.)

5. Let m := m+ r and b := bc

6. If m < k log2 |x|, goto Step 3

7. Simulate M(x) using b as the answers to the oracle queries and obtain the output string w.

8. Simulate N(x,w) to compute the value of f(x).
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Procedure 2 computes f(x) correctly, but accounting for the number of queries used is prob-
lematic. First, Procedure 2 is definitely not an NPF//PFSAT[q(n)] computation, because the loop
in Steps 3 through 6 interleave oracle queries and nondeterministic computations. (Recall that
an NPF//PFSAT[q(n)] computation must ask all the queries in an initial deterministic phase.)
We could consider Procedure 2 an NPFSAT[q(n)]

b computation where each computation path asks
O(log n log log n) queries to SAT. However, in this case we must count the queries in the entire
nondeterministic computation tree, not just the number of queries in a single computation path.
The problem here is that each time the loop is executed we may have 2 or more computation paths
in Step 4 that output the string c. After O(log n) iterations of the loop we have a polynomial
number of paths in the nondeterministic computation tree — each of which makes some oracle
queries. Thus, the number of queries by this accounting actually goes up.

We resolve this difficulty by taking advantage of the fact that the output from Nh(x, b, z) is
unique. That is, despite the fact that many nondeterministic branches of Procedure 2 may make
queries to the oracle, every branch that does so asks the same sequence of queries. Now consider
the following language:

Q = {〈x, d1 · · · ds〉 | there exists a computation path in Procedure 2 where the first s
queries are answered according to d1 · · · ds and the (s + 1)th query is in SAT.}

When d1 · · · ds are indeed the answers to the first s queries made in Procedure 2, the (s+1)th query
is unique. However, if d1, . . . , ds are not the correct answers, the nondeterministic computation of
Nh(x, b, z) does have to guarantee unique output. This merely explains the somewhat convoluted
definition of Q. We won’t actually need to consider the case where d1 · · · ds are not the correct
answer to the oracle queries made in Procedure 2. The important thing is that Q is an NP language,
since an NP machine can simulate Procedure 2 if it is given the answers to the oracle queries. The
trick now is to ask the SAT oracle questions about membership in Q. This allows us to ask all of
the queries in an initial deterministic phase.

Procedure 3

1. Let x be the input string of length n.

2. Let t = k′ log n log log n be a bound on the number of oracle queries asked on any single
computation path of Procedure 2 for inputs of length n.

3. Let d := ε.

4. for i := 1 to t, if 〈x, d〉 ∈ Q then d := d1 else d := d0.

(This loop uses t queries to SAT.)

5. Nondeterministically simulate Procedure 2 using d as the answers to the oracle queries and
obtain the output string w.

6. Output w as the value for f(x).

Procedure 3 shows that f ∈ NPF//PFSAT[O(logn log logn)]. Thus, we have shown that

NPF//PFSAT[O(log2 n)] ⊆ NPF//PFSAT[O(logn log logn)].

Finally, we finish proving the theorem by repeating the entire process one more time and get
f ∈ NPF//PFSAT[O((log logn)2)]. Since (log log n)2 ∈ O(log n), we have

NPF//PFSAT[O(log2 n)] ⊆ NPF//PFSAT[O(logn)] = NPF//PFSAT[log logn+O(1)]. ✷
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Theorem 15

MaxClique≤P
m 2-approximating MaxClique =⇒ TSP≤P

m 2-approximating TSP.

Proof: By the completeness results for MaxClique in Fact 7,

MaxClique≤P
m 2-approximating MaxClique =⇒ NPFSAT[O(logn)]

b ⊆ NPFSAT[log logn+O(1)]
b .

Furthermore, by Theorem 14 and Fact 12, we have

NPFSAT[nO(1)]
b ⊆ NPFSAT[O(log2 n)]

b ⊆ NPFSAT[O(logn)]
b ⊆ NPFSAT[log logn+O(1)]

b .

Finally, by the completeness results for TSP in Fact 8, TSP ≤P
m -reduces to 2-approximating TSP.

✷

The previous theorem can be stated in a tighter form since the collapse of the NPFSAT[q(n)]
b

classes really implies that the four NP-approximation problems are all ≤P
m -complete for the class

NPFSAT[log logn+O(1)]
b and hence are equivalent under ≤P

m -reductions.

Theorem 16

MaxClique≤P
m 2-approximating MaxClique

=⇒ TSP≡P
m 2-approximating TSP≡P

m MaxClique≡P
m 2-approximating MaxClique.

4 Conclusion

Our main result is essentially an upward collapse result for nondeterministic bounded query classes.
Because NP-approximation problems are complete functions for these classes, we also have the
analogous results about NP-approximation problems. In the preceding proofs, we take full advan-
tage of the fact that we have a collapse from O(log n) queries down to log log n + O(1) queries.
Previous attempts to prove the main theorem failed, because they used the hard/easy argument
which only uses the collapse of a single level of the nondeterministic query hierarchy — i.e., that
NPFSAT[f(n)+1]

b = NPFSAT[f(n)]
b for some f(n) ∈ log log n + O(1). In fact, it still remains open

whether for f(n) ∈ log log n+O(1),

NPFSAT[f(n)+1]
b ⊆ NPFSAT[f(n)]

b =⇒ NPFSAT[nO(1)]
b ⊆ NPFSAT[f(n)]

b .

The best result is still that

NPFSAT[f(n)+1]
b ⊆ NPFSAT[f(n)]

b =⇒ NPFSAT[nO(1)]
b ⊆ NPFSAT[O(log2 n)]

b .

As for other open problems, we still have no adverse consequences (e.g., that PH collapses) to

the assumption that NPFSAT[nO(1)]
b = NPFSAT[O(logn)]

b . In terms of NP-approximation problems,
it remains entirely possible, though we would conjecture otherwise, that TSP does reduce to 2-
approximating TSP.
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