
One Bit of Advice

Harry Buhrman∗

CWI & Univ. of Amsterdam

Richard Chang†

UMBC

Lance Fortnow‡

NEC Research

September 5, 2002

Abstract

The results in this paper show that coNP is contained in NP with 1 bit of advice (denoted
NP/1) if and only if the Polynomial Hierarchy (PH) collapses to DP, the second level of the
Boolean Hierarchy (BH). Previous work showed that BH ⊆ DP =⇒ coNP ⊆ NP/poly. The
stronger assumption that PH ⊆ DP in the new result allows the length of the advice function to
be reduced to a single bit and also makes the converse true. The one-bit case can be generalized
to any constant k:

PH ⊆ BH2k ⇐⇒ coNP ⊆ NP/k

where BH2k denotes the 2k-th level of BH and NP/k denotes the class NP with k-bit advice
functions.

Classification: Computational and structural complexity.

∗Address: CWI, INS4, P.O. Box 94709, Amsterdam, The Netherlands. Email: buhrman@cwi.nl.
†Address: Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County,

1000 Hilltop Circle, Baltimore, MD 21250, USA. Email: chang@umbc.edu. Supported in part by the University of
Maryland Institute for Advanced Computer Studies.

‡Address: NEC Research Institute, 4 Independence Way, Princeton, NJ 08540, USA.
Email: fortnow@research.nj.nec.com

1 Introduction

The results in this paper are motivated in part by the search for a total upward collapse of the
Polynomial Hierarchy (PH) under the assumption that one query to NP is just as powerful as two
queries — i.e., the assumption that PNP[1] = PNP[2]

tt . Kadin was first to show that if PNP[1] = PNP[2]
tt

then the PH collapses to ΣP
3 . Chang and Kadin improved the collapse of PH to the Boolean

Hierarchy over ΣP
2 [CK96]. This was further improved by Beigel, Chang and Ogihara to a class

just above ΣP
2 [BCO93]. Most recently Fortnow, Pavan and Sengupta pushed the collapse below

the ΣP
2 level [FPS02]:

PNP[1] = PNP[2]
tt =⇒ PH ⊆ SP

2 .

Separately, Chang and Kadin noted that PNP[1] = PNP[2]
tt =⇒ PNP[O(log n)] ⊆ PNP[1] [CK95].

This was further improved by Buhrman and Fortnow to PNP ⊆ PNP[1] [BF99]. Since SP
2 ⊆ ZPPNP

[Cai01], we have the following situation:

PNP[1] = PNP[2]
tt =⇒ PH ⊆ ZPPNP.

PNP[1] = PNP[2]
tt =⇒ PNP ⊆ PNP[1].

This is almost a complete upward collapse of PH down to PNP[1] except for the “gap” between PNP

and ZPPNP. Closing this gap might be done with a proof that PNP[1] = PNP[2]
tt =⇒ ZPPNP ⊆ PNP.

However, the possibility remains for less direct approaches.
The question we ask in this paper is: under what conditions could we get a total collapse of PH

below PNP[2]
tt ? We show that

PH ⊆ DP ⇐⇒ coNP ⊆ NP/1.

Here, the NP/1 is NP with one bit of advice and the class DP consists of those languages that
can be expressed as the difference of two NP languages. Note that PNP[1] ⊆ DP ⊆ PNP[2]

tt and that
the proofs of most of the upward collapse results involving PNP[1] and PNP[2]

tt actually start with
the argument that PNP[1] = PNP[2]

tt implies that DP is closed under complementation. Previous
results have shown that under the weaker assumption that the Boolean Hierarchy collapses to DP,
coNP ⊆ NP/poly [Kad88]. In contrast, the results in this paper make the stronger assumption that
PH collapses to DP. The stronger assumption allows us to reduce the advice to just one bit and
also allows us to prove the converse. Our results also generalize to the k-bit case. We are able to
show that:

PH ⊆ BH2k ⇐⇒ coNP ⊆ NP/k.

2 Preliminaries

We use the standard definition and notation for complexity classes with advice (a.k.a., non-uniform
complexity) [KL82]. An important consideration in the definition below is that the advice function
depends only on the length of x and not on x itself.

Definition 1 Let L be a language and f : N → {0, 1}∗ be an advice function. Then, we define

L/f = {x | 〈x, f(|x|)〉 ∈ L}.

1

For a complexity class C and a class of functions F ,

C/F = {L/f | L ∈ C, f ∈ F}.

Thus, NP/poly denotes the class of languages recognized by NP machines with advice functions f
where |f(n)| is bounded by a polynomial in n. For this paper, we will consider the classes NP/1 and
NP/k where the NP machines have, respectively, one-bit and k-bit advice functions (i.e., |f(n)| = 1
and |f(n)| = k).

The Boolean Hierarchy is a generalization of the class DP defined by Papadimitriou and Yan-
nakakis [PY84]. For constant k, the kth level of the Boolean Hierarchy can be defined simply as
nested differences of NP languages [CGH+88, CGH+89].

Definition 2 We use BHk and coBHk to denote the kth level of the Boolean Hierarchy:

BH1 = NP,

BHk+1 = { L1 − L2 | L1 ∈ NP and L2 ∈ BHk }
coBHk = { L | L ∈ BHk }

BH =
∞⋃

k=1

BHk.

Definition 3

BL1 = SAT

BL2k = { 〈x1, . . . , x2k〉 | 〈x1, . . . , x2k−1〉 ∈ BL2k−1 and x2k ∈ SAT }
BL2k+1 = { 〈x1, . . . , x2k+1〉 | 〈x1, . . . , x2k〉 ∈ BL2k or x2k+1 ∈ SAT }
coBLk = { 〈x1, . . . , xk〉 | 〈x1, . . . , xk〉 �∈ BLk }.

Using these definitions, BLk is ≤P
m -complete for BHk [CGH+88, CGH+89]. The complexity

classes DP and co-DP form the second level of the Boolean Hierarchy. For convenience and for
historical convention, we define these classes and their complete languages separately:

Definition 4

DP = { L1 − L2 | L1, L2 ∈ NP }
co-DP = { L | L ∈ DP }

SAT∧SAT = { 〈x1, x2〉 | x1 ∈ SAT and x2 ∈ SAT }
SAT∨SAT = { 〈x1, x2〉 | x1 ∈ SAT or x2 ∈ SAT }.

The complexity of the Boolean Hierarchy is closely related to the complexity of the bounded
query classes which we now define.

Definition 5 Let q(n) be a polynomial-time computable function. We use PSAT[q(n)] to denote the
set of languages recognized by deterministic polynomial-time Turing machines which on inputs of
length n ask at most q(n) queries to SAT, the canonical ≤P

m -complete language for NP. When the
queries are made in parallel, we use the notation PSAT[q(n)]

tt . We will use PSAT and PSAT
tt when the

machines are allowed polynomial many queries.

2

The connections between the Boolean Hierarchy and the bounded queries to SAT is rich and
varied. We ask the reader to consult the literature for a full accounting [WW85, KSW87, Wag88,
Kad88, CGH+88, CGH+89, ABG90, Wag90, Bei91, Cha92, HN93, BCO93, CGL97, CK96, HHH99,
BF99, Cha01]. For this paper, we make use of the following facts about the Boolean Hierarchy and
bounded queries to SAT.

PSAT[k−1]
tt ⊆ BHk ∩ coBHk ⊆ BHk ∪ coBHk ⊆ PSAT[k]

tt [KSW87, Bei91].

PSAT[k] = PSAT[2k−1]
tt [Bei91].

BHk = coBHk =⇒ BH = BHk [CGH+88, CGH+89].

BHk = coBHk =⇒ SAT ∈ NP/poly [Kad88].

3 Proof of Main Theorem

In this section we will prove the main result, the 1-bit case. The proof for the general case is
deferred to the next section. We prove the main result in two parts, one for each direction of the
if and only if.

Theorem 6 coNP ⊆ NP/1 =⇒ PH ⊆ DP.

Proof: We prove this direction in two steps:

coNP ⊆ NP/1 =⇒ ΣP
2 ⊆ PSAT (1)

and

coNP ⊆ NP/1 =⇒ PSAT ⊆ DP. (2)

To prove (1), let U be a ≤P
m -complete language for ΣP

2 with the usual padding properties and
which can be written as:

U = { 〈x, y〉 | (∃py′)(∀pz)[y′ ≤ y ∧ R(x, y′, z)] }

for some polynomial-time computable relation R. Since coNP ∈ NP/1 by assumption, we can
construct an NP/1 machine NU that recognizes U using standard oracle replacement techniques.
We only need to note that by padding, all the oracles queries we replace have the same length.
Thus, only one bit of advice is needed for the entire computation.

Next, we construct a PSAT machine DU which recognizes U without any advice bits. On input
〈x, y〉, DU looks for y′max, the largest y′ ≤ y such that (∀z)[R(x, y′, z)]. DU finds y′max using binary
search and queries to NU , which can be answered by SAT if DU had the advice bit for NU . (The
same advice bit can be used for all the queries to NU during one binary search.) Since DU does
not have the advice bit, it simply tries both 0 and 1. Let y′0 and y′1 be the two values produced by
the two trials. Then

〈x, y〉 ∈ U ⇐⇒ (∀pz)[R(x, y′0, z)] ∨ (∀pz)[R(x, y′1, z)]. (3)

Du can verify the right hand side of (3) with its SAT oracle. Thus, ΣP
2 ⊆ PSAT and we have

established (1).

3

To prove that (2) also holds, we show that coNP ⊆ NP/1 implies that LexMaxSat, defined
below, is in DP.

LexMaxSat = { ϕ | the lexically largest satisfying assignment of ϕ ends with 1 }.
Since LexMaxSat is ≤P

m -complete for PSAT [Kre88], we have PSAT ⊆ DP. Note that ΣP
2 ⊆

PSAT =⇒ PH ⊆ PSAT. Thus by (1) we have PH ⊆ DP.
Using the assumption that coNP ⊆ NP/1, we can construct an NP/1 machine NLMS that given

ϕ outputs αmax, the lexically largest satisfying assignment for ϕ. When NLMS is given the correct
advice bit, all of its computation paths that produce an output (henceforth, the output paths) will
output αmax. If NLMS has the wrong advice bit, it might output different values on different output
paths or it might not have any output paths. We program NLMS to explicitly check that every
string it outputs is at least a satisfying assignment of ϕ. This will be useful below when we need
to consider the behavior of NLMS given the wrong advice.

We define two NP languages A1 and A2 and claim that LexMaxSat = A1 −A2 . First, we let

A1 = { ϕ | NLMS(ϕ, 0) or NLMS(ϕ, 1) outputs a value that ends with 1 }.
Recall that in our notation NLMS(ϕ, 0) and NLMS(ϕ, 1) represents the computations of NLMS given
advice bit 0 and 1, respectively.

The language A2 is defined by an NP machine NA2 . On input ϕ, NA2 looks for a computation
path of NLMS(ϕ, 0) and a computation path of NLMS(ϕ, 1) that output different satisfying assign-
ments for ϕ. Call these assignments α1 and α2 and w.o.l.o.g. assume that α1 < α2. NA2(ϕ) accepts
if α1 ends with a 1 and α2 ends with a 0.

Clearly, A1 and A2 are NP languages. To see that LexMaxSat = A1 − A2, first suppose that
ϕ ∈ LexMaxSat. Since one of NLMS(ϕ, 0) and NLMS(ϕ, 1) has the correct advice bit, one of them
must output αmax. Since αmax ends with 1, ϕ ∈ A1. On the other hand, ϕ cannot be in A2 by
maximality of αmax. Thus, ϕ ∈ LexMaxSat =⇒ ϕ ∈ A1 − A2.

Conversely, suppose that ϕ �∈ LexMaxSat. Then, the largest satisfying assignment ends with a
0. So, the computation with the correct advice bit will never output a value ending with a 1. Thus,
ϕ ∈ A1 only in the case that the computation with the wrong advice bit outputs a value α < αmax

and α ends with a 1. However, in this case, ϕ is also in A2. Thus, ϕ �∈ LexMaxSat =⇒ ϕ �∈ A1−A2.
�

In the next theorem, we show that PH ⊆ DP =⇒ coNP ⊆ NP/1 using the hard/easy argument
which was used to show that DP = co-DP implies a collapse of PH [Kad88]. Suppose that DP =
co-DP. Then SAT∧SAT≤P

m SAT∨SAT via some polynomial-time reduction h. Using the reduction
h, we define a hard string:

Definition 7 Suppose SAT∧SAT≤P
m SAT∨SAT via some polynomial-time reduction h. Then, a

string H is called a hard string for length n, if:

1. |H| = n.

2. H ∈ SAT.

3. for all x, |x| = n, 〈x,H〉 h�−→ 〈G1, G2〉 and G2 �∈ SAT.

If F ∈ SAT, |F | = n and F is not a hard string for length n, then we say that F is an easy string.

Suppose that we were given a hard string H for length n. Then the NP procedure below accepts
a formula F of length n if and only if F ∈ SAT.

4

PROCEDURE Hard(F)

1. Compute h(F,H) = 〈G1, G2〉.
2. Guess a truth assignment α to the variables in G1.

3. Accept if the assignment α satisfies G1.

On the other hand, if there are no hard strings for length n — i.e., all formulas in SAT=n are
easy — we also have an NP procedure for SAT=n.

PROCEDURE Easy(F)

1. Guess a string x with |x| = |F |.
2. Compute h(x, F) = 〈G1, G2〉.
3. Guess a truth assignment α to the variables of G2.

4. Accept if the assignment α satisfies G2.

The correctness of Procedures Hard and Easy follows directly from the definitions of SAT∧SAT,
SAT∨SAT and hard strings [Kad88]. Since a polynomial advice function can provide an NP machine
with a hard string for each length n or with the advice that all strings in SAT=n are easy, DP =
co-DP =⇒ coNP ⊆ NP/poly. For this paper, we want to show that PH ⊆ DP =⇒ coNP ⊆ NP/1
which is both a stronger hypothesis and a strong consequence. Hence, we need to exploit the
assumption that PH ⊆ DP.

Theorem 8 PH ⊆ DP =⇒ coNP ⊆ NP/1.

Proof: Suppose that PH ⊆ DP. Then, DP = co-DP via some ≤P
m -reduction h. Now, fix a length

n and consider only inputs strings ϕ of length n. Our goal is to find a hard string for length n or
determine that there are no hard strings for length n. Then we can use Procedure Hard or Easy
to accept if and only if ϕ ∈ SAT.

Note that the lexically smallest hard string for length n can be found by a PNPNP
machine,

because the set of hard strings is in coNP. Since PH ⊆ DP, the language HardBits defined below
is also in DP.

HardBits = {〈1n, 0〉 | there are no hard strings for length n} ∪
{〈1n, i〉 | the ith bit of the lexically smallest hard string for length n is 1}.

Since DP ⊆ PSAT[2]
tt , HardBits is recognized by some PSAT[2]

tt machine MHB. Now, consider the
following n + 1 computations of MHB.

MHB(1n, 0), MHB(1n, 1), MHB(1n, 2), . . . , MHB(1n, n).

If we are given the accept/reject results of all n+1 computations, then we can recover the lexically
smallest hard string for length n or conclude that there are no hard strings for length n. Let W
be the set of oracle queries made to SAT in these n + 1 computations. Without loss of generality
we assume that the queries have the same length m. In the remainder of the proof we construct

5

an NP/1 machine that can determine the satisfiability of the formulas in W . The one-bit of advice
for our NP/1 computation is 0 if all the strings in W ∩ SAT are easy and 1 if W contains at least
one hard string for length m. Note that the set W depends only on |ϕ| and not on ϕ itself, so the
one bit of advice is indeed the same for all inputs of length n. Our NP/1 computation is divided
into two cases, depending on the advice. Putting the two cases together gives us coNP ⊆ NP/1.

Case 1: all strings in W ∩ SAT are easy. We construct an NP machine Ne that accepts if
and only if the original input ϕ of length n is unsatisfiable. Ne first constructs the set W by
simulating MHB. Then, for each string w in W , Ne either guesses a satisfying assignment for w or
uses Procedure Easy to verify that w is unsatisfiable. The only computation branches of Ne that
survive this step are the ones that have correctly guessed the satisfiability of each w ∈ W .

Next, Ne simulates each of the n + 1 computations of MHB for HardBits. Since Ne has the
answers to each oracle query, the simulations can be completed and Ne can reconstruct the lexically
smallest hard string for length n or determine that there are no hard strings for length n. Then
Ne uses either Procedure Hard or Easy and accepts the original input ϕ if and only if ϕ ∈ SAT.

Case 2: W contains at least one hard string. Our advantage in this case is that we can look
for a hard string for length m just among the ≤ 2n + 2 strings in W instead of all 2m strings of
length m. We construct an NP machine Nh which nondeterministically places each string w ∈ W
into three sets: WSAT, Weasy and Whard. The intention is that WSAT has all the strings in W ∩SAT,
Weasy has all the easy strings in W ∩ SAT and Whard has the remaining strings, the hard strings
in W ∩ SAT. As in the previous case, Nh can verify that the strings in WSAT are satisfiable and
that the strings in Weasy are easy. However, Nh will not be able to verify that the strings in
Whard are unsatisfiable and hard. Fortunately, we only need to know that the strings in Whard are
unsatisfiable. That would be enough to simulate the n + 1 computations of MHB for HardBits.

To check that Whard ⊆ SAT, Nh takes each string x in Whard, assumes for the moment that x
is indeed hard and uses x to check that every string w in Whard is unsatisfiable. That is, for each
pair of strings w, x in Whard, Nh computes h(w, x) = 〈G1, G2〉 and guesses a satisfying assignment
for G1. If Nh succeeds for every pair (w, x) then we say that Whard has been verified.

Now, suppose that some computation branch of Nh has verified WSAT, Weasy and Whard. Since
W contains at least one hard string z, Nh must have placed z in Whard. Then z would have been
used to test that every w ∈ Whard is indeed unsatisfiable. Since z really is a hard string, we are
assured that Whard ⊆ SAT. Thus, we can claim that WSAT = W ∩ SAT. Furthermore, some
computation branch of Nh guessed WSAT, Weasy and Whard to be exactly the satisfiable, easy and
hard strings in W . Therefore, at least one computation branch of Nh has verified its WSAT, Weasy

and Whard and has determined the satisfiability of every string in W .
As in the previous case, since Nh knows the answer to every oracle query in the n + 1 compu-

tations of MHB for HardBits, Nh can recover the lexically smallest hard string for length n and
use it to nondeterministically recognize the unsatisfiability of the original input ϕ. �

4 Generalizations

In this section we generalize the main theorem and show that PH ⊆ BH2k ⇐⇒ coNP ⊆ NP/k.
Recall that BH2k is the 2kth level of the Boolean Hierarchy and that DP = BH2, so the preceding
theorems are special cases of the ones in this section. As before, we prove each direction separately:

6

Theorem 9 coNP ⊆ NP/k =⇒ PH ⊆ BH2k .

Proof: The first step of the proof of Theorem 6 showed that coNP ⊆ NP/1 =⇒ PH ⊆ PSAT. This
step generalizes to k bits of advice in a straightforward manner. The PSAT machine DU for the
ΣP

2 -complete language U simply has to try all 2k possible advice strings. DU on input 〈x, y〉 obtains
2k candidates y′1, . . . , y

′
2k for y′max. For each y′i, it checks whether (∀pz)[R(x, y′i, z)] using its NP

oracle. Then, 〈x, y〉 ∈ U if and only if (∀pz)[R(x, y′i, z)] for some i, 1 ≤ i ≤ 2k.
Next, we show that LexMaxSat ∈ BH2k which completes the proof, since LexMaxSat is

≤P
m -complete for PSAT. As in Theorem 6, we use an NP/k machine NLMS which, given the right

advice, outputs the largest satisfying assignment αmax of its input formula ϕ. We will consider 2k

computation trees of NLMS on input ϕ denoted NLMS(ϕ, 0k), . . . , NLMS(ϕ, 1k) (one for each k-bit
advice string).

Given the correct advice, NLMS will output αmax on all of its output paths. Given the wrong
advice, NLMS might output one or more incorrect values or have no output paths. Recall that we
had previously rigged NLMS so that it only outputs satisfying assignments of ϕ even when it is
given the wrong advice. Our objective is to construct 2k NP languages A1, . . . A2k such that

ϕ ∈ LexMaxSat ⇐⇒ ϕ ∈ A1 − (A2 − (· · · − A2k) · · ·).

We use the mind-change technique which Beigel used to show that PSAT[k] = PSAT[2k−1]
tt [Bei91].

We construct 2k NP machines NA1 , . . . , NA
2k

. On input ϕ, NAi does the following:

PROCEDURE Ai(ϕ)

1. Guess i different advice strings σ1, . . . , σi ∈ {0, 1}k in any possible order.

2. For each j, 1 ≤ j ≤ i, guess a computation path of NLMS(ϕ, σj) that produces an
output. Call this output string αj .

3. Verify that α1 < α2 < · · · < αi in lexical ordering.

4. Verify that the last bit of α1 is a 1 and that for each j, 1 ≤ j < i, the last bit of
αj is different from the last bit of αj+1.

5. Accept if Steps 2, 3 and 4 succeed.

When NAi accepts, we think of α1 < α2 < · · ·αi as a sequence of mind changes. Now suppose
that the longest sequence of mind changes is α1 < α2 < · · · < α�. Then, the last bit of α� must
be the same as the last bit of αmax. This is true if � = 2k, since then all and thus the correct
advice string has been used, and hence αmax = α�. If � �= 2k then appending αmax to the end of
the sequence would create a longer sequence of mind changes contradicting the maximality of �.
Appending αmax would be possible since NLMS outputs αmax given the correct advice.

Let Ai be the set of formulas ϕ accepted by NAi and let A = A1 − (A2 − (· · · − A2k) · · ·). We
claim that ϕ ∈ LexMaxSat if and only if ϕ ∈ A. Let � be the largest i such that ϕ ∈ Ai or
0 if no such i exists. Note that ϕ ∈ A if and only if � is odd because A1 ⊇ A2 ⊇ · · · ⊇ A2k .
Now suppose that ϕ ∈ LexMaxSat. Then, the last bit of αmax is 1, so ϕ ∈ A1 and � ≥ 1. Let
α1 < α2 < · · · < α� be a mind change sequence found by NA�

on input ϕ. As we argued above, the
last bit of α� must be the same as the last bit of αmax which is a 1. Since α1 ends with 1 and the
αj ’s must alternate between ending with 1 and ending with 0, � must be odd. Thus, ϕ ∈ A.

7

Conversely, suppose that ϕ ∈ A. Then, � must be odd. Again, looking at the mind change
sequence, α1 < α2 < · · · < α�, we conclude that α� must end with 1 and thus αmax must end with
1. Therefore, ϕ ∈ LexMaxSat. �

In the next proof, we extend the hard/easy argument in the previous section to show that
PH ⊆ BH2k =⇒ coNP ⊆ NP/k. A key element of the proof is the generalization of a hard string
to a hard sequence [CK96].

Definition 10 For �y = 〈y1, . . . , ys〉, let �y R = 〈ys, . . . , y1〉 be the reversal of the sequence. Let πi

and πi,j be the projection functions such that πi(�y) = yi and πi,j(�y) = 〈yi, . . . , yj〉.

Definition 11 Suppose that BLr ≤P
m coBLr via a polynomial-time reduction h. For 0 ≤ s ≤ r− 1,

let � = r−s. Then, �x = 〈x1, . . . , xs〉 is a hard sequence for length n with respect to h, if the following
hold:

1. for each i, 1 ≤ i ≤ s, xi ∈ {0, 1}n.

2. for each i, 1 ≤ i ≤ s, xi ∈ SAT.

3. for all u1, . . . , u� ∈ {0, 1}n, let �u = 〈u1, . . . , u�〉 and 〈v1, . . . , vs〉 = π�+1,r(h(�u, �xR)). Then,
vi ∈ SAT, for all 1 ≤ i ≤ s.

We refer to s as the order of the hard sequence �x and for notational convenience, we define the
empty sequence to be a hard sequence of order 0. Furthermore, given a hard sequence �x, we say
that a string w is easy with respect to �x if |w| = n and there exists u1, . . . , u�−1 ∈ {0, 1}n such
that π�(h(u1, . . . , u�−1, w, �xR)) ∈ SAT. We say that a hard sequence �x is a maximal hard sequence,
if for all w ∈ {0, 1}n, 〈x1, . . . , xs, w〉 is not a hard sequence. A maximum hard sequence is a hard
sequence with maximum order among all the hard sequences for length n.

As with hard strings, a hard sequence �x allows an NP machine to verify that a string w is
unsatisfiable when w is easy with respect to �x. It follows directly from the definitions of BLr and
coBLr, that if �x is a hard sequence and π�(h(u1, . . . , u�−1, w, �xR)) ∈ SAT for any u1, . . . , u�−1 ∈
{0, 1}n, then w must be unsatisfiable [CK96]. Since every string of length n in SAT must be easy
with respect to a maximum hard sequence for length n, finding a maximum hard sequence will
allow us to recognize SAT=n with an NP machine.

Theorem 12 PH ⊆ BH2k =⇒ coNP ⊆ NP/k.

Proof: Suppose that PH ⊆ BH2k . Then, BL2k ≤P
m coBL2k via some polynomial-time reduction h.

Fix a length n and consider only input strings ϕ of length n. Our goal is to find a maximum hard
sequence �x for length n using an NP machine with k bits of advice. Since ϕ must be easy with
with respect to �x, we get an NP procedure that accepts if and only if ϕ ∈ SAT.

Since the set of hard sequences is in coNP, a PNPNP
machine can use binary search to find the

lexically smallest maximum hard sequence for length n. Moreover, since PH ⊆ BH2k , the language
HardBits defined below can be recognized by a PSAT[2k]

tt machine MHB.

HardBits = {〈1n, 0〉 | the maximum hard sequence for length n has order 0} ∪
{〈1n, i〉 | the ith bit of the lexically smallest maximum hard sequence
for length n is 1}.

8

Running MHB on 2kn+1 input strings will allow us to recover a maximum hard sequence for length
n. As before, we assume that all the queries made by MHB in these computations have a fixed
length m. Let W be the set of these length m queries. There are at most 22kn + 2k strings in W .

Let HARD(m,W) be the set of hard sequences for length m where every component of the
hard sequence is a string from W . Since the number of all possible sequences < 2k(22kn + 2k)2

k
,

|HARD(m,W)| is polynomially bounded. Furthermore, HARD(m,W) depends only on |ϕ| and not
on ϕ itself. Thus, we can define a k-bit advice function that provides the maximum order of the
hard sequences in HARD(m,W). Call this value z.

We construct an NP/k machine N for SAT as follows. On input x and given advice z, N first
guesses two sets WSAT and H. The set WSAT is a subset of W . If N guesses WSAT correctly, then
WSAT would be exactly W ∩ SAT. The set H is a set of sequences with ≤ z components where
each component is a string in W . One correct guess for H is the set HARD(m,W). There may be
other correct guesses for H.

N verifies WSAT and H as follows. For each w ∈ WSAT, N guesses a satisfying assignment for
w. It remains possible that some w ∈ W − WSAT is satisfiable. Next, we try to verify that each
sequence �y = 〈y1, . . . , ys〉 ∈ H is a hard sequence. First, each yi must be an element of W −WSAT,
since the components of a hard sequence must be unsatisfiable. Also, for each �y = 〈y1, . . . , ys〉 ∈ H
and each w ∈ W − WSAT, if 〈�y,w〉 �∈ H, then w should be easy with respect to �y. This can be
confirmed using the following NP procedure:

PROCEDURE EasyTest(〈y1, . . . , ys〉, w)

1. Let � = 2k − s.

2. Guess a sequence u1, . . . , u�−1 ∈ {0, 1}m.

3. Compute the formula G = π�(h(u1, . . . , u�−1, w, �y R)).

4. Guess a satisfying assignment for G.

Clearly, if WSAT = W ∩ SAT and H = HARD(m,W), then every verification step will succeed.
We claim that if WSAT and H pass every verification step, then WSAT = W ∩ SAT. (Note: we do
not claim that H must also equal HARD(m,W).)

Suppose that H passes every verification step. Let �y = 〈y1, . . . , ys〉 be any hard sequence from
HARD(m,W). We claim that �y must be in H. Suppose not. W.o.l.o.g. we can assume that
the empty sequence is in H. Thus there exists i, 0 ≤ i < s, such that 〈y1, . . . , yi〉 ∈ H but
〈y1, . . . , yi+1〉 �∈ H. Then, yi+1 should be easy with respect to the hard sequence 〈y1, . . . , yi〉. This
will prompt N to run the EasyTest procedure on 〈y1, . . . , yi〉 and yi+1. However, 〈y1, . . . , yi+1〉 is
in reality a hard sequence, so EasyTest(〈y1, . . . , yi〉, yi+1) will fail. Thus, H would not have passed
every verification, which is a contradiction. Therefore, HARD(m,W) ⊆ H.

Next, we claim that WSAT = W ∩ SAT. Fix a string w ∈ W − WSAT and let �x be a hard
sequence in H of order z (the maximum order given by the advice function). We know that
such a hard sequence exists since z was given by the advice function and we have just shown that
HARD(m,W) ⊆ H. Since 〈�x,w〉 �∈ H, N must have succeeded in the procedure call EasyTest(�x,w).
Then, there exists u1, . . . , u�−1 ∈ {0, 1}m such that π�(h(u1, . . . , u�−1, w, �xR)) ∈ SAT, where � =
2k − z. By the definitions of BL2k and coBL2k , this is enough to imply that w ∈ SAT. Thus, every
string w ∈ W − WSAT must be unsatisfiable. Since every string in WSAT was already confirmed to
be satisfiable, it follows that WSAT = W ∩ SAT.

9

Finally, some computation path of N will guess the correct WSAT and a correct H which passes
every verification step. On such a path, N knows the elements of W ∩ SAT. Thus, N can carry
out the simulations of MHB and recover the lexically smallest hard sequence for length n. Using
this hard sequence, N can then accept the original input ϕ if and only if ϕ ∈ SAT. Therefore,
coNP ⊆ NP/k. �

5 Discussion

The results in this paper show a tight connection between the number of bits of advice that an
NP machine needs to recognize SAT and the collapse of the Polynomial Hierarchy. On a technical
level, this connection is borne out by the mind change technique and the hard/easy argument. We
need exactly k bits to encode the order of the maximum hard sequence given a ≤P

m -reduction h
from BL2k to coBL2k and 2k mind changes is exactly what we need to recognize a ΣP

2 language
assuming coNP ∈ NP/k. In comparison, Chang and Kadin showed that if BH ⊆ BH2k then an
NPNP machine could recognize a ΣP

3 -complete language, if it is given the order of the maximum
hard sequence as advice [CK96, Lemma 4.4]. Since this advice can also be encoded in k bits, this
previous result showed that BH ⊆ BH2k =⇒ PH ⊆ NPNP/k.

Our new results are obtained not only by strengthening the hypothesis to PH ⊆ BH2k but
also through improvements in the hard/easy argument. The technique used by Chang and Kadin
required an existential search for a hard sequence (hence requiring an NPNP machine). The current
technique involves a search for the hard string or hard sequence in a polynomial sized domain. This
technique was first introduced by Hemachandra, Hemachandra and Hempel [HHH99] and further
refined by Buhrman and Fortnow [BF99] and by Chang [Cha01].

One direction of our results holds true when we consider non-constant advice length. It is fairly
easy to extend Theorem 9 to show that coNP ⊆ NP/ log =⇒ PH ⊆ PNP. However, the techniques
used in Theorem 12 assumes a constant number of queries and cannot be used to show the converse.
It remains an open question whether coNP ⊆ NP/ log ⇐⇒ PH ⊆ PNP.

References

[ABG90] A. Amir, R. Beigel, and W. I. Gasarch. Some connections between bounded query classes and
non-uniform complexity. In Proceedings of the 5th Structure in Complexity Theory Conference,
pages 232–243, 1990.

[BCO93] R. Beigel, R. Chang, and M. Ogiwara. A relationship between difference hierarchies and rela-
tivized polynomial hierarchies. Mathematical Systems Theory, 26(3):293–310, July 1993.

[Bei91] R. Beigel. Bounded queries to SAT and the Boolean hierarchy. Theoretical Computer Science,
84(2):199–223, July 1991.

[BF99] H. Buhrman and L. Fortnow. Two queries. Journal of Computer and System Sciences, 59(2):182–
194, 1999.

[Cai01] Jin-Yi Cai. SP
2 ⊆ ZPPNP. In Proceedings of the IEEE Symposium on Foundations of Computer

Science, pages 620–629. IEEE Computer Society, October 2001.

[CGH+88] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and G. Wech-
sung. The Boolean hierarchy I: Structural properties. SIAM Journal on Computing, 17(6):1232–
1252, December 1988.

10

[CGH+89] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and G. Wech-
sung. The Boolean hierarchy II: Applications. SIAM Journal on Computing, 18(1):95–111,
February 1989.

[CGL97] R. Chang, W. I. Gasarch, and C. Lund. On bounded queries and approximation. SIAM Journal
on Computing, 26(1):188–209, February 1997.

[Cha92] R. Chang. On the structure of bounded queries to arbitrary NP sets. SIAM Journal on Com-
puting, 21(4):743–754, August 1992.

[Cha01] R. Chang. Bounded queries, approximations and the Boolean hierarchy. Information and Com-
putation, 169(2):129–159, September 2001.

[CK95] R. Chang and J. Kadin. On computing Boolean connectives of characteristic functions. Mathe-
matical Systems Theory, 28(3):173–198, May/June 1995.

[CK96] R. Chang and J. Kadin. The Boolean hierarchy and the polynomial hierarchy: A closer connec-
tion. SIAM Journal on Computing, 25(2):340–354, April 1996.

[FPS02] Lance Fortnow, Aduri Pavan, and Samik Sengupta. Personal communication. 2002.

[HHH99] E. Hemaspaandra, L. A. Hemaspaandra, and H. Hempel. Downward collapse within the polyno-
mial hierarchy. SIAM Journal on Computing, 28(2):383–393, April 1999.

[HN93] A. Hoene and A. Nickelsen. Counting, selecting, sorting by query-bounded machines. In Proceed-
ings of the 10th Symposium on Theoretical Aspects of Computer Science, volume 665 of Lecture
Notes in Computer Science. Springer-Verlag, 1993.

[Kad88] J. Kadin. The polynomial time hierarchy collapses if the Boolean hierarchy collapses. SIAM
Journal on Computing, 17(6):1263–1282, December 1988.

[KL82] R. Karp and R. Lipton. Turing machines that take advice. L’Enseignement Mathématique,
28:191–209, 1982.

[Kre88] M. W. Krentel. The complexity of optimization problems. Journal of Computer and System
Sciences, 36(3):490–509, 1988.

[KSW87] J. Köbler, U. Schöning, and K. Wagner. The difference and truth-table hierarchies for NP.
RAIRO Theoretical Informatics and Applications, 21:419–435, 1987.

[PY84] C. Papadimitriou and M. Yannakakis. The complexity of facets (and some facets of complexity).
Journal of Computer and System Sciences, 28(2):244–259, April 1984.

[Wag88] K. Wagner. Bounded query computations. In Proceedings of the 3rd Structure in Complexity
Theory Conference, pages 260–277, June 1988.

[Wag90] K. Wagner. Bounded query classes. SIAM Journal on Computing, 19:833–846, 1990.

[WW85] K. Wagner and G. Wechsung. On the Boolean closure of NP. In Proceedings of the 1985
International Conference on Fundamentals of Computation Theory, volume 199 of Lecture Notes
in Computer Science, pages 485–493. Springer-Verlag, 1985.

11

