
Bounded Queries and the NP Machine Hypothesis

Richard Chang†

chang@umbc.edu

Suresh Purini†

suresh1@umbc.edu

University of Maryland Baltimore County

Abstract

The NP machine hypothesis posits the existence of an

ǫ > 0 and a nondeterministic polynomial-time Turing ma-

chine M which accepts the language 0∗ but for which no

deterministic Turing machine running in 2nǫ

time can out-

put an accepting path infinitely often. This paper shows

two applications of the NP machine hypothesis in bounded

query complexity. First, if the NP machine hypothesis holds,

then

PSAT[1] = PSAT[2] =⇒ PH ⊆ NP.

Without assuming the NP machine hypothesis, the best

known collapse of the Polynomial Hierarchy (PH) is to the

class SP
2 due to a result of Fortnow, Pavan and Sengupta

[9].

The second application is to bounded query function

classes. If the NP machine hypothesis holds then for all

constants d > 0, there exists a constant k > d such that for

all oracles X ,

PFSAT[nk] 6⊆ PFX[nd].

In particular, PFSAT[nd] (PFSAT[nk]. Without the NP

machine hypothesis, there are currently no known conse-

quences even if for all k > 1, PFSAT[nk] ⊆ PFSAT[n].

1 Introduction

In the study of bounded query complexity classes, we

would like to show that each additional query to a hard ora-

cle (e.g., SAT) provides the polynomial-time base machine

with additional computational power — either to recognize

†Address: Department of Computer Science and Electrical Engineer-

ing, University of Maryland Baltimore County, 1000 Hilltop Circle, Balti-

more, MD 21250, USA.

new languages or to compute new functions. Of course,

we cannot prove such results without also showing that

P 6= NP, so the theorems in the area tend to show that if

additional queries do not provide additional computational

power, then some intractability assumption would be vio-

lated (e.g., P = NP or PH collapses).

In the case of bounded query language classes, Kadin

[13] pioneered the hard/easy argument and showed that for

all constants k, P
SAT[k]
tt = P

SAT[k+1]
tt =⇒ PH ⊆ ΣP

3 .

Subsequent improvements concentrated on collapsing PH

to a lower level [8, 5] through efficient searches for “hard

strings.” For technical reasons that we will not go into here,

the case of one query versus two queries is a special case.

By considering whether the input string itself might be a

hard string, downward collapses can be achieved for queries

to ΣP
i for i ≥ 2 [10, 6]:

PΣP
i [1] = PΣP

i [2] ⇐⇒ PH ⊆ ΣP
i .

These are downward collapses because PH collapses to a

level that is lower than that assumed in the premise. Such

downward collapses have not been shown either for larger

number of queries nor for the ΣP
1 = NP case.

More recently Fortnow, Pavan and Sengupta [9] showed

that if PSAT[1] = PSAT[2] then PH ⊆ SP
2 . Combined

with the results of Cai [7], showing that SP
2 ⊆ ZPPNP,

and of Buhrman and Fortnow [6], showing that PSAT[1] =
PSAT[2] =⇒ PSAT[1] = PSAT, we get a very unsatisfying

collapse of PH:1

PSAT[1] = PSAT[2] =⇒ PSAT[1] = PSAT ⊆ ZPPSAT[1]

=⇒ PSAT ⊆ ZPPSAT[2] = ZPPNP

=⇒ PSAT ⊆ ZPPNP = PH

1Here ZPP
NP does not collapse to ZPP

NP[1] because a ZPP compu-

tation path can end in accept, reject or “don’t know.” It takes two queries

to narrow the 3 choices down to 1.

The situation cries out for a complete collapse of PH all

the way down PSAT[1]. However, our attempts to show that

PSAT[1] = PSAT[2] =⇒ ZPPSAT[1] = ZPPSAT[2] have

not been fruitful. Nor were forays into proving PSAT[1] =
PSAT[2] =⇒ ZPPSAT[1] ⊆ PSAT. It appears to be time to

consider additional assumptions.

One approach is to look at assumptions that derandom-

ize BPPNP [21, 17, 14, 3, 22]. Then PNP = ZPPNP =
BPPNP would give us a complete collapse:

PSAT[1] = PSAT[2] =⇒ PH ⊆ PSAT[1].

For the results in this paper, we make the stronger as-

sumption that NP does not have p-measure zero. We show

that under this measure hypothesis, PSAT[1] = PSAT[2]

leads to a collapse of PH all the way down to NP. This is

a downward collapse of PH below the original assumption

that PSAT[2] collapses to PSAT[1]. Thus, under the measure

hypothesis, we are able to achieve the analogous downward

collapse previously achieved for ΣP
i where i ≥ 2.

Theorem 1 If NP does not have p-measure zero, then

PSAT[1] = PSAT[2] ⇐⇒ PH ⊆ NP.

We note that Buhrman and Fortnow [6] constructed a

relativized world where NP 6= coNP but PSAT[1] =
PSAT[2] = PSPACE. Thus, we can add the two queries

problem to a long list of problems that have not been re-

solved with “traditional” intractability assumptions (e.g.,

P 6= NP, PH does not collapse), but have been resolved

under the measure hypothesis [16, 19, 18, 20].

In our proofs, we do not work with p-measure or with

martingales directly. Instead we make use of the recent

work of Hitchcock and Pavan [11] who showed that the

measure hypothesis implies the NP machine hypothesis.

This hypothesis posits the existence of an ǫ > 0 and a non-

deterministic polynomial-time Turing machine M which

accepts the language 0∗ but for which no deterministic Tur-

ing machine running in 2nǫ

time can output an accepting

path infinitely often. We modify Buhrman and Fortnow’s

proof that PSAT[1] = PSAT[2] implies that “locally” either

NP = coNP or SAT ∈ P/poly [6]. By carefully redefin-

ing their hard and easy strings, we can show that the advice

used in the P/poly case can be made polynomially shorter

than the input string. This allows us to compute satisfiabil-

ity in subexponential time in such a way that violates the NP

machine hypothesis. Thus, the P/poly case can only occur

finitely often, which gives us NP = coNP almost every-

where and thus NP = coNP by finite patching.

Downward collapse is not as difficult to obtain for

bounded query function classes. Some of the first results

[15, 4] showed that for q(n) ≤ c logn, where c < 1,

PFSAT[q(n)] ⊆ PFSAT[q(n)−1] =⇒ P = NP.

For q(n) = O(log n), the results use the assumption that

PH does not collapse [2, 1]:

PFSAT[q(n)] ⊆ PFSAT[q(n)−1] =⇒ PH ⊆ ΣP
3 .

Not much is known when the number of queries is larger

thanO(log n). Thus, we are left in a strange situation where

we “know” that 2 queries is more powerful than 1 query, but

it is possible that n2 queries is not any more powerful than

n queries. Perhaps after n queries to SAT, a polynomial-

time machine can learn everything it needs to know about

satisfiability, making additional queries useless. Our second

result shows that under the measure hypothesis, this cannot

happen:

Theorem 2 If NP does not have p-measure zero, then for

any constant d > 0, there exists a constant k > d such that

PFSAT[nd] (PFSAT[nk].

Theorem 2 shows that under the measure hypothesis,

even with polynomially many queries to SAT at your dis-

posal, more queries will eventually let you compute more

functions. Again, the proof uses the NP machine hypothe-

sis. This time we modify one of Krentel’s proof to achieve

the desired results.

In the next section of the paper, we give formal defi-

nitions to the notions mentioned above. Readers familiar

with the definition of the NP machine hypothesis and of

the bounded query classes can safely skip over this section

since we do not introduce any new terminology. In Sec-

tions 4 and 5, we prove the two main theorems of the paper.

2 Preliminaries

Definition 3 [11] NP machine hypothesis: There exist an

ǫ > 0 and an NP machine M such that L(M) = 0∗ and

for any 2nǫ

-time bounded deterministic Turing machine D,

the number of lengths n where D(0n) outputs an accepting

path of M(0n) is finite.

By a simple padding argument, the NP machine hypoth-

esis can be put in a more useful form:

Fact 4 [12] Assuming that the NP machine hypothesis

holds, then for any polynomial nd, there exists an NP

machine N such that L(N) = 0∗ and for any 2nd

-time

bounded deterministic Turing machine D, the number of

lengths n whereD(0n) outputs an accepting path of N(0n)
is finite.

Hitchcock and Pavan [11] showed a strong connection

between resourced-bounded measure and the NP machine

hypothesis. Lutz [16] defined a resource-bounded analog of

Lebesgue measure (from real analysis) to “investigate the

distribution of nonuniform complexities in uniform com-

plexity classes.” Since then the assumption that NP does

not have p-measure zero (often called the measure hypoth-

esis), has been used to obtain results where more traditional

intractability assumptions have failed.

Definition 5 A martingale is a function d : Σ∗ → [0,∞)
with the property that for all w ∈ Σ∗, d(w) = (d(w0) +
d(w1))/2. A martingale succeeds on a language A ⊆ Σ∗ if

lim sup
n→∞

d(A ↾ n) = ∞,

where A ↾ n is the length n prefix of A’s characteristic se-

quence. A class C of languages has p-measure 0, if there

exists a polynomial-time computable martingale that suc-

ceeds on everyA ∈ C.

Fact 6 [11] If NP does not have p-measure zero, then the

NP machine hypothesis holds.

Definition 7 Let q(n) be a polynomial-time computable

function and X be any language. We use PX[q(n)] to de-

note the class of languages recognized by deterministic

polynomial-time Turing machines which make at most q(n)
serial queries (a.k.a. adaptive queries) to the oracle X on

inputs of length n. When the queries are made in par-

allel (non-adaptively), we use the notation P
X[q(n)]
tt . We

use PFX[q(n)], PF
X[q(n)]
tt for the analogous classes of func-

tions. Also, when the machines are allowed any polynomial

number of queries, we drop the q(n) and use PSAT, PSAT
tt ,

PFSATand PFSAT
tt .

3 Two Queries Revisited

In this section we redefine the Easy-I, Easy-II, Easy-

III and Easy-IV sets of Buhrman and Fortnow [6]. The

main difference here is that we pay special attention to the

polynomial bounds of the existential quantifiers. Where a

Boolean formula φ of length n is concerned, we will quan-

tify over formulas ψ of length nk (for some constant k to

be chosen later). This will allow us to compute satisfiability

for formulas of length ≤ nk using advice that has length

O(n) in Lemma 17.

Consider the following languages:

PARITY = { (φ1, φ2) | (φ1 ∈ SAT ∧ φ2 ∈ SAT)

∨ (φ1 ∈ SAT ∧ φ2 ∈ SAT) }

SAT∧SAT = { (φ1, φ2) | φ1 ∈ SAT ∧ φ2 ∈ SAT}

SAT⊕SAT = { (φ,+) | φ ∈ SAT }∪{ (φ,−) | φ ∈ SAT }

Under the assumption that PSAT[1] = PSAT[2], there exist a

≤P
m -reduction g from PARITY to SAT⊕SAT and a ≤P

m -

reduction h from SAT∧SAT to SAT⊕SAT. This is be-

cause SAT⊕SAT is a ≤P
m -complete language for PSAT[1].

We now define Easy-I, Easy-II, Easy-III and Easy-IV

formulas.

Definition 8 Let φ be a Boolean formula of length n and k
be any constant.

1. φ is called Easy-I if ∃ψ, |ψ| ≤ nk, and h(φ, ψ) =
(τ,+) and τ ∈ SAT.

2. φ is called Easy-II if

i. φ is Easy-I or

ii. φ is the leaf of a self-reduction tree and evalu-

ates to false or

iii. The immediate children of φ in its self-

reduction tree are Easy-I.

3. φ is called Easy-III if

i. φ is Easy-II or

ii. There is an Easy-II formula ψ, |ψ| ≤ nk, such

that h(ψ, φ) = (τ,−) and τ ∈ SAT.

4. φ is called Easy-IV if

i. φ is Easy-III or

ii. ∃ψ ∈ SAT, |ψ| ≤ nk and g(φ, ψ) = (τ,+)
and τ ∈ SAT or

iii. There is an Easy-III formula ψ, |ψ| ≤ nk, and

g(φ, ψ) = (τ,−) and τ ∈ SAT.

Definition 9

1. Hard-I = SAT − Easy-I

2. Hard-II = SAT − Easy-II

3. Hard-III = SAT − Easy-III

4. Hard-IV = SAT − Easy-IV

The lemmas in the rest of this section follow the origi-

nal proof of Buhrman and Fortnow [6] quite closely. Our

intention here is to verify that the new definitions do not

introduce any problems.

Lemma 10 There exist NP machines that recognize the

languages Easy-I, Easy-II, Easy-III and Easy-IV.

Proof: It suffices to note that the definition of Easy-I, Easy-

II, Easy-III and Easy-IV only involve existential quantifiers.

The longest string involved in a quantifier is in the case of

Easy-IV. Here we need to verify that a string ψ with length

up to nk is Easy-III. Checking ψ is Easy-III can involve

strings as long as n3k which is still polynomial in the length

of the original input. 2

Lemma 11 Either there exists a Hard-IV formula of length

n or there exist polynomial-time verifiable witnesses for all

Boolean formulas φ ∈ SAT
=n

.

Proof: If there exists no Hard-IV formula of length n, then

every Boolean formula φ ∈ SAT
=n

is an Easy-IV formula,

thus ensuring a polynomial-time verifiable witness for its

unsatisfiability. 2

Lemma 12 If φ is a Hard-IV formula of length n, and ψ ∈
SAT, |ψ| ≤ nk, then g(φ, ψ) = (τ,−) for some τ .

Proof: Suppose by contradiction that g(φ, ψ) = (τ,+).
Since ψ ∈ SAT and φ ∈ Hard-IV ⊆ SAT, we have

(φ, ψ) ∈ PARITY. Furthermore, since g is a ≤P
m -reduction

from PARITY to SAT⊕SAT, we must have (τ,+) ∈
SAT⊕SAT. Thus, τ ∈ SAT which implies that φ is an

Easy-IV formula, which is a contradiction. 2

Lemma 13 If φ is a Hard-IV formula of length n, and ψ is

an Easy-III formula, |ψ| ≤ nk, then g(φ, ψ) = (τ,+).

Proof: As in the proof of Lemma 12, suppose by contra-

diction that g(φ, ψ) = (τ,−). Then τ ∈ SAT. (This time

(φ, ψ) 6∈ PARITY.) Thus, φ is an Easy-IV formula, a con-

tradiction. 2

Lemma 14 If there is a Hard-I formula φ of length n, then

there is a Hard-I Easy-II formula α of length n.

Proof: Consider the self-reduction tree of φ. Since φ ∈
SAT, every formula in the tree is unsatisfiable and must

be either Easy-I or Hard-I. Thus, there must exist a Hard-

I formula α that is the lowest Hard-I formula in the tree.

Then α is either a leaf or has two Easy-I children. In either

case, α is Easy-II which gives us a Hard-I Easy-II formula.

Without loss of generality, formulas in the self-reduction

tree have length n = |φ|, thus α is a Hard-I Easy-II formula

of length n. 2

Lemma 15 If α is a Hard-I Easy-II formula of length n and

ψ ∈ SAT, where |ψ| ≤ nk, then h(α, ψ) = (τ,−).

Proof: Suppose by contradiction that h(α, ψ) = (τ,+) for

some τ . Since we are given that α ∈ SAT and ψ ∈ SAT,

(α, ψ) ∈ SAT∧SAT. Since h ≤P
m -reduces SAT∧SAT to

SAT⊕SAT, we must have (τ,+) ∈ SAT⊕SAT. Thus,

τ ∈ SAT, which implies that α is an Easy-I formula, a

contradiction. 2

Lemma 16 If α is a Hard-I Easy-II formula of length n
and ψ is a Hard-III formula such that n1/k ≤ |ψ| ≤ nk,

then h(α, ψ) = (τ,+).

Proof: Suppose that h(α, ψ) = (τ,−). Then, (α, ψ) 6∈
SAT∧SAT implies that τ ∈ SAT. Since |ψ| ≥ n1/k and

|α| = n, |α| ≤ |ψ|k. Thus, α and τ constitute a witness that

ψ is an Easy-III formula and we arrive at a contradiction.

2

Lemma 17 There exists a polynomial-time machine D
which takes input of the form (ψ, φ, α) such that if φ is a

Hard-IV formula, with |φ| = n, and α is a Hard-I Easy-II

formula, with |α| = n, then for all ψ, |ψ| ≤ nk, ψ ∈ SAT
if and only if D(ψ, φ, α) accepts.

Proof: Consider the algorithm for the machine D given be-

low. Assume without loss of generality that |ψ| ≥ n1/k. If

ψ were too short, we could always pad ψ up to any length

greater than n1/k and less than nk.

1. If g(φ, ψ) = (τ,+), then reject ψ.

2. Otherwise, if h(α, ψ) = (τ,+), reject ψ.

3. Otherwise, accept ψ.

By Lemma 12, if g(φ, ψ) = (τ,+) then ψ 6∈ SAT. Thus,

D rejects correctly in Step 1. If D proceeds to Step 2, then

g(φ, ψ) = (τ,−) and by Lemma 13, ψ 6∈ Easy-III. Hence,

in Step 2, either ψ ∈ SAT or ψ ∈ Hard-III. Now, in Step 2,

if h(α, ψ) = (τ,+), then by Lemma 15, ψ 6∈ SAT. Thus,

D rejects correctly in Step 2 as well. Finally, if D proceeds

to Step 3, then by Lemma 16, h(α, ψ) = (τ,−) implies that

ψ 6∈ Hard-III. (This is where we need |ψ| ≥ n1/k.) Since

we already know that either ψ ∈ SAT or ψ ∈ Hard-III, ψ
must be in SAT. Thus, D accepts correctly in Step 3. 2

By self-reducibility of SAT we have:

Corollary 18 There exists a polynomial-time machine D′

which takes input of the form (ψ, φ, α) such that if φ is a

Hard-IV formula, with |φ| = n, and α is a Hard-I Easy-II

formula, with |α| = n, then for all Boolean formulas ψ,

where |ψ| ≤ nk, D′(ψ, φ, α) outputs a satisfying assign-

ment of ψ.

4 The NP Machine Hypothesis and the Two

Queries Problem

Lemma 19 Under the NP machine hypothesis, PSAT[1] =
PSAT[2] =⇒ PH ⊆ NP.

Proof: By Fact 4, letN be an NP machine accepting 0∗ such

that no deterministic 2n2

-time bounded machine can com-

pute an accepting computation path of N(0n) at infinitely

many n’s. Let k be a constant such that when we apply

Cook’s reduction to N(0n) and obtain a Boolean formula

ψ, we have |ψ| ≤ nk.

Let us assume PSAT[1] = PSAT[2]. Now define Easy-i
in Definition 8 using the k obtained from Cook’s reduction.

Then, we can have either infinitely many Hard-IV formulas

or not. If there are finitely many Hard-IV formulas, then

there exists a constant n0, such that there exist no Hard-

IV formulas with length greater than or equal to n0. By

Lemma 11, we have polynomial-time verifiable witnesses

for all φ ∈ SAT
≥n0

. Thus we have NP = coNP by finite

patching.

Now let us assume that there are infinitely many Hard-

IV formulas. We show that this contradicts the NP machine

hypothesis. We construct a machine 2n2

-time bounded

machine M which outputs an accepting computation path

of N(0n), whenever there exists a Hard-IV formula φ of

length n.

Machine M : on input 0n.

1. Apply Cook’s reduction toN(0n) and let ψ, |ψ| ≤ nk,

be the Boolean formula obtained after applying Cook’s

reduction.

2. For all Boolean formulas φ and α such that |φ| =
|α| = n:

(a) Run D′ on input (ψ, φ, α). (Remark: D′ is the

machine from Corollary 18.)

(b) When D′ outputs a string x, check if x is a sat-

isfying assignment for ψ. If so, recover an ac-

cepting computation path π ofN(0n) from x and

output the path π.

Fix a length n where there exists a Hard-IV formula φ of

length n. Recall from Lemma 14 that a Hard-I Easy-II for-

mula exists whenever there is a Hard-I formula. Since Hard-

IV formulas are also Hard-I, we are guaranteed to have a

Hard-I Easy-II formula α of length n. Observe that if D′

is supplied with a Hard-IV formula φ and a Hard-I Easy-II

formula α in Step 2 of M , then M will output an accept-

ing computation path of N(0n). Since M tries all possible

φ and α of length n, during some iteration of the loop in

Step 2, a Hard-IV φ and a Hard-I Easy-II α will be used.

Note that it is possible that M provides an output when φ
is not Hard-IV or when α is not Hard-I Easy-II. However,

M always verifies that the assignment x produced by D′ is

satisfying, so M never produces an incorrect output.

Finally we note that the running time of M is bounded

by 22np(n), for some polynomial p(n). Step 2 takes 22n

iterations to cycle through all φ andα, where |φ| = |α| = n,

and each iteration takes some polynomial time bounded by

p(n). The 22np(n) running time grows slower than 2n2

.

Thus we have a 2n2

-time bounded machine which outputs

accepting computation paths of N(0n) at infinitely many

n’s. This contradicts the NP machine hypothesis. Thus the

lemma is proved. 2

Theorem 1 If NP does not have p-measure zero, then

PSAT[1] = PSAT[2] ⇐⇒ PH ⊆ NP.

Proof: Since the measure hypothesis implies the NP ma-

chine hypothesis [11], we have the forward direction from

Lemma 19. The other direction is trivial. 2

5 The NP Machine Hypothesis and Bounded

Query Functions

Lemma 20 Under the NP machine hypothesis, for any con-

stant d > 0, there exists a constant k > d such that for all

oracles X , PFSAT[nk] 6⊆ PFX[nd].

Proof: By Fact 4, let N be an NP machine accepting 0∗

such that no 2nd+1

-time bounded machine can compute an

accepting path ofN(0n) at infinitely many n’s. Let φ be the

Boolean formula obtained by applying Cook’s reduction to

N(0n). As before, |φ| ≤ nk for some constant k. We can

see that a PFSAT[nk] machine will be able to compute a

satisfying assignment for φ if one exists. Using this satis-

fying assignment we can obtain an accepting computation

path for N(0n). Let us assume that PFSAT[nk] ⊆ PFX[nd]

for some oracleX . Then there exists an equivalent PFX[nd]

machineM which on input 0n outputs an accepting compu-

tation path ofN(0n). Now we can construct a deterministic

machineM ′ to traverse the oracle query tree of M(0n) and

at each leaf of the tree, M ′ checks whether the string π out-

put by M at that leaf is in fact an accepting computation

path of N(0n). If so, M ′ outputs π as an accepting compu-

tation path of N(0n). Otherwise, M ′ continues traversing

the rest of the oracle query tree. The machine M ′ termi-

nates in 2nd

p(n) time, for some polynomial p(n). Since

2nd

p(n) is asymptotically less than 2nd+1

, we arrive at a

contradiction to the NP machine hypothesis.

Finally note that if k ≤ d, then we already have

a PFSAT[nd] machine that outputs accepting computation

paths of N(0n) without assuming PFSAT[nk] ⊆ PFX[nd].

The machine M ′ described above will contradict the NP

machine hypothesis. Thus, k must be greater than d. 2

Theorem 2 If NP does not have p-measure zero, then for

any constant d > 0, there exists a constant k > d such that

PFSAT[nd] (PFSAT[nk].

We now strengthen Theorem 2 for bounded query func-

tion classes of the form PFSAT[nδ] for certain values of

δ < 1.

Theorem 21 Suppose the NP machine hypothesis holds.

Then, there exist constants d and k such that d < k and

(a) for all δ, 0 ≤ δ < d/k, for all ǫ, ǫ− δ > 1 − d/k, and

for all oracles X , PFSAT[nǫ] 6⊆ PFX[nδ].

(b) for all ǫ > 1 − d/k, for all oracles X , for all i ≥ 0,

PFSAT[nǫ] 6⊆ PFX[logi n].

Proof: By Fact 4 and the NP machine hypothesis, we have

a nondeterministic polynomial-time Turing machine N ac-

cepting 0∗, such that no deterministic Turing machine run-

ning in 2nd

time can compute an accepting computation

path of N(0n) for infinitely many n’s. Let nk be an up-

per bound on the length of the Boolean formula obtained by

running Cook’s reduction on N(0n).

Let us assume PFSAT[nǫ] ⊆ PFX[nδ] for some oracle X
and some δ and ǫ such that 0 ≤ δ < ǫ ≤ 1. Consider a

PFSAT[nǫ] Turing machineM1 which takes as input 〈φ,w〉,
where φ is a Boolean formula and w is a bit string such

that |w| ≤ |φ|. The bit string w contains an assignment

to some or all of the variables in φ. So it is valid to as-

sume that |w| ≤ |φ|. The machineM1 computes a bit string

x, |x| = nǫ, where n = |〈φ,w〉| such that wx is the pre-

fix of the lexicographically maximum satisfying assignment

among all satisfying assignments of φ with w as prefix. If

no satisfying assignment of φ has w as prefix, the machine

M1 can output arbitrary x. Since PFSAT[nǫ] ⊆ PFX[nδ],

there exists a PFX[nδ] machine M2 which computes the

same function as M1.

Now consider the following deterministic Turing ma-

chine M3 which computes an accepting computation path

of N(0n). We will analyze the running time of M3 later.

M3(0
n) :

1. Apply Cook’s reduction to N(0n). Let φ, |φ| = m ≤
nk, be the Boolean formula obtained after Cook’s re-

duction.

2. Call M3 SUB(φ, λ), where λ is the null string. Out-

put an accepting computation path ofN(0n) by decod-

ing the satisfying assignment returned by the function

call to M3 SUB.

M3 SUB(〈φ,w〉) :

1. If |w| ≥ #variables in φ

(a) Substitute the bit values in w (starting from left)

for the variables in φ. If φ evaluates to TRUE

return w. Otherwise return FALSE.

2. For all x ∈ {0, 1}|〈φ,w〉|δ do

(a) Traverse the query tree of MX
2 (〈φ,w〉) using the

bit string x. Let x′, |x′| = |〈φ,w〉|ǫ, be the bit

string at the corresponding leaf.

(b) Call M3 SUB(〈φ,wx′〉).

Let us upper bound the running time of M3 SUB on in-

put 〈φ, ǫ〉, where |φ| = m ≤ nk. Each recursive call to

M3 SUB determines at least mǫ variables of φ. Since the

recursion terminates when all the variables of φ are deter-

mined, the depth of the recursion stack is at most m1−ǫ.

Furthermore, in each procedure call to M3 SUB, we try at

most 2(2m)δ

possible bit strings. Essentially, we have a tree

of depth at mostm1−ǫ and the degree of each non-leaf node

is bounded by 2(2m)δ

. Thus, we have the overall running

time of M3 bounded by cm2(2m)δm1−ǫ

, for some constant

c. The linear factor is the time taken to verify that an as-

signment to the variables of φ is satisfying.

Substituting nk for m, we have:

cm2(2m)δm1−ǫ

= cnk2(2nk)δnk(1−ǫ)

.

Now to arrive at a contradiction to the NP machine hypothe-

sis, we need the following condition to hold asymptotically.

cnk2(2nk)δnk(1−ǫ)

≤ 2nd

⇐= nk2(2nk)δnk(1−ǫ)

≤ 2nd

⇐= 2nkδ+k−kǫ < nd

⇐= kδ + k − kǫ < d
⇐= ǫ > δ + 1 − d/k

So whenever ǫ − δ > 1 − d/k, we have that PFSAT[nǫ] ⊆

PFX[nδ] implies a contradiction to the NP machine hypoth-

esis. This proves the part (a) of the theorem.

We can use the same technique as used to prove part

(a) of the theorem to analyze the case of PFSAT[nǫ] ⊆

PFX[logi n]. We can see that to arrive at a contradiction to

the NP machine hypothesis we need the following condition

to hold asymptotically.

m2m1−ǫ logi (2m) ≤ 2nd

⇐= m1−ǫ logi (2m) < nd

⇐= nk(1−ǫ)((k + 1) logn)i < nd

⇐= nk(1−ǫ) < nd

⇐= k(1 − ǫ) < d
⇐= ǫ > 1 − d/k

Thus we have the proof for the part (b) of the theorem. 2

It is interesting to note from part (a) of Theorem 21 that

if the value of k is close to d, then the difference between

ǫ and δ that is required to contradict NP machine hypoth-

esis also decreases. Intuitively it indicates that the harder

the languages in NP, the tighter the bounded query function

hierarchy. Also, observe that whenever δ ≤ d/k, we can

choose an ǫ ≤ 1. Similarly we can observe from part (b) of

Theorem 21, the closer the value of k to d, the smaller the ǫ
required to contradict the NP machine hypothesis.

Corollary 22 If NP does not have p-measure zero, then

there exist constants d and k such that d < k and

(a) for all δ, 0 ≤ δ < d/k, and ǫ, ǫ − δ > 1 − d/k,

PFSAT[nδ] (PFSAT[nǫ].

(b) for all ǫ > 1 − d/k and all i, PFSAT[logi n] (

PFSAT[nǫ].

At this point, one might ask if similar theorems can be

proven for parallel queries to SAT. In the proofs above, we

rely on the fact that PFSAT[q(n)] machines can use serial

queries to find the lexicographically maximum satisfying

assignment. However, it is only necessary for the machine

to find some satisfying assignment — it does not have to

be the largest one. If a PFSAT
tt machine can find a satisfy-

ing assignment for a Boolean formula, then we would get

theorems analogous to Theorems 2 and 21 for the parallel

bounded query hierarchy of SAT.

Furthermore, note that Theorems 2 and 21 would hold

for parallel queries to any oracleA (instead of SAT), as long

as the PF
A[nǫ]
tt machine can find some satisfying assignment

for a given Boolean formula. For example, if A is a ≤P
m -

complete language for a class C that contains PNP, then we

could obtain the analogs of Theorems 2 and 21 for paral-

lel queries to A. (This is because a PNP machine can find

the lexicographically largest satisfying assignment. Then

nǫ parallel queries to A can find the first nǫ bits of this as-

signment).

It is not known without making any additional assump-

tions whether a PFSAT
tt can find a satisfying assignment for

a Boolean formula. However under plausible hardness as-

sumptions, Klivans and Van Melkebeek [14] showed that

a PFSAT
tt machine can find a satisfying assignment for a

Boolean formula by derandomizing Valiant and Vazirani’s

random reduction from SAT to USAT [23].

Although the NP machine hypothesis is known to deran-

domize BPPSAT to PSAT [11], it is not known whether the

NP machine hypothesis also implies the derandomization

Valiant and Vazirani’s reduction. However, observe that a

PF
SAT[q(n)]
tt machine can find a satisfying assignment for

formulas that have unique satisfying assignments. So we

next make use of the UP machine hypothesis to prove the

analogs of Theorems 24 and 25 for parallel queries to SAT.

Definition 23 [11] UP machine hypothesis: There exist

an ǫ > 0 and a UP machine M such that L(M) = 0∗ and

for any 2nǫ

-time bounded deterministic Turing machine D,

the number of lengths n whereD(0n) outputs the accepting

path of M(0n) is finite.

No connection between the measure hypothesis and the

UP machine hypothesis is known at this time. Nevertheless,

we have following theorems:

Theorem 24 Under the UP machine hypothesis, for any

constant d > 0, there exists a constant k > d such that

for all oracles X , PF
SAT[nk]
tt 6⊆ PFX[nd] (in particular,

PF
SAT[nd]
tt (PF

SAT[nk]
tt).

Theorem 25 Suppose the UP machine hypothesis holds.

Then, there exist constants d and k such that d < k and

(a) for all δ, 0 ≤ δ < d/k, for all ǫ, ǫ− δ > 1 − d/k, and

for all oraclesX , PF
SAT[nǫ]
tt 6⊆ PFX[nδ] (in particular,

PF
SAT[nδ]
tt (PF

SAT[nǫ]
tt).

(b) for all ǫ > 1 − d/k, for all oracles X , for all

i ≥ 0, PF
SAT[nǫ]
tt 6⊆ PFX[logi n] (in particular,

PF
SAT[logi n]
tt (PF

SAT[nǫ]
tt).

6 Conclusion

We have observed a nice connection between resource-

bounded measure and bounded query complexity — two es-

tablished areas of computational complexity theory which,

as far as we know, have not crossed paths. Having the

NP machine hypothesis as an intermediary was very help-

ful. We note in retrospect that the Buhrman-Fortnow proof

and the NP machine hypothesis are almost a perfect match.

We needed a proof of SAT ∈ P/poly where the advice

is constructed explicitly and where we have enough con-

trol to make the advice polynomially shorter. This is not

the case for other proofs in bounded query complexity. For

example, the “advise trick” of Amir, Beigel and Gasarch

[2, 1] produces advice strings that are too long for the NP

machine hypothesis and there are no obvious ways to make

them shorter. Another point is that in the Buhrman-Fortnow

proof, we really needed the infinitely often versus almost

everywhere aspect of the NP machine hypothesis to limit

the SAT ∈ P/poly case to a finite number of lengths. In

contrast, the proofs in Section 5 actually violate the NP ma-

chine hypothesis at every length n.

References

[1] A. Amir, R. Beigel, and W. Gasarch. Some connections be-

tween bounded query classes and non-uniform complexity.

Information and Control, 186(1):104–139, October 2003.

[2] A. Amir, R. Beigel, and W. I. Gasarch. Some connections

between bounded query classes and non-uniform complex-

ity. In Proceedings of the 5th Structure in Complexity Theory

Conference, pages 232–243, 1990.

[3] V. ErvIn and J. Köbler. On pseudorandomness and resource-

bounded measure. Theoretical Computer Science, 255(1–

2):205–221, 2001.

[4] R. Beigel. NP-hard sets are p-superterse unless R = NP.

Technical Report 4, Department of Computer Science, The

Johns Hopkins University, 1988.

[5] R. Beigel, R. Chang, and M. Ogiwara. A relationship be-

tween difference hierarchies and relativized polynomial hi-

erarchies. Mathematical Systems Theory, 26(3):293–310,

July 1993.

[6] H. Buhrman and L. Fortnow. Two queries. J. Comput. Syst.

Sci., 59(2):182–194, 1999.

[7] J.-Y. Cai. S
P
2 ⊆ ZPP

NP. In Proceedings of the IEEE Sym-

posium on Foundations of Computer Science, pages 620–

629. IEEE Computer Society, Oct. 2001.

[8] R. Chang and J. Kadin. The Boolean hierarchy and the poly-

nomial hierarchy: A closer connection. In Proceedings of

the 5th Structure in Complexity Theory Conference, pages

169–178, July 1990. To appear in SIAM Journal on Com-

puting.

[9] L. Fortnow, A. Pavan, and S. Sengupta. Proving SAT does

not have small circuits with an application to the two queries

problem. In Proceedings of the 18th Annual IEEE Con-

ference on Computational Complexity, pages 347–350, July

2003. To appear in Journal of Computer and System Sci-

ences.

[10] E. Hemaspaandra, L. A. Hemaspaandra, and H. Hempel.

Downward collapse within the polynomial hierarchy. SIAM

J. Comput., 28(2):383–393, April 1999.

[11] J. M. Hitchcock and A. Pavan. Hardness hypotheses, de-

randomization, and circuit complexity. In Proceedings of

the 24th Conference on Foundations of Software Technol-

ogy and Theoretical Computer Science, pages 336–347.

Springer-Verlag, 2004.

[12] J. M. Hitchcock and A. Pavan. Comparing reductions to NP-

complete sets. In Automata, Languages, and Programming

(ICALP), pages 465–476, 2006.

[13] J. Kadin. The polynomial time hierarchy collapses if the

Boolean hierarchy collapses. SIAM J. Comput., 17(6):1263–

1282, December 1988.

[14] A. R. Klivans and D. van Melkebeek. Graph nonisomor-

phism has subexponential size proofs unless the polynomial-

time hierarchy collapses. In ACM Symposium on Theory of

Computing, pages 659–667, 1999.

[15] M. W. Krentel. The complexity of optimization problems.

J. Comput. Syst. Sci., 36(3):490–509, 1988.

[16] J. H. Lutz. Almost everywhere high nonuniform complexity.

J. Comput. Syst. Sci., 44(2):220–258, April 1992.

[17] J. H. Lutz. Observations on measure and lowness for ∆
P
2 .

Theory of Computing Systems, 30(4):429–442, July 1997.

[18] J. H. Lutz. The quantitative structure of exponential time.

In L. A. Hemaspaandra and A. L. Selman, editors, Complex-

ity Theory Retrospective II, pages 225–254. Springer-Verlag,

1997.

[19] J. H. Lutz and E. Mayordomo. Cook versus Karp-Levin:

Separating completeness notions if NP is not small. Theo-

retical Computer Science, 164(1–2):141–163, 1996.

[20] J. H. Lutz and E. Mayordomo. Twelve problems in resource-

bounded measure. Bulletin of the European Association for

Theoretical Computer Science, 68:64–80, 1999. Also in

Current Trends in Theoretical Computer Science: Entering

the 21st Century, pp. 83–101, World Scientific, 2001.

[21] N. Nisan and A. Wigderson. Hardness vs. randomness.

J. Comput. Syst. Sci., 49(2):149–167, 1994.

[22] R. Shaltiel and C. Umans. Pseudorandomness for approxi-

mate counting and sampling. In Proceedings of the 20th An-

nual IEEE Conference on Computational Complexity, pages

212–226, 2005.

[23] L. G. Valiant and V. V. Vazirani. NP is as easy as detecting

unique solutions. Theoretical Computer Science, 47(1):85–

93, 1986.

