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Abstract

This paper investigates nondeterministic bounded query classes in relation to the complexity
of NP-hard approximation problems and the Boolean Hierarchy. Nondeterministic bounded
query classes turn out be rather suitable for describing the complexity of NP-hard approximation
problems. The results in this paper take advantage of this machine-based model to prove that
in many cases, NP-approximation problems have the upward collapse property. That is, a
reduction between NP-approximation problems of apparently different complexity at a lower
level results in a similar reduction at a higher level. For example, if MaxClique reduces to
(log n)-approximating MaxClique using many-one reductions, then the Traveling Salesman
Problem (TSP) is equivalent to MaxClique under many-one reductions. Several upward
collapse theorems are presented in this paper. The proofs of these theorems rely heavily on
the machinery provided by the nondeterministic bounded query classes. In fact, these results
depend on a surprising connection between the Boolean Hierarchy and nondeterministic bounded
query classes.
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1 Introduction

In this paper, we introduce a new model of computation for describing the complexity of NP-
approximation problems. The model used here is a nondeterministic variation of the well-studied
bounded query classes. Deterministic bounded query classes were used by Krentel [Kre88] to
distinguish the complexity of different NP-optimization problems. For example, one can compute
the length of a shortest traveling salesman tour in an undirected graph with n vertices using
polynomially many oracle queries to the NP-complete language SAT. On the other hand, the size
of a largest clique in a graph with n vertices can be computed using only O(log n) queries to
SAT. Thus, the number of queries to the SAT oracle is a complexity measure which distinguishes
the difference between the complexity of the Traveling Salesman Problem (TSP) and that of the
MaxClique problem. The connection between bounded query classes and the complexity of NP-
approximation problems was established by Chang, Gasarch and Lund [CGL97, Cha96]. Their
results show a tight trade-off between the number of queries to SAT needed to approximate the
size of a largest clique and the closeness of the approximation — in general, closer approximations
require more queries.

In contrast to previous studies, in this paper we require that the machines solve the NP-
approximation problems by providing a witness to an approximate solution — not just by estimating
the size of the objective function. For example, in the case of TSP we require that the machines
report a tour of the vertices of the graph that has approximately good length, instead of simply
reporting the approximate length. Similarly, an approximate solution to MaxClique consists of
the vertices of a clique that is guaranteed to be close in size to a largest clique. This is arguably
a more natural formulation of NP-approximation problems since algorithms for NP-approximation
problems are generally required to find such witnesses. The results in this paper show that the
complexity classes defined by nondeterministic machines with a bounded number of queries to the
SAT oracle provide a good complexity measure for such NP-approximation problems. Note that an
optimum TSP tour can be found deterministically using polynomially many queries to SAT — we
first use polynomially many queries to find the length of an optimum tour, then we expend another
n queries to find the ordering of the vertices in an optimum tour. However, using such a strategy
we would also need to use polynomially many queries to SAT to find a largest clique in a graph or
even just a 2-approximate clique. Thus, the deterministic bounded query classes fail to distinguish
the complexity of these problems.

We further demonstrate the utility of working with nondeterministic bounded query classes by
proving some new upward collapse results for NP-approximation problems. These upward collapse
results show that if two NP-approximation problems of lower, but seemingly different, complexity
are inter-reducible, then problems at a higher level are also inter-reducible. For example, we show
that

MaxClique ≤P
m (log n)-approximating MaxClique

=⇒ TSP ≤P
m 2-approx. TSP

=⇒ TSP ≡P
m 2-approx. TSP≡P

m MaxClique ≡P
m (log n)-approx. MaxClique.

This theorem shows that if MaxClique is easier than we might reasonably suppose (i.e., solving
MaxClique is only as hard as approximating MaxClique within a factor of log n), then the
Traveling Salesman Problem (TSP) is also easier than we might suppose. It has been previously
shown that if PH does not collapse, then MaxClique does not reduce to log n-approximating
MaxClique [CKST95]. However, this result does not have any direct implication regarding com-
plexity of TSP.
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We also prove the following upward collapse results:

2-approximating MaxClique ≤P
m 2-approximating Set Cover

=⇒ TSP ≡P
m 2-approx. TSP ≡P

m MaxClique ≡P
m 2-approx. MaxClique,

MaxClique ≤P
m 2-approximating MaxClique

=⇒ TSP ≡P
m (1 + n− log n)-approximating TSP.

The proofs of these upward collapses reveal some intricate connections among NP-approximation
problems, nondeterministic bounded query classes and the Boolean Hierarchy. Even though the
statement of the upward collapse theorems do not mention the Boolean Hierarchy or even Turing
machines, the only way that we can prove these upward collapses is to examine the consequences
of collapsing the Boolean Hierarchy and the nondeterministic bounded query hierarchy. We use

NPF
SAT[q(n)]
b to denote the class of total multi-valued functions computed by nondeterministic

Turing machines which ask at most q(n) queries to the SAT oracle in the entire nondetermin-
istic computation tree. For example, in Section 4 we prove that 2-approximating MaxClique

is complete for the class NPF
SAT[O(log log n)]
b , meaning (quite naturally) that there exists a multi-

valued function f in NPF
SAT[O(log log n)]
b which 2-approximates MaxClique and every function in

the class reduces to any function that 2-approximates MaxClique. Since there is a correspon-
dence between the nondeterministic bounded query hierarchy and NP-approximation problems, an
upward collapse theorem for the nondeterministic bounded query hierarchy leads to an upward
collapse of NP-approximation problems. However, it is difficult to obtain upward collapses beyond
a constant number of levels. For example, one can easily show that

NPF
SAT[log log n]
b = NPF

SAT[log log n+1]
b =⇒ ∀k,NPF

SAT[log log n+k]
b ⊆ NPF

SAT[log log n]
b ,

but proving that NPF
SAT[2 log log n]
b ⊆ NPF

SAT[log log n]
b under this assumption is very difficult. In

fact, it remains an open question. Instead, we are able to show that

NPF
SAT[log log n]
b = NPF

SAT[log log n+1]
b =⇒ NPF

SAT[nO(1)]
b ⊆ NPF

SAT[log2 n]
b , (1)

which is sufficient to prove that TSP ≡P
m (1 + n− log n)-approximating TSP.

The upward collapse in (1) depends on a surprising connection between the Boolean Hierarchy
and nondeterministic bounded query classes. It has been shown previously [Cha94] that a collapse

of the NPF
SAT[q(n)]
b classes implies a collapse of the Boolean Hierarchy. In this paper, we show that

the converse is also true. For example, for all constants k

BH2k = coBH2k =⇒ NPF
SAT[nO(1)]
b ⊆ NPF

SAT[k]
b .

This result is surprising because it shows that a collapse of a language hierarchy causes a collapse
of a function hierarchy. In contrast, it is possible that the Boolean Hierarchy collapses, but the
deterministic bounded query function hierarchy PFSAT[k] does not (for example, if NP = coNP and

P 6= NP). The connection between the Boolean Hierarchy and the NPF
SAT[q(n)]
b classes is based

upon the very recent work of Buhrman and Fortnow [BF98] who showed that

BH2 = coBH2 =⇒ PSAT ⊆ BH2.

Our theorems in Section 5 are generalizations of their work.
Finally, the results in this paper also provide additional evidence for an infinite Boolean Hier-

archy. The usual argument that the Boolean Hierarchy has infinitely many distinct levels assumes
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that PH does not collapse [Kad88, BCO93, CK96, Wag88, Wag90]. Using the results in this paper,
we show that if MaxClique does not reduce to 2-approximating MaxClique, then the Boolean
Hierarchy has infinitely many levels. Furthermore, the assumption that MaxClique does not re-
duce to 2-approximating MaxClique is weaker and arguably more natural than the assumption
that PH does not collapse.

The rest of this paper is organized as follows. Section 2 provides the formal definitions used
in this paper. In Section 3, we show that the definitions of the nondeterministic bounded query
classes are robust in the sense that there are several equivalent definitions. In Section 4, we prove
that several NP-approximation problems are complete problems for the nondeterministic bounded
query classes. Section 5 establishes the connections between the nondeterministic bounded query
classes and the Boolean Hierarchy. Finally, in Section 6 we prove the upward collapse results for
NP-approximation problems.

2 Preliminaries

The Boolean Hierarchy is a generalization of the class DP defined by Papadimitriou and Yannakakis
[PY84]. For constant k, the kth level of the Boolean Hierarchy can be defined simply as nested
differences of NP languages [CGH+88, CGH+89].

Definition 1 For constant k, we use BHk and coBHk to denote the kth levels of the Boolean
Hierarchy, defined as follows:

BH1 = NP,

BH2 = DP = {L1 − L2 | L1, L2 ∈ NP}
BHk+1 = {L1 − L2 | L1 ∈ NP and L2 ∈ BHk}
coBHk = {L | L ∈ BHk}.

For non-constant levels of the Boolean Hierarchy, we should not simply define a language in
BHr(n) to be the nested differences of r(n) NP languages. This is because the running times of the
machines recognizing the r(n) languages might not be bounded by a single polynomial. Thus, we
use a single NP machine to define each language in BHr(n) (q.v. [Wag88, Wag90]).

Definition 2 Let r(n) be a monotonically increasing polynomial-time computable function such
that r(n) ≤ nǫ for some constant ǫ < 1. A language L ∈ BHr(n) if there exists an NP machine N
such that

x ∈ L ⇐⇒ max({i | 1 ≤ i ≤ r(n) and N(x, i) accepts} ∪ {0}) is odd.

Also, coBHr(n) = {L | L ∈ BHr(n)}.

Elementary results on the Boolean Hierarchy show that BHk ∪ coBHk ⊆ BHk+1 ∩ coBHk+1 and
that a constant upward collapse theorem holds [CGH+88, CGH+89]:

BHk = coBHk =⇒ BHk = BHk+1 =⇒ ∀k′ > k, BHk = BHk′ .

There are several ways to define complete languages for the Boolean Hierarchy. Depending
upon the application, we will use BLk or ODDSAT

k defined below to be the canonical ≤P
m -complete

language for BHk.
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Definition 3 For constant k, we define the languages BLk and coBLk as follows:

BL1 = SAT

BL2k = {〈x1, . . . , x2k〉 | 〈x1, . . . , x2k−1〉 ∈ BL2k−1 and x2k ∈ SAT}
BL2k+1 = {〈x1, . . . , x2k+1〉 | 〈x1, . . . , x2k〉 ∈ BL2k or x2k+1 ∈ SAT}

BLω =

∞
⋃

k=1

BLk

coBLk = {〈x1, . . . , xk〉 | 〈x1, . . . , xk〉 6∈ BLk}

coBLω =

∞
⋃

k=1

coBLk

ODDSAT
k = {〈x1, . . . , xk〉 | ‖{i | (1 ≤ i ≤ k) ∧ (xi ∈ SAT)}‖ is odd.}

ODDSAT
ω =

∞
⋃

k=1

ODDSAT
k .

Defining an analogue of BLk for non-constant levels of the Boolean Hierarchy is requires a bit
more care, because we have to consider tuples 〈x1, . . . , xm〉 where m and |〈x1, . . . , xm〉| are related.
Then we can define BLr(n) for non-constant r(n) as follows:

Definition 4 Let r(n) be a monotonically increasing polynomial-time computable function such
that r(n) ≤ nǫ for some constant ǫ < 1. We define TUPLES[r(n)] to be the set of 〈x1, . . . , xm〉
where n = |〈x1, . . . , xm〉| and m = r(n). Then,

BLr(n) = TUPLES[r(n)] ∩ BLω

coBLr(n) = TUPLES[r(n)] ∩ coBLω

ODDSAT
r(n) = TUPLES[r(n)] ∩ ODDSAT

ω .

Using these definitions, BLr(n) is ≤P
m -complete for BHr(n). However, it is also the case that

even for slowly growing functions such as log log n, that BLlog log n ≤P
m coBLlog log n. To see this, note

that log log(n2) = (log log n) + 1. Then, for each 〈x1, . . . , xm〉 ∈ TUPLES[log log n], let F be a
satisfiable Boolean formula of length n2 − n, where n = |〈x1, . . . , xm〉|. Then, 〈F, x1, . . . , xr(n)〉 ∈
TUPLES[r(n)] and

〈x1, . . . , xm〉 ∈ BLlog log n ⇐⇒ 〈F, x1, . . . , xm〉 ∈ coBLlog log n.

That BLlog log n ≤P
m coBLlog log n is somewhat counterintuitive since for constant k, BLk ≤P

m coBLk

implies that PH collapses [Kad88]. However, it is still the case that for r(n) ≤ nǫ, BHr(n) = coBHr(n)

implies that PH collapses. This is because the assumption that BHr(n) = coBHr(n) allows us to

conclude that BLr(n) ∈ coBHr(n) and that there is a dimension-preserving ≤P
m -reduction from

BLr(n) to coBLω. We will return to this issue in Section 5.

4



Definition 5 A ≤P
m -reduction f is dimension preserving if for every 〈x1, . . . , xm〉 in the domain

of f , the output of f is a tuple 〈y1, . . . , ym〉 with exactly m components.

The complexity of the Boolean Hierarchy is closely related to the complexity of the bounded
query classes which we now define.

Definition 6 Let q(n) be a polynomial-time computable function. We use PFSAT[q(n)] to denote
the set of functions computed by deterministic polynomial-time Turing machines which ask at most
q(n) queries to the SAT oracle on inputs of length n. When the queries are made in parallel, we use

the notation PF
SAT[q(n)]
tt . The classes PSAT[q(n)] and P

SAT[q(n)]
tt are the analogous language classes.

We will use PFSAT, PFSAT
tt , PSAT and PSAT

tt when the machines are allowed polynomially many
queries.

When we work with a PSAT[q(n)] or a PFSAT[q(n)] computation, it is often useful to consider the
computation as an oracle query tree. Given a polynomial-time machine M which asks at most q(n)
queries to an oracle and an input string x of length n, the oracle query tree for M(x) is a full binary
tree with depth q(n) and 2q(n) − 1 internal nodes. Each internal node represents a query made by
M(x). The left (right) subtree of the query node represents the computation of M(x) after the
query is answered assuming that the answer to the query is NO (YES). Each path from the root to
a leaf corresponds to the computation of M(x) using some oracle. We index the 2q(n) paths from
left to right with the numbers 0 through 2q(n) − 1. In this scheme, for a path with index i, the jth
bit of the q(n)-bit binary representation of i is 1 if and only if the path assumes that the jth query
is answered YES. For a given path, we say that a query is positive if the path assumes that the
query is answered YES; otherwise, we call the query a negative query. Whether a query is positive
or negative depends on the path under consideration. Every positive query on a path is a negative
query on some other path (since we are considering all possible paths).

Let z be the index of the path in the oracle query tree that corresponds to the computation of
M(x) using the SAT oracle. We call this path the correct path since we will be working almost
exclusively with the SAT oracle. For each path with index i in the oracle query tree, we can
construct a Boolean formula Fi that is the conjunction of the positive queries on that path. (We
define F0 to be TRUE.) Note that Fz must be satisfiable since z is the index of the correct path
and all positive queries on the correct path are indeed satisfiable. Furthermore, note that for all
indices j > z, Fj 6∈ SAT since the assumption that j > z implies that some negative query on path
z is a positive query on path j. This query is in fact unsatisfiable, since z is the correct path. Thus,
the index of the correct path can also be defined as:

z = max{ i | 0 ≤ i ≤ 2q(n) − 1 and Fi ∈ SAT }.

Finding the value of z allows us to recover the entire computation of M(x) without using any oracle
queries. This will be a key observation in several proofs.

Definition 7 Let q(n) be a polynomial-time computable function. We use NPF
SAT[q(n)]
b to denote

the set of total multi-valued functions computed by nondeterministic polynomial-time Turing ma-
chines which ask at most q(n) queries to the SAT oracle in the entire nondeterministic computation

tree on inputs of size n. The class NP
SAT[q(n)]
b is the analogous class of languages.

It is not useful to limit the number of oracle queries made by an NP machine on each com-
putation path because in that case one query is as powerful as polynomially many queries and
NPSAT[1] would simply be ΣP

2 . Nevertheless, to avoid any potential confusion, we use the subscript
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b in NPF
SAT[q(n)]
b to indicate that q(n) is a bound on the number of oracle queries in the entire

computation tree (as is done in [BDG90]). Counting queries in this manner was also used by Book,
Long and Selman [BLS84, Lon85] and by Wagner [Wag90]. Another noteworthy point is that a
multi-valued function may have several outputs for each input string. It may seem awkward to have
to work with multi-valued functions. However, solutions to approximation problems are naturally
multi-valued. When we ask for an approximate solution to a problem, we are inherently saying
that we do not care which of many possible solutions is produced. In addition, our restriction of

the NPF
SAT[q(n)]
b classes to total functions is not overly limiting. For example, using Lemma 14 we

can show that for q(n) ∈ O(log n) every partial function computable by a nondeterministic Turing

machine using q(n) queries to SAT has a total extension in NPF
SAT[q(n)+1]
b . (On inputs where the

original function is undefined, the total extension outputs a new ⊥ symbol.)
We use the following generalization of many-one reductions for reductions between multi-valued

functions.

Definition 8 Let f and g be two multi-valued functions. We say that f ≤P
m g if there exist two

polynomial-time computable functions T1 and T2 such that for every input x of f , T1(x) = y is a
string in the domain of g and for every output of z of g(y), T2(x, z) is an output of f(x).

For example, Graph Coloring ≤P
m MaxClique. By this we mean that given any graph G,

we can produce a graph G′ in polynomial-time such that given the vertices of any maximum clique
G′ (there can be many maximum cliques), we can then produce a coloring of G that uses a minimum
number of colors.

Since a ≤P
m -reduction can stretch the length of its output by a polynomial factor, the class

NPF
SAT[O(log n)]
b is closed under ≤P

m -reductions whereas the class NPF
SAT[log n]
b is not. This poly-

nomial stretching can also be used to in a padding argument to show that for all c1 > c2 > 0, every

function in NPF
SAT[c1 log n]
b reduces to some function f ′ in NPF

SAT[c2 log n]
b . Simply define f ′ to be

the function

f ′(w) =

{

f(x) if w = x#0m, where m ≥ |x|c1/c2

0 otherwise.

Clearly, f ≤P
m f ′. Note that the absolute number of queries used to compute f and f ′ are the same.

It is only the number of queries relative to the length of their inputs that differs. Similar closure

and padding properties hold for the classes NPF
SAT[q(n)]
b , where q(n) = nO(1), q(n) = O(loga n) and

q(n) = log log n + O(1).
Finally, we formally define the terms “k(·)-approximate MaxClique” and “k(·)-approximates

TSP.” In the definition of TSP below, we do not require the weight function to satisfy the triangle
inequality. Thus, finding constant factor approximations of this version of TSP is NP-hard. In
particular, recent work on approximation schemes for Euclidean TSP [Aro96, Mit96, Aro97] are
not applicable.

Definition 9 Let G = (V,E) be an undirected graph with n vertices and let k(n) be an approx-
imation factor such that ∀n, 1 ≤ k(n) ≤ n. We use ω(G) to denote the size of a largest clique in
G. We say that a multi-valued function f k(·)-approximates MaxClique if for all graphs G every
output of f(G) is a set X ⊆ V such that X is a clique and |X| ≥ ω(G)/k(n).

Definition 10 Let G = (V,E) be a weighted undirected graph with n vertices and weight function
w : E → N. Without loss of generality, we assume that

∑

e∈E

w(e) ≤ 2n.
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A TSP tour in the graph is a cycle that visits each vertex exactly once. The length of a TSP tour
is sum of the weights of the edges in the cycle. Let OptTSP(G) denote the length of a shortest
TSP tour in G and let k(n) be an approximation factor such that ∀n, 1 ≤ k(n) ≤ 2n. We say that
a multi-valued function f k(·)-approximates TSP if for all graphs G every output of f(G) is a TSP

tour of G with length ≤ k(n)OptTSP(G).

It is important to note that the approximation factor k(n) is always a function of the number of
vertices in G even if G is not the input of the computation under consideration. This is somewhat
confusing since we will most often use n to denote the length of the input. Then, if we construct
a graph G with m vertices, we need to consider k(m)-approximate solutions of G. Thus, we resort
to the terminology “k(·)-approximation” rather than “k(n)-approximation” or k-approximation
(which suggests that k is a constant).

3 Normal forms for bounded query classes

Although the classes NPF
SAT[q(n)]
b are fairly straightforward to define, they are difficult to work

with because the queries asked by an NPF
SAT[q(n)]
b machine may be the result of nondeterministic

computations. In this section, we show that there are equivalent machines which ask all of the
queries deterministically. This model of computation is divided into two phases. First, a deter-
ministic phase generates the queries and receives the answers to the queries. This is followed by
a second nondeterministic phase. Formally, we define these classes using the // advice operator of
Köbler and Thierauf [KT94].

Definition 11 Let C be a class of functions. Then, NPF//C is the set of total multi-valued functions
f defined by a function g ∈ C and an NP machine N such that the outputs of f(x) are the outputs
of N(x, g(x)). A language L ∈ NP//C if there exist a g ∈ C and an NP machine N such that x ∈ L
if and only if N(x, g(x)) accepts.

The following lemmas demonstrate the relationships among several nondeterministic bounded
query classes. The techniques used to prove these lemmas include the census trick and the mind
change technique. These techniques are fairly common in the literature on bounded query classes
[Hem89, Bei91, BCO93, BC97].

Lemma 12 Let r(n) ∈ nO(1) be a polynomial-time computable function, then

NPF//PFSAT[r(n)] ⊆ NPF
SAT[r(n)]
b ⊆ NPF//PFSAT[2r(n)].

Proof: The first containment NPF//PFSAT[r(n)] ⊆ NPF
SAT[r(n)]
b follows directly from definition. To

see that NPF
SAT[r(n)]
b ⊆ NPF//PFSAT[2r(n)], consider the queries made by an NPF

SAT[r(n)]
b machine

N on a particular input x. We classify the queries made by N according to levels. A query q is
on level i if q is the ith oracle query on a computation path of N on input x. In this proof we
consider only computation paths where the oracle queries are answered correctly. Thus, q must be
one of the r(n) queries asked by N on input x. It is not possible for a P machine to enumerate the
queries on level 1 (unless P = NP), since N might ask these queries after many nondeterministic
moves. On the other hand, an NP machine can simulate N and guess which queries are asked on
level 1. However, even an NP machine cannot enumerate the queries that are on level 2 (unless
NP = coNP), because doing so requires the answers to the level 1 queries. Nevertheless, if an NP
machine is given c1, the census of the level 1 queries — i.e., the exact number of level 1 queries
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that are satisfiable — then the NP machine can guess c1 satisfiable level 1 queries, verify that these
strings were indeed queried by N on input x and simulate N(x) to obtain the level 2 queries. The
simulation is correct because any level 1 query that is not on the list of c1 satisfiable level 1 queries
must be unsatisfiable. Similarly, given the census for levels 1 through i − 1, an NP machine can
guess which queries are asked on level i. We use this census strategy and a linear search to prove

that NPF
SAT[r(n)]
b ⊆ NPF//PFSAT[2r(n)].

We construct a PFSAT[2r(n)] machine D which will determine for each level i the census ci — the
number of satisfiable level i queries. The machine D simply asks “Are there k satisfiable queries
on level i?” for increasing values of k. By the discussion above, this question can be answered by
the SAT oracle assuming that the census for levels 1 through i − 1 are already known — which is
true because D determines c1, c2, . . . in order. If D receives YES as an answer, then the original
machine N did in fact make k queries on level i. On the other hand, if the answer is NO, then D
asked an extra query. However, since we are using a linear search, in this case D knows that ci is
exactly k − 1. Thus, D asks at most one extra query per level. Observe that the total number of
YES answers received by D for all levels must be bounded by r(n), since this number is bounded
by the total number of queries that N asked. Furthermore, there are at most r(n) query levels, so
the number of NO answers received by D is also bounded by r(n). Therefore, the total number of
queries made by D is bounded by 2r(n).

Finally, we combine the machine D with an NP machine N ′ to form an NPF//PFSAT[2r(n)]

computation. On input x, D calculates the census c1, . . . , cr(n) and passes this information to N ′.
The NP machine N ′ will simulate the original machine N level by level. At each level i, N ′ guesses
ci formulas, checks that they are satisfiable and verifies that they are actually queried by N on
level i. Only the computation paths of N ′ that manage to find ci satisfiable level i queries will
continue the simulation of N(x). These paths have the list of all satisfiable level i queries and know
that any other level i query is unsatisfiable. Thus, N ′ can complete the simulation of N(x) on all
computation paths and will output exactly the values that N(x) outputs. 2

The proof of the preceding lemma can also be used to prove the analogous statement for lan-
guage classes. The following lemma is not a direct corollary of Lemma 12 because the character-

istic functions of languages recognized by NP
SAT[r(n)]
b machines are not necessarily computable by

NPF
SAT[r(n)]
b machines. This is because NPF

SAT[r(n)]
b functions must be total, hence must output

0 when the NP
SAT[r(n)]
b machine rejects.

Lemma 13 Let r(n) ∈ nO(1) be a polynomial-time computable function, then

NP//PFSAT[r(n)] ⊆ NP
SAT[r(n)]
b ⊆ NP//PFSAT[2r(n)].

Lemma 12 showed that by doubling the number of queries, we can convert an NPF
SAT[r(n)]
b

machine which asks its queries “on-the-fly” into an equivalent NPF//PFSAT[2r(n)] machine which
asks its queries deterministically. In the next lemma, we show that if r(n) is logarithmically
bounded, then we do not need the extra r(n) queries for this conversion.

Lemma 14 Let r(n) ∈ O(log n) be a polynomial-time computable function, then

NPF//PFSAT[r(n)] = NPF
SAT[r(n)]
b .
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Proof: The containment NPF//PFSAT[r(n)] ⊆ NPF
SAT[r(n)]
b is trivial, so we only need to show that

NPF
SAT[r(n)]
b ⊆ NPF//PFSAT[r(n)]. This is accomplished using the mind-change technique. This

same technique was used by Beigel [Bei91] to show that

PSAT‖[2k−1] = PSAT[k].

Using the census trick, Hemachandra [Hem89] was only able to show that

PSAT[k] ⊆ PSAT‖[2k−1] ⊆ PSAT[k+1].

The mind change proof was necessary to remove the one extra query. Our current situation is
analogous, except here we remove r(n) extra queries.

Let N be an NPF
SAT[r(n)]
b machine. Consider the full computation tree of N on some input x.

This computation tree is a combination of a nondeterministic computation tree and an oracle query
tree. There are two types of branching nodes in this computation tree: nondeterministic nodes and
oracle query nodes. At a nondeterministic node, the machine N chooses one of the succeeding paths
nondeterministically. At an oracle query node, the machine N takes one of two branches depending
on the answer to the oracle query. The YES branch represents the computation of N(x) after the
oracle query assuming that the oracle answered YES. The NO branch represents the computation
of N(x) assuming the oracle answered NO. Of course, only one of the two branches is correct with
respect to the oracle SAT. For this proof, we need to consider paths in the computation tree where
the oracle queries are not answered correctly. Note that the behavior of N(x) on an incorrect
branch is not guaranteed. In particular, on an incorrect branch, N(x) may ask more than r(n)
oracle queries. This is one reason why the census trick does not work for this proof.

The size of the full computation tree is exponential. However, we only need to consider paths
where oracle queries occur. Hence, we define a subtree T to be a plausible subtree of the computation
tree if the following conditions are satisfied

1. The root of the subtree is the initial configuration of N(x).

2. The number of query nodes in T is ≤ r(n).

3. For each query node Q in T , only one of its succeeding YES and NO branches is in T . If the
YES branch is taken, we call Q a positive query node. Otherwise, we call Q negative.

4. If Q is a positive query node in T , then Q is satisfiable (i.e., if the query node Q asks the
question “F ∈ SAT?”, then F ∈ SAT).

Note that a satisfiable query node can be a positive query node or a negative query node in a
plausible subtree, but an unsatisfiable query node must be negative. Also, the leaves in a plausible
subtree need not be the leaves of the full computation tree. That is, a path from the root to a
leaf of a plausible subtree may represent only the first steps of a possible computation of N(x).
Furthermore, an NP machine can recognize whether a subtree T is a plausible subtree of N(x),
because it can check whether F ∈ SAT for each positive query node. In addition, since r(n) is
polynomially bounded, there exists a plausible subtree Tc of polynomial size such that every query
asked by NSAT(x) (using the SAT oracle) is a query node in Tc and each branch in Tc following a
query node is the correct branch with respect to the SAT oracle.

We now define a partial ordering ≺ on the set of plausible subtrees. The goal of this definition
is to make Tc a maximal element in the ordering and to guarantee that the longest chain in the
ordering contains no more than 2r(n) plausible trees. Intuitively, we want to define ≺ so that
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T1 ≺ T2 if T2 has more positive query nodes than T1. The idea is that since every satisfiable query
in Tc is positive, Tc would contain the “most” positive query nodes. However, we need to take into
account the query nodes in a plausible tree on a NO branch after a satisfiable query node. Since
the NO branch is the wrong branch, the queries made in the NO branch are not included in Tc.
These “false” positive query nodes must be excluded somehow. Thus, for two plausible subtrees
T1 and T2, we say that the transition from T1 to T2 constitutes a mind change, written T1 ≺ T2, if
one of the following conditions holds.

Mind Change 1: T1 ⊆ T2 — i.e., every path in T1 is a path in T2 — and T2 contains a positive
query node that is not in T1.

Mind Change 2: At least one query node makes a mind change from T1 to T2. That is, there
exists a query node Q that is present in both T1 and T2 such that the path from the root to
Q is identical in T1 and T2, Q is a negative query node in T1 and a positive query node in
T2. Furthermore, every path in the computation tree of N(x) that does not include a query
node making a mind change is either in both T1 and T2 or in neither.

Under the mind change ordering ≺, the plausible subtree Tc described above is maximal. If
Tc ≺ T for some plausible subtree T under Mind Change 1, then T contains at least one query
made by NSAT(x) that is not in Tc. This contradicts the assumption that Tc includes every query
made by NSAT(x). If Tc ≺ T under Mind Change 2, then the query node which makes the mind
change must be satisfiable and be a negative query node in Tc. This contradicts the assumption
that Tc takes the correct branch after every query.

Now, let Tmax be a maximal plausible subtree in the ≺ ordering. We prove the following claims
about Tmax.

Claim 1: Every satisfiable query node in Tmax must be a positive query node.

Proof of Claim 1: Suppose that Tmax takes the NO branch after some satisfiable query node Q.
Then, we can define T ′ to be Tmax modified such that all the paths following Q are replaced by a
single path of N(x) taking the YES branch after Q. This new path terminates right after the query
node Q. Thus the number of query nodes in T ′ is no more than the number of query nodes in Tmax.
Since Q is satisfiable, T ′ is a plausible subtree and Tmax ≺ T ′. This contradicts the maximality of
Tmax. Therefore, Tmax must take the YES branch after every satisfiable query.

Claim 2: Every query node in Tmax is also a query node in Tc.

Proof of Claim 2: Since Tc includes every query actually asked by NSAT(x), the only query
nodes of the full computation tree that are not present in Tc are those that follow a wrong branch
in some previous query. By the definition of plausible subtree, every YES branch taken by Tmax is
correct. By Claim 1, every NO branch taken by Tmax is also correct. Hence, every query node in
Tmax is a query that NSAT(x) makes (using the correct oracle).

Claim 3: Tmax includes every satisfiable query in Tc.

Proof of Claim 3: Suppose that there are satisfiable queries in Tc that are not in Tmax. Then,
let Q be such a query node which appears after the smallest number of time steps. (I.e., every
query on the path from the root to Q is either unsatisfiable, or satisfiable and appears in Tmax.) Let
py be a computation path in Tc which passes through Q. Since Q is satisfiable, py takes the YES
branch after Q. Let T ′ be the tree produced by grafting py onto Tmax. By Claim 2, T ′ contains only
query nodes in Tc. Thus the number of query nodes in T ′ is still bounded by r(n). Furthermore,
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since Tmax did not include Q, T ′ takes only the YES branch the query node Q. Therefore, T ′ is a
plausible subtree and Tmax ≺ T ′. This violates the maximality of Tmax. Thus, Tmax must include
every satisfiable query in Tc.

Claim 4: The maximum number of mind changes is bounded by 2r(n) − 1.

Proof of Claim 4: We prove this claim by induction on the number of queries r(n). First,
consider the base case where r(n) = 1. Let T0 be a plausible subtree that contains no query nodes,
let T1 be a plausible subtree with a single negative query node and let T2 be a plausible subtree
with a single positive query node. The trees T1 and T2 might not actually exist, since N(x) might
not ask any queries or it might ask an unsatisfiable query. Nevertheless, if T1 and/or T2 exists,
then T0 ≺ T2 and T1 ≺ T2. However, T0 followed by T1 does not constitute a mind change, since T1

does not contain any positive query nodes. Thus, when r(n) = 1, the maximum number of mind
changes is 1.

For the induction case, consider a chain of plausible subtrees: T0 ≺ T1 ≺ T2 ≺ · · · ≺ Tm. Let Q
be the first query node on some computation path of T0. Note that the path from the root to Q
must appear in every Ti by the definition of ≺. Let j be smallest such that Q is a positive query
node in Tj . If no such Tj exists (say if Q is unsatisfiable), let j = m + 1. Then by the definition
of ≺, for all i > j, Q must also be a positive query node in Ti. For 0 ≤ i < j, let T ′

i be the
plausible subtree Ti modified by replacing the query node Q by its subtree in the NO branch. For
j ≤ i ≤ m, let T ′

i be Ti where Q is replaced by the subtree in its YES branch. (Since this is strictly a
combinatorial proof, we need not be concerned that the sequence of plausible subtrees corresponds
to the computation of any Turing machine.) The sequences T ′

0 ≺ · · ·T ′
j−1 and T ′

j ≺ · · · ≺ T ′
m are

two sequences of plausible subtrees using at most r(n) − 1 queries. (The second sequence may be
empty.) Each of the two sequences can make at most 2r(n)−1 − 1 mind changes. The transition
from Tj−1 to Tj counts as an additional mind change. Hence the total number of mind changes is
bounded by

2r(n)−1 − 1 + 1 + 2r(n)−1 − 1 = 2r(n) − 1,

and we have proven Claim 4.

An NP oracle can answer the question:

Does there exist a chain of plausible subtrees which makes at least k mind changes?

The question is an NP question because we only need to consider computation paths that involve
oracle queries. Hence the size of the plausible subtrees that we need to consider are polynomially
bounded. Furthermore, since r(n) ∈ O(log n), Claim 4 guarantees that the maximum number of
mind changes is polynomially bounded. Thus, an NP machine can guess k+1 subtrees T0, T1, . . . Tk

of the full computation tree, verify that they are indeed plausible subtrees and check that T0 ≺
T1 ≺ · · · ≺ Tk. Therefore, a PFSAT[r(n)] machine can determine the largest number of mind changes
using binary search.

Finally, we show how an NPF//PFSAT[r(n)] computation can simulate the NPF
SAT[r(n)]
b com-

putation N(x). The PFSAT[r(n)] phase computes m, the maximum number of mind changes (as
described above) and passes m to an NP machine N ′. The machine N ′ then guesses m + 1 plausi-
ble subtrees T0, . . . , Tm and checks that T0 ≺ · · · ≺ Tm. By Claim 3, every satisfiable query in Tc

is a positive query in Tm. Thus, N ′ can obtain a list of all satisfiable queries made by NSAT(x).
Hence, N ′ can simulate NSAT(x) step by step. When NSAT(x) queries SAT, N ′ simply checks if
this query is on the list of all satisfiable queries. 2
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Using Lemma 14 we can show that for q(n) ∈ O(log n), any partial function f computable by

an NP machine N using q(n) queries to SAT has a total extension in NPF
SAT[q(n)+1]
b . Let N ′ be the

NP machine which simulates N , but outputs ⊥ on each path where N terminates without output.
Let f ′ be the total multi-valued function computed by N ′. By Lemma 14, f ′ ∈ NPF//PFSAT[q(n)].
However, f ′ is not a total extension of f because f ′ outputs ⊥ on some inputs where f is defined.
We can construct a total function f ′′ such that for all x, f ′′(x) = f(x) when f(x) is defined
and f ′′(x) = ⊥ otherwise. We simply simulate the deterministic phase of the NPF//PFSAT[q(n)]

computation for f ′(x). Then, we use one more query to SAT to determine if the nondeterministic
phase will output a symbol other than ⊥ on some path. If so, we continue the simulation, but we do
not output ⊥ on any path. Otherwise, we can simply output ⊥ deterministically, since we already

know that f(x) is undefined. Thus, f ′′ is computable in NPF//PFSAT[q(n)+1] = NPF
SAT[q(n)+1]
b .

The following lemma shows the equivalence between parallel (or truth-table) queries and serial
(or adaptive) queries for nondeterministic bounded query classes. For deterministic bounded query
classes, the relationship between parallel and serial queries is a feature that distinguishes bounded
query language classes from bounded query function classes. For example, in the case of language

classes, Beigel [Bei91] showed that for all constants k, PSAT[k] = P
SAT[2k−1]
tt . In contrast, for function

classes, Amir, Beigel and Gasarch [ABG90] showed that PFSAT[k] does not contain PF
SAT[k+1]
tt

unless PH collapses. In the following lemma, the trade-off between parallel and serial queries
for nondeterministic bounded query classes is the same for both language and function classes.
Thus, the structure of the nondeterministic bounded query classes is similar to the structure of the
deterministic bounded query language classes.

Lemma 15 Let r(n) ∈ O(log n) be a polynomial-time computable function, then

1. NPF//PF
SAT[2r(n)−1]
tt = NPF//PFSAT[r(n)] = NPF

SAT[r(n)]
b .

2. NP//PF
SAT[2r(n)−1]
tt = NP//PFSAT[r(n)] = NP

SAT[r(n)]
b .

Proof: By Lemma 14, NPF
SAT[r(n)]
b = NPF//PFSAT[r(n)]. Now consider the PFSAT[r(n)] phase of

the NPF//PFSAT[r(n)] computation. There are at most 2r(n) − 1 queries in the entire oracle query
tree of this computation. Moreover, these queries can be generated in deterministic polynomial time

and asked in parallel. Thus, PFSAT[r(n)] ⊆ PF
SAT[2r(n)−1]
tt and NPF

SAT[r(n)]
b ⊆ NPF//PF

SAT[2r(n)−1]
tt .

To prove that NPF//PF
SAT[2r(n)−1]
tt ⊆ NPF

SAT[r(n)]
b , we program an NPF

SAT[r(n)]
b machine to use

r(n) queries to SAT and binary search to determine the number of satisfiable formulas among the

queries asked by the PF
SAT[2r(n)−1]
tt machine. Given the census of the queries, c, the NPF machine

can determine which queries are satisfiable by guessing the c queries and their satisfying assign-

ments. Then, the NPF machine has the answers to all the queries made by the NPF//PF
SAT[2r(n)−1]
tt

machine. So, it can carry out the simulation step by step.

In the case of language classes, we prove that NP//PF
SAT[2r(n)−1]
tt = NP//PFSAT[r(n)] analo-

gously with the exception that the final simulation is for language recognition. The proof that

NP//PFSAT[r(n)] = NP
SAT[r(n)]
b , is analogous to the proof of Lemma 14. 2

Finally, by extending a result of Köbler and Thierauf [KT94], we can show an exact relationship
between the Boolean Hierarchy and nondeterministic bounded query language classes.
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Lemma 16 Let r(n) be a monotonically increasing polynomial-time computable function such
that r(n) ≤ nǫ for some constant ǫ < 1. Then

NP//PF
SAT[r(n)]
tt = BH2r(n)+1.

Proof: To show that BH2r(n)+1 ⊆ NP//PF
SAT[r(n)]
tt , let L ∈ BH2r(n)+1 and let N be an NP machine

such that

x ∈ L ⇐⇒ max({i | 1 ≤ i ≤ 2r(n) + 1 and N(x, i) accepts} ∪ {0}) is odd.

Let t be the largest i such that i is even, 1 ≤ i ≤ 2r(n) and N(x, i) accepts. The value of t

can be determined using r(n) parallel queries to the SAT oracle in the PF
SAT[r(n)]
tt phase of the

computation. Note that x ∈ L if and only if N(x, t + 1) accepts. Thus, the PF
SAT[r(n)]
tt machine

will simply compute t and pass t to the NP machine of the nondeterministic phase which checks if

N(x, t + 1) accepts. Therefore, BH2r(n)+1 ⊆ NP//PF
SAT[r(n)]
tt .

Conversely, suppose that L ∈ NP//PF
SAT[r(n)]
tt via an NP machine N and a deterministic

polynomial-time machine D. We construct an NP machine N ′ to prove that L ∈ BH2r(n)+1.
For a given input x, let Q be the set of r(n) parallel queries to SAT asked by D on input x. On
input (x, 2i), N ′ nondeterministically chooses a subset Q′ ⊆ Q with i strings and verifies that every
string in Q′ is satisfiable. If such a set Q′ is found, N ′ accepts (x, 2i). On input (x, 2i + 1), N ′

again chooses a subset Q′ ⊆ Q with i strings and verifies that Q′ ⊆ SAT. Then, N ′ simulates the
computation of D(x) assuming that every query in Q′ is satisfiable and every query in Q−Q′ is un-
satisfiable. Finally, using the output y from the simulation of D(x), N ′ simulates the computation
of N on input (x, y) and accepts if and only if N does.

We claim that x ∈ L if and only if t = max({i | N ′(x, i) accepts} ∪ {0}) is odd. To see this,
let z = ‖Q ∩ SAT‖. Then, N ′(x, 2z) will accept and for all i ≥ 2z + 2, N ′(x, i) will reject. Thus,
t is either 2z or 2z + 1. If x ∈ L, then some computation path of N ′(x, 2z + 1) will accept. If
x 6∈ L, then N ′(x, 2z + 1) must reject since every computation path of N(x,D(x)) rejects. Thus,
L ∈ BH2r(n)+1. 2

The relationship between nondeterministic bounded query function classes and the Boolean
Hierarchy is also very tight. Lemma 18 states that if the function hierarchy collapses, then so
does the Boolean Hierarchy. Recall that if the Boolean Hierarchy collapses, then so does PH
[Kad88, BCO93, CK96, Wag88, Wag90]. In particular, we will use the following theorem due to
Wagner [Wag88]. We also sketch a proof of this theorem using our terminology in Section 5.

Theorem 17 [Wagner] Let r(n) be a monotonically increasing polynomial-time computable func-
tion such that r(n) ≤ nǫ for some constant ǫ < 1. Then, BHr(n) = coBHr(n) =⇒ PH ⊆ ΣP

3 .

Thus, nondeterministic bounded query hierarchy does not collapse unless PH collapses.

Lemma 18 Let f(n) be a polynomial-time computable function such that for some ǫ < 1, f(n) ≤
ǫ log n. Then, for r(n) = 2f(n)+1 − 1,

NPF
SAT[f(n)]
b = NPF

SAT[f(n)+1]
b =⇒ BHr(n) = coBHr(n).

Proof: Let s(n) = 2f(n) − 1 and r(n) = 2s(n) + 1. For any A ∈ BHr(n), Lemmas 14 and 15

imply that A ∈ NP//PF
SAT[s(n)]
tt = NP//PFSAT[f(n)]. Thus, the characteristic function of A, χA, is
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computable in PFSAT[f(n)+1]. Furthermore, since PFSAT[f(n)+1] ⊆ NPF
SAT[f(n)+1]
b ⊆ NPF

SAT[f(n)]
b ,

χA ∈ NPF
SAT[f(n)]
b . Therefore, A ∈ NP

SAT[f(n)]
b = NP//PF

SAT[s(n)]
tt = BHr(n). 2

Corollary 19 Let f(n) be a polynomial-time computable function such that for some ǫ < 1,

f(n) ≤ ǫ log n. Then, NPF
SAT[f(n)]
b = NPF

SAT[f(n)+1]
b implies PH ⊆ ΣP

3 .

4 Bounded queries and approximation

In this section, we show that certain NP-approximation problems are complete problems for the non-
deterministic bounded query classes. The theorems in this section draw together results and proof
techniques from several sources in the literature. Chang, Gasarch and Lund [CG93, CGL97, Cha96]
provide detailed calculations of the trade-off between the number of oracle queries and the closeness
of the approximation. However, these results only deal with the cost of the approximate solution
(e.g., Chromatic Number rather than Graph Coloring). Using the proofs of Khanna et al.

[KMSV94], these calculations can be extended to work with witness preserving reductions. Addi-
tional results connecting bounded queries and approximations and on witness preserving reductions
can be found in the works of Crescenzi et al [CKST95, CT94]. In this paper, we concentrate on
TSP and MaxClique. However, these results are general enough to extend to problems such as
Graph Coloring and Maximum Satisfiability using existing techniques in the literature.

The upper bounds on the complexity of finding approximate solutions to NP-optimization

problems are easy to establish. For example, an NPF
SAT[log n]
b can solve MaxClique by first

using its queries to SAT and binary search to find the size of a largest clique in the graph. Then,
the machine uses nondeterminism to guess and verify the vertices which belong to a largest clique.
Since there may be more than one maximum clique, the nondeterministic machine may output
more than one value. Similarly, using log log n queries to SAT, an NP machine can find a 2-
approximate clique. First, the machine uses binary search to determine which of the intervals
[1, 2], [2, 4], [4, 8], . . . contains the size of a largest clique. Since we only need to consider ⌈log n⌉
intervals, ⌈log ⌈log n⌉⌉ queries to SAT is sufficient for the binary search. Suppose that [x, 2x] is
that interval, then the machine nondeterministically chooses y ∈ [x, 2x], guesses y vertices in the
graph and verifies that these vertices form a clique. This technique extends easily to non-constant
approximation factors k(n) that are polynomial-time computable. Furthermore, if there exists a
polynomial-time algorithm that can find approximate solutions within a factor of k′(n), then we
can use this approximation algorithm to reduce the number of intervals we have to consider. Hence,
fewer queries to SAT would be needed in the binary search.

Lemma 20

• For polynomial-time computable k(n), where 1 ≤ k(n) ≤ n, there exists a function in

NPF
SAT[q(n)]
b which k(n)-approximates MaxClique, where q(n) =

⌈

log
⌈

logk(n) n
⌉⌉

.

• For polynomial-time computable k(n), where 1 ≤ k(n) ≤ 2n, there exists a function in

NPF
SAT[q(n)]
b which k(n)-approximates TSP, where q(n) = ⌈log ⌈n/ log k(n)⌉⌉.

• 2-approximating Set Cover can be solved in NPF
SAT[log log log n+O(1)]
b .

Proof: This lemma follows immediately from the preceding discussion. Set Cover can be ap-
proximated within a factor of O(log n) [Lov75]. Also, by the convention stated in Definition 10,
the length of TSP tour cannot exceed 2n where n is the number of vertices in the graph. 2
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4.1 Completeness of approximating MAXCLIQUE

It is fairly straightforward to establish the upper bounds for NP-approximation problems. However,
it is more difficult to show that these NP-approximation problems are in fact hard problems for the
nondeterministic bounded query classes. For our results on MaxClique, we need the following
lemma from probabilistically checkable proofs. This lemma was communicated to the author by
Madhu Sudan, but we are not aware of a written proof of a lemma in this exact form. So, we sketch
the proof below. Some familiarity with probabilistically checkable proofs and the deterministic
construction of disperser graphs is necessary. For this, we refer there reader to the literature
[FGL+91, AS92, ALM+92, Aro94, CW89, CW]

Lemma 21 There exist integer constants 0 < s < b < d and a polynomial-time computable
function h such that given a 3CNF formula F with t variables, h(F ) constructs an undirected
graph G with td vertices where:

1. F ∈ SAT =⇒ ω(G) = tb.

2. F 6∈ SAT =⇒ ω(G) = ts.

3. Given the vertices of a clique in G with ts + 1 vertices, we can construct a clique of G with
tb vertices and a satisfying assignment for F in polynomial time.

Proof: We start with a probabilistically checkable proof for SAT where the verifier uses O(log n)
random bits and O(1) proof bits to achieve a probabilistic error of 1/2 in verifying the proof
[AS92, ALM+92, Aro94]. Specifically, we assume that given a formula F with t variables as input,
the verifier uses exactly c1 log t random bits on each computation path and looks at exactly c2

bits of the proof. Moreover, the locations of the proof bits are determined only by the choice of
random bits (i.e., the locations are not adaptively dependent on the settings of other proof bits).
If F ∈ SAT, then there exists a proof which causes the verifier to accept on all of the tc1 random
paths. On the other hand, if the F 6∈ SAT, then given any proof, the verifier accepts on at most
half of the random paths.

The computation tree of the verifier can be transformed into a graph in the standard way
[FGL+91]. Here each path in the computation tree is specified by the c1 log t random bits and by
the settings of the c2 proof bits used by the verifier. Thus, there are 2c2tc1 paths in the computation
tree. Two computation paths are inconsistent if they assume different settings for some proof bit
that is used by both paths. (Note that two paths using the same sequence of random bits must
be inconsistent, since they assume different settings for the same proof bits.) Let G′ be a graph
with 2c2tc1 vertices, each of which corresponds to a path in the computation tree. Every pair of
vertices in G′ is connected by an edge unless the vertices correspond to inconsistent paths. Using
this construction,

F ∈ SAT =⇒ ω(G′) = tc1

F 6∈ SAT =⇒ ω(G′) ≤ tc1/2.

Now, suppose that we are given the vertices of a clique in G′ with tc1/2 + 1 vertices. From
above, we know that there exists a clique with tc1 vertices, but it may be difficult to find such a
clique. We first reconstruct a proof that causes the verifier to accept on the paths indicated by the
vertices of the given clique. To do this, we use the settings of the proof bits assumed by each of
these paths. However, some bits of the proof may not have been queried by any of these paths, so
we only have a partial proof. It turns out that since the proof was encoded using a linear code,
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we can use the error-correction algorithm on the partial proof to obtain a full proof. Once the
full proof is obtained we can produce the set paths that are consistent with the proof. This gives
us the vertices of a tc1-clique in G′. This feature of probabilistically checkable proofs was used
in Theorem 4 of [KMSV94] to obtain a complete satisfying assignment of a specially constructed
formula given an assignment that only satisfies a large portion of the clauses.

We make the additional note that the full proof is actually an encoding of a satisfying assignment
for F . This may not be the case if the verifier accepts some “bogus” proofs in addition to the correct
proof when F ∈ SAT. However, the construction the verifier guarantees that even when F ∈ SAT,
the verifier will accept with probability < 1/2 given a proof that is not an encoding of a satisfying
assignment for F (q.v. the definition of “normal form verifier” [Aro94, Definition 3.2 pp. 19–20].)
Thus, by inverting the encoding, we can also obtain a satisfying assignment for F .

The graph G′ constructed above has an approximation “gap” of only 2, since the value of ω(G′)
changes by a factor of 2 between the cases where F ∈ SAT and F 6∈ SAT. This “gap” can be
amplified by reducing the error probability of the verifier using explicit construction of disperser
graphs [CW89, CW]. In particular, in the terminology of Cohen and Wigderson, we are using
Theorem 4.8 of [CW] with α = 1/2, l = c4 log t and N = tc1 to obtain a (1/2, 1/poly, 1) disperser.
One can also increase the gap in the clique size using booster graphs [Aro94] or product graphs
[AFWZ95]. However, these results only provide estimates on ω(G). Our proofs require that we
know possible values of ω(G) exactly.

The disperser graphs allow us to construct a verifier that uses b log t random bits and c3 log t
proof bits such that the probability that the verifier mistakenly accepts a “bogus” proof is ≤ ts/tb.
Each path of the new verifier accomplishes this by simulating the old verifier on c4 log t paths.
However, since the paths of the old verifier are chosen as prescribed by the disperser, only b log t
random bits are used instead of c1c4 log2 t random bits. On the other hand, the verifier does use
c2c4 log t proof bits. The new verifier accepts if and only if the old verifier accepted in all c4 log t
simulations.

The construction of the disperser guarantees that given any set X of ≤ tc1/2 paths of the old
verifier, at most ts random paths of the new verifier will simulate only paths from X. Now, suppose
that F 6∈ SAT. Let X be the set of accepting paths of the old verifier. Since F 6∈ SAT, |X| ≤ tc1/2.
Let Y be the set of paths in the new verifier that simulate only paths from X. By the disperser
graph property, |Y | ≤ ts. The new verifier will accept on paths in Y . However, on any path outside
Y , the new verifier must simulate a rejecting path of the old verifier and reject. Thus, the new
verifier will accept with probability at most ts/tb. On the other hand, suppose that F ∈ SAT.
Then, there exists a proof which makes the new verifier accept on every path, since the old verifier
accepts this proof on every path.

Finally, construct the graph G from the computation tree of the new verifier in the same manner
that G′ was constructed from the old verifier. Clearly, if F 6∈ SAT then ω(G) = ts. (W.l.o.g. we
can add a ts clique of new vertices to G in order to guarantee that ω(G) is not less than ts.) If
F ∈ SAT, then ω(G) = tb. Furthermore, suppose that we are given a clique with ts + 1 vertices
of G. These vertices correspond to a set Y of ts + 1 random paths in the new verifier. Let X be
the set of random paths in the old verifier that are simulated by these ts + 1 paths. We know that
the paths in X are accepting paths, but we worry that there are too few paths in X to recover a
complete proof that F ∈ SAT. So, suppose that |X| ≤ tc1/2. By properties of the disperser graph,
|Y | must be at most ts which is a contradiction. Thus, |X| must be at least tc1/2 + 1. Then, by
the previous discussion on G′, we can recover a complete proof which makes both verifiers accept
with probability 1. Thus, we can recover a clique in G with tb vertices and a satisfying assignment
for F . 2
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For the graph G constructed in Lemma 21, no polynomial-time algorithm can find an nǫ-
approximate clique of G unless P = NP for ǫ = (b − s)/d. In the rest of this section, the constants
b, s, d and ǫ refer to these constants. Using Lemma 21, we can construct a graph whose k(n)-
approximate cliques gives us enough information to reconstruct a satisfying assignment of a 3CNF
formula from a sequence of formulas. The proof of the lemma below is a modification of the
Construction Lemma from [Cha96]. These modifications take advantage of stronger results in
Lemma 21.

Lemma 22 Let k(n) be a polynomial-time computable function such that k(n) ≥ 1 +
√

2/nδ for
δ = ǫ/(4 + 4ǫ), where ǫ = (b − s)/d. Let m = tb−s+d and let F0, . . . , Fr(t)−1 be a sequence of r(t)

3CNF formulas each with t variables such that r(t) ≤ logk(m) t(b−s)/2. Define

z = max{i | 1 ≤ i ≤ r(t) − 1 and Fi ∈ SAT}.

Then, we can construct in polynomial time a graph H with m vertices such that given the vertices
of any k(m)-approximate clique of H, we can in polynomial time determine the value of z and
construct a satisfying assignment of Fz .

Proof: The main difficulty in this construction is that the approximation factor k(m) is dependent
on the size of the graph H that we construct. However, we need to use the value of k(m) to
construct H in the first place. To break this circular dependency, we will first construct a graph
H ′ with fewer than m vertices. Then the graph H is produced from H ′ by simply adding m− |H ′|
unconnected vertices. For notational convenience, we let g = k(m) and r = r(t).

To construct H ′, we take each Fi and produce a graph Gi with td vertices according to Lemma 21.
Define the values a0, a1, . . . , ar−1 recursively as:

ai =

{

1 if i = 0

g · ai−1 + 1 for 1 ≤ i ≤ r − 1.

We combine ⌊ai⌋ copies of each Gi into a graph G′
i such that ω(G′

i) = ⌊ai⌋ · ω(Gi). This can be
accomplished easily by connecting each vertex in every copy of Gi to every vertex in a different copy
of Gi. The graph H ′ is simply the disjoint union of G′

0, . . . , G
′
r−1 without any additional edges.

The graph H ′ has
∑r−1

i=0 ⌊ai⌋ td vertices. We need an upper bound on H ′ in order to justify the
claim that H ′ has ≤ m vertices. Since

ai =

i
∑

j=0

gj =
gi+1 − 1

g − 1
,

|H ′| is bounded by

r−1
∑

i=0

ait
d <

g(gr − 1)

(g − 1)2
· td ≤ g

(g − 1)2
· t(b−s)/2 · td.

Here we use the restriction on r from the hypothesis of this lemma to show that gr−1 < gr ≤ t(b−s)/2.
In these calculations, when g ≥ 2, we have a trivial case because g/((g − 1)2 is bounded by 2. For
g ≤ 2, we obtain an upper bound on g/(g−1)2 using the lower bound on g−1 = k(m)−1 ≥

√
2/mδ

and the fact that tb−s = mǫ/(1+ǫ). In either case, we have g/(g − 1)2 ≤ t(b−s)/2. Hence, H ′ has
fewer than m = tb−s+d vertices. Again, our final graph H is simply the disjoint union of H ′ with
m − |H ′| dummy vertices.
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Now we claim that the maximum cliques in H are precisely the largest cliques in G′
z. By

definition, z is the index of the last satisfiable formula in the sequence F0, . . . , Fr−1. Since Fz ∈
SAT, we know from Lemma 21 that ω(G′

z) = ⌊az⌋ tb. Moreover, for all j > z, Fj 6∈ SAT hence
ω(G′

j) = ⌊aj⌋ ts. Since the restrictions on r(t) and k(m) guarantee that k(m)ar−1t
s < tb, we

conclude that a largest clique in H cannot come from G′
j for any j > z. In fact, a largest clique

in G′
z is larger than a largest clique in Gj by at least a factor of k(m). For j < z, the fact that

⌊az⌋ ≥ k(m)aj implies that the largest cliques in G′
j is smaller than a largest clique in G′

z by a
factor of k(m).

Finally, note that any k(m) approximate clique in H must contain more than ⌊az⌋ ts vertices
from G′

z and more than ts vertices from one of the copies of Gz . Hence, by Lemma 21 we can
recover a satisfying assignment of Fz in polynomial time. 2

The construction of H in Lemma 22 provides the following hardness result for approximating

MaxClique. Here we simply have to convert an NPF
SAT[q(n)]
b computation into a sequence of

Boolean formulas.

Theorem 23 There exists ǫ, with 0 < ǫ < 1 such that for any non-decreasing polynomial-time
computable function q(n) ∈ O(log n), if h is a function which k(·)-approximates MaxClique, then

every f ∈ NPF
SAT[q(n)]
b ≤P

m -reduces to h, where k(n) = n2−q(n)−c

and c = 1 + log(1 + 1/ǫ).

Proof: Recall that ǫ = (b−s)/d, where b, s and d are the constants from Lemma 21. Let f be a total

multi-valued function in NPF
SAT[q(n)]
b . Since q(n) ∈ O(log n), by Lemma 14 f ∈ NPF//PFSAT[q(n)].

For a fixed input string x of length n, consider the oracle query tree of the PFSAT[q(n)] phase of the
NPF//PFSAT[q(n)] computation for f . Since 2q(n) is polynomially bounded, we can examine every
path in the oracle query tree in polynomial time. We index the paths of the oracle query tree as
described in Section 2 and let Xi be the conjunction of all the positive queries on the path with
index i. Let yi be the output of the PFSAT[q(n)] computation on the ith path of the oracle query
tree. The second phase of the NPF//PFSAT[q(n)] computation is performed by some NP machine N .
Let N ′ be an NP machine which on input (x, yi) simulates N(x, yi) and accepts on paths where N
outputs a value. For each i, we take the computation of N ′(x, yi) and transform it into a Boolean
formula Yi using Cook’s reduction. Finally, let Fi = Xi ∧Yi. Without loss of generality, we assume
that each Fi has the same number of variables t which is greater than n.

Let z be the index of the correct path in the oracle query tree. Then, Xz is satisfiable since every
positive query on the correct path is really satisfiable. Furthermore, since f is a total function,
N(x, yz) must output a value on some path. Hence, Fz = Xz ∧Yz must be satisfiable. On the other
hand, for all i > z, some positive query on the ith path is in fact unsatisfiable, so Fi 6∈ SAT for
i > z.

Next consider approximation factors k(n) ≥ 1+
√

2/nδ for some δ < ǫ/(4+4ǫ). For larger values

of k(n), we can use the padding argument in Section 2 to show that every function in NPF
SAT[c1 log n]
b

reduces to some function in NPF
SAT[c2 log n]
b where c1 > c2.

Let r(n) = 2q(n). By definition of k(n), we have log logk(n) n − c = q(n). Since q(n) is nonde-

creasing, it follows that logk(n) n must also be nondecreasing. Let m = tb−s+d, then n < t < m,
so

r(n) ≤ 2−c logk(n) n ≤ 2−c logk(m) m.

From the definition of c, we have 2−c = (b − s)/(2(b − s + d)), so

2−c logk(m) m =
b − s

2(b − s + d)
· logk(m) tb−s+d = logk(m) t(b−s)/2.
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Thus, r(t) ≤ logk(m) t(b−s)/2 as required by Lemma 22. Therefore, we can use Lemma 22 to produce
a graph H with m vertices from the formulas F0, . . . , Fr(t)−1.

By hypothesis h is a function which k(·)-approximates MaxClique. So, let S be a set of
vertices output by h(H) that k(m)-approximates a largest clique in H. By Lemma 22, from S
we can obtain the value of z and a satisfying assignment for Fz . This satisfying assignment also
contains a satisfying assignment for Yz. We can use this to trace an accepting path of the N ′(x, yz)
computation. Since this is a path where N(x, yz) prints out a value, we can obtain an output of
f(x) given the vertices of a k(m)-approximate clique for H. Therefore, f ≤P

m h. 2

We are now in a position to prove our completeness results for approximating MaxClique. We

say that 2-approximating MaxClique is complete for NPF
SAT[q(n)]
b where q(n) = log log n + O(1),

if there is a function h ∈ NPF
SAT[q(n)]
b which 2-approximates MaxClique and every function

f ∈ NPF
SAT[q(n)]
b ≤P

m -reduces to h. It is not reasonable to require that every function which 2-

approximates MaxClique belongs to NPF
SAT[q(n)]
b since there are uncomputable functions which

2-approximate MaxClique.

Corollary 24

• MaxClique is ≤P
m -complete for NPF

SAT[O(log n)]
b .

• (1 + 1/ loga n)-approximating MaxClique is ≤P
m -complete for NPF

SAT[(a+1) log log n+O(1)]
b .

• 2-approximating MaxClique is ≤P
m -complete for NPF

SAT[log log n+O(1)]
b .

• (log n)-approximating MaxClique is ≤P
m -complete for NPF

SAT[log log n−log log log n+O(1)]
b .

Proof: By Lemma 20, k(n)-approximating MaxClique can be achieved using the stated number
of queries. We give a proof for the case where k(n) = 1 + 1/ log n; the other cases are similar. In
this case, we use the Taylor series approximation that ln(1 + 1/ log n) ≈ 1/ log n. Thus,

log logk(n) n = log log n − log ln k(n) − log log e ≈ log log n − log(1/ log n) = 2 log log n.

Each of the NPF
SAT[q(n)]
b classes considered in this lemma is closed under ≤P

m -reductions. So, a
difference of a constant number of queries is inconsequential. Therefore, there is a function in

NPF
SAT[2 log log n+O(1)]
b which (1 + 1/ log n)-approximates MaxClique.

Now, let h be any function which (1 + 1/ log n)-approximates MaxClique. By Theorem 23,

every function in NPF
SAT[q(n)]
b where q(n) = log logk(n) n − c ≈ 2 log log n − c reduces to h. By the

padding argument in Section 2, for any constant c′, every function in NPF
SAT[q(n)+c′]
b reduces to

some function in NPF
SAT[q(n)]
b . Thus, every function in NPF

SAT[2 log log n+O(1)]
b reduces to h. 2

A possible alternative definition of “completeness” is to require that the function H which

outputs every 2-approximate clique belong to NPF
SAT[q(n)]
b . However, we show in Lemma 25 that

H requires Ω(log n) queries to SAT unless PH collapses. Intuitively, in order for H to output every
2-approximate clique, H must “know” the size of a largest clique exactly. Thus, the complexity of
H is not a good measure of the complexity of merely 2-approximating MaxClique.

Lemma 25 Let k(n) be a polynomial-time computable approximation factor such that 1 ≤ k(n) ≤
n. Let H be a multi-valued function which k(·)-approximates MaxClique such that every k(·)-
approximate clique of an undirected graph G is an output of H(G). If H ∈ NPF

SAT[q(n)]
b for

q(n) ∈ o(log n), then PH ⊆ ΣP
3 .
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Proof: The function H can certainly be computed in NPF
SAT[O(log n)]
b — use log n queries to

determine ω(G) exactly, nondeterministically guess every subset of vertices in G with at least
⌈ω(G)/k(n)⌉ vertices and output the subset of vertices if it forms a clique. Now, suppose that H ∈
NPF

SAT[q(n)]
b for q(n) ∈ o(log n). By Lemma 14, H ∈ NPF//PFSAT[q(n)] via a PFSAT[q(n)] machine

D and an NP machine N . We show that MaxClique can be computed in NPF//PFSAT[q(n)] as
well. We use the same PFSAT[q(n)] machine D and a new NP machine N ′. Each computation path
of the new machine N ′ simply simulates 2 computation paths of N . Suppose that N produces
outputs X1 and X2 on both of these paths. Then, N ′ checks whether |X1| = ⌈|X2|/k(n)⌉. If this is
the case, then N ′ knows that X2 is a maximum clique of G and that |X1| is the size of the smallest
clique that still qualifies as a k(n)-approximate clique. Thus, N ′ can output X2 as a maximum
clique in G. Since N is required to output every 2-approximate clique in G, we know that some

path of N ′ will find the suitable pair of cliques X1 and X2. Thus, MaxClique ∈ NPF
SAT[q(n)]
b .

Since MaxClique is ≤P
m -complete for NPF

SAT[O(log n)]
b by Corollary 24 and since q(n) ∈ o(log n),

the Polynomial Hierarchy collapses to ΣP
3 by Corollary 19 .

To see this last step, let f be a function in NPF
SAT[0.5 log n+1]
b . By Corollary 24, f ≤P

m -reduces
to MaxClique via polynomial-time computable functions T1 and T2. Recall from the definition
of ≤P

m -reductions that T1 converts an input string x of the function f into a graph G and that
T2 computes f(x) using a maximum clique of G. Consider a fixed input string x of length n.

By the argument above, an NPF
SAT[q(n)]
b computation can find the largest cliques in G. Since

G can have at most nc vertices for some constant c, the NPF
SAT[q(n)]
b computation would use

at most q(nc) queries to SAT. Recall that q(n) ∈ o(log n). In particular, q(n) ≤ (log n)/2c, so
q(nc) ≤ 0.5 log n. Thus, the number of queries used is no more than 0.5 log n. Finally, by applying

T2 to any maximum clique produced by N ′, we can get an output of f(x). So, f ∈ NPF
SAT[0.5 log n]
b

and NPF
SAT[0.5 log n+1]
b ⊆ NPF

SAT[0.5 log n]
b . Therefore, PH collapses to ΣP

3 by Corollary 19. 2

In the introduction of this paper, we mentioned that a PFSAT machine can 2-approximate
MaxClique. This is accomplished using log log n queries to approximate ω(G) within a factor
of 2 then using O(n) queries to identify the vertices of a 2-approximate clique. While the PFSAT

machine model offers an advantage of not having to work with NP machines and multi-valued
functions, we show in Corollary 27 that 2-approximating MaxClique cannot be ≤P

m -complete for
PFSAT unless PH collapses. In fact, 2-approximating MaxClique cannot be hard for PFSAT[q(n)]

for any q(n) greater than log log n by more than a constant. Thus, resorting to a PFSAT machine
to 2-approximate MaxClique is a waste of oracle queries.

Lemma 26 Let s(n) and r(n) be polynomial-time computable functions such that s(n) ≤ r(n)
and r(n) ∈ O(log n). Then,

PFSAT[r(n)] ⊆ NPF
SAT[s(n)]
b =⇒ NPF

SAT[r(n)]
b ⊆ NPF

SAT[s(n)]
b .

Proof: Let f be a multi-valued function in NPF
SAT[r(n)]
b . By Lemma 14, f ∈ NPF//PFSAT[r(n)]

via a PFSAT[r(n)] machine D and an NP machine N . By assumption there exists an NPF
SAT[s(n)]
b ,

N ′, which on input x computes D(x). We modify N ′ as follows. On each computation path where
N ′(x) produces an output y, we make N ′ simulate the computation of N(x, y). The outputs of this

simulation is exactly the outputs of f(x). Thus, NPF
SAT[r(n)]
b ⊆ NPF

SAT[s(n)]
b . 2
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Corollary 27 Let q(n) be a polynomial-time computable function such that q(n) − log log n is
asymptotically greater than any constant. Suppose that 2-approximating MaxClique is ≤P

m -
hard for PFSAT[q(n)]. Then PH ⊆ ΣP

3 .

Proof: Without loss of generality, assume that q(n) ≤ 0.5 log n. We will show that PFSAT[q(n)] ⊆
NPF

SAT[q(n)−1]
b . Then, by Lemma 26, NPF

SAT[q(n)]
b ⊆ NPF

SAT[q(n)−1]
b which in turn implies that

PH collapses to ΣP
3 by by Corollary 19.

Suppose that f ∈ PFSAT[q(n)]. Since 2-approximating MaxClique is ≤P
m -hard for PFSAT[q(n)]

and since 2-approximating MaxClique can be solved in NPF
SAT[log log n]
b , f ∈ NPF

SAT[log log nc]
b , for

some constant c. The constant c is necessary since the ≤P
m -reduction from f to 2-approximating

MaxClique can stretch its output by a polynomial factor. Therefore,

PFSAT[q(n)] ⊆ NPF
SAT[log log n+O(1)]
b ⊆ NPF

SAT[q(n)−1]
b ,

since q(n) − log log n is asymptotically larger than any constant by hypothesis. 2

The proof of Corollary 27 extends to the approximation factors log n and 1+1/ loga n. However,
the proof does not extend to solving MaxClique exactly. This is because we are unable to prove

that PH collapses under the assumption that NPF
SAT[log n]
b = NPF

SAT[n]
b . (This is equivalent to the

following perennial open problem in bounded query language classes: Does PSAT[log n] = PSAT[n]

imply that PH collapses?) When q(n) ≤ ǫ log n for ǫ < 1, we know that each additional query to SAT

allows an NPF
SAT[q(n)]
b machine to compute more functions unless PH collapses. Above this level,

it remains possible that additional queries to SAT do not provide any increase in computing power.

In the next section we show that the structure of the complexity classes between NPF
SAT[log n]
b and

NPF
SAT[n]
b is closely related to the complexity of approximating the Traveling Salesman Problem.

4.2 Completeness of approximating TSP

In this section we prove some connections between nondeterministic bounded query classes and
the complexity of finding approximate solutions to the Traveling Salesman Problem. For exam-

ple, we show that 2-approximating TSP is ≤P
m -complete for NPF

SAT[O(log n)]
b and (1 + n− log n)-

approximating TSP is ≤P
m -complete for NPF

SAT[O(log2 n)]
b . Thus, whether O(log2 n) queries to

SAT is strictly more powerful than O(log n) queries to SAT is equivalent to whether finding a
(1 + n− log n)-approximate solution to TSP is strictly harder than merely finding a 2-approximate
solution. Recall that the length of a TSP tour in a graph with n vertices can be as large as 2n. Thus,
the difference between the length of an optimum TSP tour and that of a (1+n− log n)-approximate
TSP tour can still be exponential in n. Since we are mainly concerned with query bounds above

log n and since 2-approximating TSP is ≤P
m -complete for NPF

SAT[O(log n)]
b , we will only work with

non-increasing approximation factors. While it is possible to obtain similar results for increasing
approximation factors, the calculations are more involved. Hence, we omit such results from this
paper.

In the following theorem, we prove the hardness of approximating TSP. In contrast to the
results on MaxClique, the proofs in this section are elementary constructions and do not require
theorems from probabilistically checkable proofs. The main difficulty in these proofs is that the
number of paths in the oracle query tree for a PFSAT[q(n)] computation is superpolynomial when
q(n) ≫ log n. So, in these cases we cannot look at every computation path in polynomial time.
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Theorem 28 Let f ∈ NPF//PFSAT[q(n)] where q(n) is a non-decreasing polynomially-bounded
polynomial-time computable function. Suppose that h is a multi-valued function that k(n)-approx-
imates TSP where 2q(n) log k(n) is polynomially bounded and k(n) is a non-increasing polynomial-
time computable function. Then, f ≤P

m h.

Proof: Let f be a function in NPF//PFSAT[q(n)] witnessed by an NP machine N and a PFSAT[q(n)]

machine D. We construct an NP machine N ′ to simulate the NPF//PFSAT[q(n)] computation. Our
eventual goal is to use Karp’s reduction to convert the computation of N ′ on an input string x
of length n into a 3CNF formula F . Then we will use a standard reduction from SAT to the
Hamiltonian Cycle Problem (HC) [Pap94, Theorem 9.7, pp. 193–198] to produce a graph G from
the formula F . Finally, some “special” edges of G will assigned certain weights. This produces
an instance of TSP such that any k(·)-approximate tour of G will provide enough information to
recover a value output by f(x).

The graph G will contain no more than p(n) vertices for some polynomial p(n). Without loss
of generality, we can assume that G has exactly p(n) vertices by adding to G a sufficient number
of dummy vertices on a single path. Also, without loss of generality, p(n) ≥ n. Since k(n) is
non-increasing, k(p(n)) ≤ k(n). Thus, a k(p(n))-approximate TSP tour of G must also be a
k(n)-approximate TSP tour.

Now, consider the recurrence given by ai+1 = k(n) · ai + 1 where a0 = p(n). Solving the
recurrence yields:

ai = k(n)ip(n) +

i−1
∑

j=0

k(n)j = k(n)ip(n) +
k(n)i − 1

k(n) − 1
.

Let r = 2q(n) (which may be superpolynomial). Let m denote the number of bits needed to express
⌊ar−1⌋ as a binary number. Since 2q(n) log k(n) is polynomially bounded, m is also polynomially
bounded. Thus, ai is polynomial-time computable for all i ≤ r − 1. Furthermore, note that:

k(n) ⌊ai⌋ ≤ k(n)ai < ⌊ai+1⌋ .

Our construction will guarantee that any TSP tour of G (not necessarily optimal) will have a
weight equal to ⌊ai⌋ for some i, 0 ≤ i ≤ r − 1. This ensures that any k(n)-approximate tour of G
is in fact an optimal tour.

We now construct the machine N ′. Consider the oracle query tree of D(x) for some fixed input
string x with length n. Recall that D(x) is the PFSAT[q(n)] phase of the computation for f(x). The
oracle query tree has r = 2q(n) paths indexed from 0 through r − 1 (see Section 2). On input x,
our NP machine N ′ will guess an index t of a path in the oracle query tree. Next, N ′ computes
the values i and w where i = r − 1 − t and w = ⌊ai⌋ − p(n). Then, N ′ writes down the m-bit
binary representation of w on an auxiliary tape which is used only for this purpose. After this step,
N ′ simulates the computation of D(x) on the path t of the oracle query tree. For each positive
query on this path, N ′ also guesses a satisfying assignment for the query. (If the query is in fact
unsatisfiable, N ′ will reject on all paths that guess t.) Finally, N ′ determines the value yt output
by D(x) on path t and simulates N(x, yt) step by step. Recall that N is the NP machine for the
second phase of the NPF//PFSAT[q(n)] computation for f(x). On computation paths where N(x, yt)
produces an output, N ′(x) will accept. Since f is a total function, N ′(x) always accepts.

Now, we use Karp’s reduction to convert the computation of N ′(x) into a 3CNF formula F .
For each tape cell and each time step, this reduction uses a separate variable to encode the fact
that the tape cell contains the symbol 1 at that time step. Let the variables w0, . . . , wm−1 be the
variables that determine whether the first m tape cells of the auxiliary tape contains the symbol 1
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at the last time step. These were the tape cells where N ′ wrote down the m-bit binary expansion
of the value w. For notational convenience, we let w0 be the variable representing the cell where
the least significant bit of w was written and let wm−1 correspond to the most significant bit. In
this arrangement, given any satisfying assignment of F , the truth values assigned to w0, . . . , wm−1

is the binary expansion of the value w.
Next, we take the 3CNF formula F and convert it into an undirected graph G using the standard

reduction from SAT to the Hamiltonian Cycle Problem. In this construction, each variable v in F is
represented by a pair of paths which share a common start vertex and end vertex. If a Hamiltonian
cycle for this graph follows the first path, then that Hamiltonian cycle represents a satisfying
assignment for F where the variable v is assigned FALSE. Taking the second path represents an
assignment of TRUE to v. The construction of the graph guarantees that any Hamiltonian cycle
for the graph must traverse one of the two paths completely and that the vertices on the other
path are “picked up” later by the clause gadgets. Call the first edge in the first path the FALSE
edge for v and the first edge of the second path the TRUE edge for v. In any Hamiltonian cycle
for G exactly one of these two edges is used. Finally, recall the variables w0, . . . , wm−1 of F that
we have identified above. For each wj, we assign a weight of 2j + 1 to the TRUE edge for wj .
All other edges have weight 1. Note that the sum of the weights of all the edges is bounded by
p(n)2 +2m+1. Without loss of generality we can assume that 2m < p(n), then p(n)2 +2m+1 < 2p(n).
This completes our construction of the graph G.

We claim that given any k(n)-approximate TSP tour of G, we can produce an output of f(x)
in polynomial time. First, note that any TSP tour of G corresponds to some satisfying assignment
of F , which corresponds to an accepting path of N ′(x). On this accepting path, N ′ computed the
value w = ⌊ai⌋ − p(n) for some i with 0 ≤ i ≤ r − 1. Each of the p(n) edges in the TSP tour
contributes a weight of 1, except the TRUE edges which make an additional contribution of w.
Thus, the total weight of the tour must equal ⌊ai⌋. Since the values of ⌊ai⌋ are separated by a
factor of k(n), a k(n)-approximate tour of G must in fact be an optimum tour. Recall that i was
defined as r − 1 − t where t is the index of a path in the oracle query tree for D(x) that N ′ had
guessed. Let z be the index of the correct path in the oracle query tree and let s = r − 1 − z. We
claim that the weight of the optimum tour in G is ⌊az⌋.

First, some computation path of N ′(x) must accept after guessing z to be the index of the
path in the oracle query tree. After guessing z, N ′ will be able to find satisfying assignments for
all the positive queries on that path, since all positive queries on the correct path are satisfiable.
Furthermore, since f is a total function, N ′ will find at least one path of N(x, yz) which outputs a
value. Since z is the index of the correct path, this value is an output of f(x). Moreover, the TSP

tour in G which represents this accepting computation of N ′(x) will have total length ⌊az⌋.
Now, suppose that there is a tour with weight ⌊ai⌋ that is less than ⌊az⌋. Let t = r − 1 − i.

Then, the computation path of N ′(x) that corresponds to this TSP tour must have guessed path
t in the oracle query tree for D(x). Since ⌊ai⌋ < ⌊az⌋, t must be greater than z. However, since z
is the correct path, some positive query on path t must be unsatisfiable. Thus, N ′ will fail to find
a satisfying assignment for this query and will reject. Therefore, there cannot be a TSP tour of G
with weight less than ⌊az⌋.

To complete the proof, we simply note that the edges of an optimum tour in G encodes a
satisfying assignment of F and that a satisfying assignment of F encodes an accepting computation
path of N ′. Thus, given an optimum tour of G, we can, in polynomial time, recover the correct
path in the oracle query tree for D(x) and find a computation path of N(x, yz) which outputs a
value. Thus, in polynomial time, we can produce an output of f(x) if we are given an optimum
tour of G. Finally, observe that for each string α output by f(x), there exists a tour of G given
which this procedure will output α. 2
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Corollary 29

• TSP is ≤P
m -complete for NPF

SAT[nO(1)]
b .

• (1 + n− loga n)-approximating TSP is ≤P
m -complete for NPF

SAT[O(loga+1 n)]
b .

• (1 + n− log n)-approximating TSP is ≤P
m -complete for NPF

SAT[O(log2 n)]
b .

• For constant k, k-approximating TSP is ≤P
m -complete for NPF

SAT[O(log n)]
b .

Proof: By Lemma 20, k(n)-approximating TSP can be accomplished in NPF
SAT[q(n)]
b where q(n) =

log n−log log k(n). For constant approximation factors k, this procedure uses log n−log log k queries
to SAT. For small approximation factors k(n) = 1 + δ(n) that converges rapidly to 1, we can use
the Taylor series approximation ln(1 + δ(n)) ≈ δ(n). Thus, (1 + n− log n)-approximating TSP uses
≈ log n−log n− log n+log ln 2 ≈ log n+log2 n queries to SAT. By a similar calculation, (1+n− loga n)-
approximating TSP uses O(loga+1 n) queries to SAT. Computing the optimum TSP tour uses n
queries to SAT since we can determine the length of a shortest TSP tour using binary search.

Now we show that any function f in NPF
SAT[c log n]
b ≤P

m -reduces to any function h that k-
approximates TSP for constant k. Using Theorem 28, we simply have to note that in this case,
2q(n) log k(n) = nc log k is polynomially bounded. Thus, f reduces to h.

To show that every function f in NPF
SAT[c log2 n]
b ≤P

m -reduces to any function h that (1+n− log n)-
approximates TSP, we first use the padding argument in Section 2 to reduce f to a function f ′ in

NPF
SAT[log2 n]
b . Then, by Theorem 28, f ≤P

m f ′≤P
m h because

2log2 n log(1 + n− log n) ≈ nlog n · n− log n = 1

is polynomially bounded. The calculations for functions in NPF
SAT[c loga n]
b reducing to functions

that (1 + n− log(a+1) n)-approximate TSP are similar. For functions in NPF
SAT[nO(1)]
b reducing to

functions which compute the optimum TSP tour, we use Theorem 28 with k(n) = 1 + 2−n. Since
we bound the total weight of the edges by 2n, an approximate solution within a factor of 1 + 2−n

is in fact an optimum solution. 2

5 Hunting for hard sequences

In Lemma 18, we showed that the Boolean Hierarchy collapses if the NPF
SAT[q(n)]
b hierarchy col-

lapses. In this section, we show that a partial converse of Lemma 18 also holds. That is, if the

Boolean Hierarchy collapses, then so does the NPF
SAT[q(n)]
b hierarchy. This is surprising because

the Boolean Hierarchy may collapse without collapsing the deterministic bounded query function
hierarchy. For example, if NP = coNP but P 6= NP ∩ coNP, then the Boolean Hierarchy collapses
to level 1, but for all constants k, PFSAT[k] ( PFSAT[k+1]. The main results in this section are:

Theorem 30 Let q(n) ≥ r(n) be polynomial-time computable functions such that q(n)r(n) is
polynomially bounded. Then,

BHr(n) = coBHr(n) =⇒ NPF//PF
SAT[q(n)]
tt ⊆ NPF//PF

SAT[r(n)−1]
tt .
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Theorem 31 Let q(n) and r(n) be polynomial-time computable functions such that q(n) is poly-
nomially bounded and r(n) ≤ nǫ for some ǫ < 1. Then,

BHr(n) = coBHr(n) =⇒ NPF
SAT[q(n)]
b ⊆ NPF//PFSAT[(r(n)−1)(log q(n)+2)].

Theorems 30 and 31 are generalizations of recent work by Buhrman and Fortnow [BF98] who
showed that BH2 = coBH2 =⇒ PSAT ⊆ BH2. These proofs are all modifications of the hard/easy
argument which Kadin [Kad88] used to show that PH collapses if BH collapses. We attempt here
an explanation of the new advances in this proof technique which allow us to prove our results.
Nevertheless, we assume some familiarity with hard/easy arguments in the proofs of these theorems.

Suppose that the Boolean Hierarchy collapses to the second level (i.e., all the way down to
DP). The key to the hard/easy argument is the hard string — an unsatisfiable formula with
special properties. The hard/easy argument places each length n into two cases: either all the
unsatisfiable formulas of length n are easy (i.e., not hard) or there exists a hard string. In either
case, we have an NP algorithm for SAT. This collapses PH, but not to the NP level because we
really have SAT ∈ NP/poly — for each length n, we need the advice function to provide a hard
string or to guarantee that all strings are easy. Subsequent improvements to Kadin’s original proof
showed tighter collapses of PH [BCO93, CK96]. These proofs are based upon detailed analyses
of the complexity of finding a hard string. The newest improvements to the hard/easy argument
circumvents this search entirely. Recently, Hemaspaandra, Hemaspaandra and Hempel [HHH96]
showed that

PΣP
3 [1] = PΣP

3 [2] =⇒ PH ⊆ ΣP
3 .

This rather impressive result is actually a downward collapse. The proof of this result avoids having
to search for a hard string by checking if the input string is a hard string.

By extending this technique, Buhrman and Fortnow were able to show that DP = co-DP implies
that PSAT ⊆ DP. Their proof was divided into two parts:

DP = co-DP =⇒ PSAT ⊆ PSAT[O(log n)] (2)

DP = co-DP =⇒ PSAT[O(log n)] ⊆ DP. (3)

The implication in Equation 3 was originally proven by Chang and Kadin [CK95]. However, a
different proof of this result is needed to generalize beyond the second level of the Boolean Hierarchy.
The “trick” used by Buhrman and Fortnow is to consider whether any of the queries used in the
PSAT and the PSAT[O(log n)] computation is a hard string (rather than considering whether the input
string is a hard string). This again circumvents the need to search for a hard string, because if
all the queries are easy strings, an NP computation can simulate the PSAT or the PSAT[O(log n)]

computation. On the other hand, if a hard string is found, then we also have a reduction from SAT
to SAT.

Our proofs for Theorems 30 and 31 are similar. For example, the two theorems put together
gives us:

DP = co-DP =⇒ NPF
SAT[nO(1)]
b ⊆ NPF

SAT[1]
b .

The main difficulty here is making sure that the proofs work for non-constant levels of the Boolean
Hierarchy and for a non-constant number of queries.

To prove Theorems 30 and 31, we need the assumption that BLr(n) ≤P
m coBLω via a dimension-

preserving polynomial-time reduction h. Recall that BLr(n) is a complete language for BHr(n) and
that the reduction h is dimension preserving means that the output of h has the same number

25



of components as its input. As we discussed in Section 2, it is not sufficient to simply assume
that BLr(n) ≤P

m coBLr(n) since for r(n) ≥ log log n, BLr(n) ≤P
m coBLr(n). In the application of these

theorems, the existence of such an h will follow from a collapse of the Boolean Hierarchy or of the

NPF
SAT[q(n)]
b hierarchy. The function r(n) will be bounded by nǫ for some ǫ < 1.

In the case where the Boolean Hierarchy collapses at level r(n), the dimension preserving
reduction h can be constructed as follows. Since BHr(n) = coBHr(n), we know that BLr(n) ∈
coBHr(n). Thus, by Definition 2 there exists an NP machine such that ∀~x ∈ TUPLES[r(n)],

~x ∈ BLr(n) ⇐⇒ max({i | 1 ≤ i ≤ r(n) and N(~x, i) accepts} ∪ {0}) is even.

Then, for 1 ≤ i ≤ r(n), let yi be the Boolean formula obtained from Cook’s reduction such that
yi ∈ SAT ⇐⇒ N(~x, i) accepts. Thus,

~x ∈ BLr(n) ⇐⇒ 〈y1, . . . , yr(n)〉 ∈ coBLω.

So, we can define h(~x) = 〈y1, . . . , yr(n)〉. Since |〈y1, . . . , yr(n)〉| may be larger than n, 〈y1, . . . , yr(n)〉
might not be a member of TUPLES[r(n)].

The key to the hard/easy arguments that follow is the definition of a hard sequence. We briefly
describe the properties of maximal hard sequences that are necessary for our proofs. Detailed
justifications of these properties may be found in the literature [Kad88, BCO93, CK96, Wag88,
Wag90]. We mainly follow the terminology and notation of Chang and Kadin [CK96].

Definition 32 For ~y = 〈y1, . . . , ym〉, let ~y R = 〈ym, . . . , y1〉 be the reversal of the sequence. Let πk

and πj,k be the projection functions such that πk(~y) = yk and πj,k(~y) = 〈yj , . . . , yk〉. Furthermore,
let {0, 1}≤m denote the set of strings over {0, 1} of length ≤ m.

Definition 33 Suppose that BLr(n) ≤P
m coBLω via a dimension-preserving polynomial-time reduc-

tion h. Let ℓ = r(n) − k. Then, ~x = 〈x1, . . . , xk〉 is a hard sequence for length m with respect to
h, if the following hold:

1. for each i, 1 ≤ i ≤ k, xi ∈ {0, 1}≤m.

2. for each i, 1 ≤ i ≤ k, xi ∈ SAT.

3. for all u1, . . . , uℓ ∈ {0, 1}≤m, let ~u = 〈u1, . . . , uℓ〉 and 〈v1, . . . , vk〉 = πℓ+1,r(n)(h(~u, ~xR)). Then,

vi ∈ SAT, for all 1 ≤ i ≤ k.

We refer to k as the order of the hard sequence ~x and for notational convenience, we define the
empty sequence to be a hard sequence of order 0. Furthermore, given a hard sequence ~x, we say
that a string w is easy with respect to ~x if |w| ≤ m and there exists u1, . . . , uℓ−1 ∈ {0, 1}≤m such
that πℓ(h(u1, . . . , uℓ−1, w, ~xR)) ∈ SAT. We say that a hard sequence ~x is a maximal hard sequence,
if for all w ∈ {0, 1}≤m, 〈x1, . . . , xk, w〉 is not a hard sequence.

With the definition of hard sequence in place, we can sketch a proof of Theorem 17 that
BHr(n) = coBHr(n) =⇒ PH ⊆ ΣP

3 .

Proof Sketch of Theorem 17: Given a sequence ~x, it is a coNP question to determine whether
~x is a hard sequence for length m. If ~x = 〈x1, . . . , xk〉 is a hard sequence, then π1,ℓ(h(~u, ~xR))
is a reduction from BLℓ to coBLℓ on tuples 〈y1, . . . , yℓ〉 such that the length of each yi is ≤ m.
Moreover, for each w that is easy with respect to ~x, there is an existential witness for w ∈ SAT —
namely ~u = 〈u1, . . . , uℓ−1〉 and a satisfying assignment for πℓ(h(~u,w, ~xR)).

26



Suppose that ~x is a maximal hard sequence. Then all w ∈ {0, 1}≤m ∩SAT are easy with respect
to ~x. That is, for all w ∈ {0, 1}≤m,

w ∈ SAT =⇒ ∃u1, . . . , uℓ−1 ∈ {0, 1}≤m, πℓ(h(u1, . . . , uℓ−1, w, ~xR)) ∈ SAT.

If this were not the case, then 〈x1, . . . , xk, w〉 would be a hard sequence, violating the maximality
of ~x. Furthermore, for all w ∈ {0, 1}≤m,

w ∈ SAT =⇒ ∀u1, . . . , uℓ−1 ∈ {0, 1}≤m, πℓ(h(u1, . . . , uℓ−1, w, ~xR)) ∈ SAT.

This follows from the definitions of BLℓ and coBLℓ. Thus, a maximal hard sequence for length m
provides an NP algorithm for SAT on {0, 1}≤m.

Since an NP machine can recognize SAT using only one maximal hard sequence for each length
n, a polynomial length advice function can provide this information. Thus, BLr(n) ≤P

m coBLr(n)

implies that coNP ⊆ NP/poly. This collapses PH to ΣP
3 using Yap’s theorem [Yap83]. 2

We are now in a position to prove Theorems 30 and 31. For technical reasons that we will
encounter in the next section, it is more advantageous to restate the hypotheses of these theorems
as dimension preserving reductions from BLr(n) to coBLω (rather than a collapse of the Boolean
Hierarchy). Thus, Theorem 30 follows directly from Lemma 34 and Theorem 31 from Lemma 35.

Lemma 34 Let q(n) ≥ r(n) be polynomial-time computable functions such that q(n)r(n) is poly-
nomially bounded. If BLr(n) ≤P

m coBLω via a dimension-preserving polynomial-time reduction, then

NPF//PF
SAT[q(n)]
tt ⊆ NPF//PF

SAT[r(n)−1]
tt .

Proof: Let f be a function in NPF//PF
SAT[q(n)]
tt via a deterministic polynomial-time machine D

and an NP machine N . We construct an equivalent pair of machines N ′ and D′ which ask r(n)− 1
queries to SAT. Fix an input string x of length n. Let W = {w1, . . . , wq(n) } be the set of parallel
queries asked by D(x) and let m be the length of the longest query. Let HARD(m,W ) be the set
of hard sequences for length m where every component of each hard sequence is a string from W .
For each k, 1 ≤ k < r(n), D′(x) asks its SAT oracle whether there exists a hard sequence of order
k in HARD(m,W ). Since q(n)r(n) is polynomially bounded, there are only polynomially many
sequences in HARD(m,W ). Recall that it is a coNP question to determine whether a particular
sequence is a hard sequence. Thus, asking whether one of polynomially many candidates is a hard
sequence is also a coNP question. Therefore, using at most r(n) − 1 queries, D′(x) can compute
the maximum order of the hard sequences in HARD(m,W ). This value, z, is the output of D′(x).

On input (x, z), the machine N ′ will proceed as follows. First, N ′ guesses two sets WSAT and
H. The set WSAT is a subset of W . If N ′ guesses WSAT correctly, then WSAT would be exactly
W ∩ SAT. The set H is a set of sequences with ≤ z components where each component is a string
in W . One correct guess for H is the set HARD(m,W ). There may be other correct guesses for
H.

As usual, N ′ might guess WSAT and H incorrectly. So, N ′ performs the following verifications
on WSAT and H. For each w ∈ WSAT, N ′ confirms that w is satisfiable by guessing a satisfying
assignment for w. It remains possible that some w ∈ W − WSAT is satisfiable. Next, we try to
verify that each sequence ~y = 〈y1, . . . , yk〉 ∈ H is a hard sequence. First, each yi must be an
element of W − WSAT, since the components of a hard sequence must be unsatisfiable. Also, for
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each ~y = 〈y1, . . . , yk〉 ∈ H and each w ∈ W − WSAT, if 〈~y,w〉 6∈ H, then w should be easy with
respect to ~y. This can be confirmed using the following NP procedure:

PROCEDURE EasyWitness(〈y1, . . . , yk〉, w)

1. Let ℓ = r(n) − k.

2. Guess a sequence u1, . . . , uℓ−1 ∈ {0, 1}≤m.

3. Compute the formula F = πℓ(h(u1, . . . , uℓ−1, w, ~y R).

4. Guess a satisfying assignment for F .

Clearly, if WSAT = W ∩ SAT and H = HARD(m,W ), then each verification step will succeed. We
claim that if WSAT and H pass every verification step, then WSAT = W ∩ SAT. (Note: we do not
claim that H must also equal HARD(m,W ).)

Suppose that H passes every verification step. Let ~x = 〈x1, . . . , xz〉 be a hard sequence where
each xi ∈ W . We claim that ~x must be in H. Suppose not. Without loss of generality we
can assume that the empty sequence is in H, since the empty sequence is by definition a hard
sequence. Then there exist i, 0 ≤ i < z such that 〈x1, . . . , xi〉 ∈ H but 〈x1, . . . , xi+1〉 6∈ H.
Then, xi+1 should be easy with respect to the hard sequence 〈x1, . . . , xi〉. This will prompt N ′

to run the EasyWitness procedure on 〈x1, . . . , xi〉 and xi+1. However, 〈x1, . . . , xi+1〉 is in reality a
hard sequence, so EasyWitness(〈x1, . . . , xi〉, xi+1) will fail. Thus, H would not have passed every
verification, which is a contradiction. Therefore, H must contain ~x.

Now, suppose that WSAT and H passes every verification step. Fix a string w ∈ W −WSAT. By
the preceding argument H contains at least one hard sequence of order z. We know that such a hard
sequence exists since z was computed by D′(x) to be the maximum order of the hard sequences
in HARD(m,W ). Let ~x be such a maximum hard sequence. Since 〈~x,w〉 6∈ H, N ′ must have
succeeded in the procedure call EasyWitness(~x,w). Then, there exists u1, . . . , uℓ−1 ∈ {0, 1}≤m

such that πℓ(h(u1, . . . , uℓ−1, w, ~xR)) ∈ SAT, where ℓ = r(n) − z. By the definitions of BLr(n)

and coBLω, this is enough to imply that w ∈ SAT. Thus, every string w ∈ W − WSAT must be
unsatisfiable. Since every string in WSAT was already confirmed to be satisfiable, it follows that
WSAT = W ∩ SAT.

Finally, some computation path of N ′ will guess the correct WSAT and a correct H which passes
every verification step. On such a path, N ′ knows the elements of W ∩ SAT. Thus, N ′ can carry
out the simulation of N and D step by step without using any queries to SAT. 2

Lemma 35 Let q(n) and r(n) be polynomial-time computable functions such that q(n) is poly-
nomially bounded and r(n) ≤ nǫ for some ǫ < 1. If BLr(n) ≤P

m coBLω via a dimension-preserving

polynomial-time reduction, then NPF
SAT[q(n)]
b ⊆ NPF//PFSAT[(r(n)−1)(log q(n)+2)].

Proof: Let f be a function in NPF
SAT[q(n)]
b . By Lemma 12, f ∈ NPF//PFSAT[2q(n)] via a determin-

istic polynomial-time machine D and an NP machine N . Fix an input string x of length n. Then,
D(x) asks at most 2q(n) serial queries to the SAT oracle. This computation can be represented by
an oracle query tree of depth 2q(n). Let m be a bound on the length of the queries. Since q(n) may
be linear in n, there could be exponentially many nodes in the oracle query tree. Now, suppose
that every query in the tree is either satisfiable or easy with respect to the empty sequence. Then,
an NP machine N0 can determine the correct path in the oracle query tree for D(x). When D(x)
asks a query w, N0 will simply guess whether w is satisfiable or unsatisfiable but easy. In either
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case, N0 can verify whether its guess is correct. If w turns out to be hard, then all computation
paths of N0 will reject. This is not a bad situation, since locating a hard string is generally useful.

Now, assuming nothing about the queries in the oracle query tree, we will build a machine N1

to help us look for the location of the first query on the correct path that is hard with respect
to the empty sequence (i.e., an unsatisfiable formula that is not easy with respect to the empty
sequence). The machine N1 is given the original input x and a level number i and accepts if every
query on the correct path up to level i is either satisfiable or easy. Then, using binary search and
log(2q(n)) queries to SAT, a polynomial-time machine D′ can determine the level where the first
hard string appeared on the correct path. Note that D′ does not have the hard string itself or its
exact location in the oracle query tree. It only has the level where the first hard string occurred.

We construct an NP machine N ′ and a PFSAT[(r(n)−1)(log q(n)+2)] machine D′ to show that
f ∈ NPF//PFSAT[(r(n)−1)(log q(n)+2)]. The machine D′ will expend its queries in r(n)− 1 rounds. In
each round, it uses ⌈log(2q(n))⌉ ≤ log q(n) + 2 queries to SAT to locate a level where a hard string
occurs. In the first round, D′(x) uses N1 to determine the first level where a hard string occurs on
the correct path in the oracle query tree for D(x), as described above. Call this level i1. In the
second round, D′(x) will use an NP machine N2 to locate the level where the second component of
a hard sequence occurs. The NP machine N2 will be given i1 as part of its input. Then N2 knows
that every query on the correct path up to level i1 is either satisfiable or easy. Thus, N2 can answer
the queries up to level i1 − 1. Then, N2 simulates D(x) until D(x) asks the i1th query x1. Thus,
〈x1〉 is a hard sequence of order 1. By definition of a hard sequence, x1 ∈ SAT. So, N2 knows the
correct path in the oracle query tree up to level i1. Then, N2 can proceed to determine whether
every query between level i1 and some given level i is either satisfiable or easy with respect to 〈x1〉.
Thus, using N2 and another round of log q(n) + 2 queries, D′(x) can determine the level i2 where
the second component of a hard sequence occurs. After some number of rounds k ≤ r(n) − 1, all
the remaining queries on the correct path will be easy with respect to 〈x1, . . . , xk〉 and D′(x) will
have determined i1, . . . , ik, the levels where the components of a maximal hard sequence occurred.
Finally, D′(x) gives the values of i1, . . . , ik to N ′ and N ′ can complete the simulation of D(x) to
compute its output. After that, N ′ will simply simulate the original machine N step by step to
compute f . 2

The combination of Theorems 30 and 31 provides us with some results about the Boolean
Hierarchy. First, we show that if the Boolean Hierarchy collapses to a constant level, then so does
the nondeterministic bounded query hierarchy.

Theorem 36 If BH2k = coBH2k then NPF
SAT[nO(1)]
b ⊆ NPF

SAT[k]
b .

Proof: Fix a constant d and let f be a multi-valued function in NPF
SAT[nd]
b . We apply Theorem 30

with r(n) = 2k and q(n) = nc where c = 2kd + 1 to obtain

NPF//PF
SAT[nc]
tt ⊆ NPF//PF

SAT[2k−1]
tt .

The results from Theorem 30 are for parallel queries to SAT. However, by Lemma 15,

NPF//PFSAT[c log n] ⊆ NPF//PF
SAT[nc]
tt and NPF//PF

SAT[2k−1]
tt = NPF

SAT[k]
b .

Next, we apply Theorem 31 with q(n) = nd and r(n) = k to get

NPF
SAT[nd]
b ⊆ NPF//PFSAT[(2k−1)(log nd+2)].
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Since (2k − 1)(log nd + 2) < (2kd + 1) log n for large enough n, we have the desired collapse

NPF
SAT[nd]
b ⊆ NPF//PFSAT[c log n] ⊆ NPF//PF

SAT[nc]
tt ⊆ NPF

SAT[k]
b .

2

The collapse of NPF
SAT[nO(1)]
b all the way down to NPF

SAT[k]
b is quite drastic. For example,

by the results in Section 4, such a collapse implies that solving TSP exactly can be reduced to 2-
approximating MaxClique. Conversely, if TSP does not reduce to 2-approximating MaxClique,
then the Boolean Hierarchy must have infinitely many distinct levels. Thus, we have the following
corollary.

Corollary 37 If any of the following conditions holds, then the Boolean Hierarchy is infinite —
i.e., for all constants k, BHk ( BHk+1.

• TSP 6≤P
m MaxClique

• TSP 6≤P
m 2-approximating TSP

• MaxClique 6≤P
m 2-approximating MaxClique

• TSP 6≤P
m 2-approximating MaxClique

Two types of results are usually cited as “evidence” that the Boolean Hierarchy is infinite. First,
if we assume that PH is infinite, then the Boolean Hierarchy is infinite [Kad88]. Alternatively, one
might resort to the Random Oracle Hypothesis, since under random oracles the Boolean Hierarchy
is infinite with probability 1 [Cai87]. Here we offer another option. Assuming that certain NP-
approximation problems really are harder than others (e.g., MaxClique versus 2-approximating
MaxClique), then we can show that the Boolean Hierarchy is infinite. This is an arguably more
natural justification for an infinite Boolean Hierarchy.

Finally, the results of Section 5 also imply a complete upward collapse of the Boolean Hierarchy
and the bounded query hierarchy at the constant levels. These corollaries generalize the result of
Buhrman and Fortnow [BF98] which showed that PSAT[1] = PSAT[2] =⇒ PSAT ⊆ PSAT[1].

Corollary 38 For all constants k, BHk = coBHk =⇒ PSAT ⊆ BHk.

Proof: Let 2c be the smallest power of 2 that is ≥ k. Using the standard upward collapse of the
Boolean Hierarchy [CGH+88], we know that for all constants k′ > k,

BHk = coBHk = BHk′ = coBHk′ .

Thus, by Theorem 36, NPF
SAT[nO(1)]
b ⊆ NPF

SAT[c]
b . Since the characteristic function of every

language in PSAT is computable in NPF
SAT[nO(1)]
b , PSAT ⊆ NP

SAT[c]
b . By Lemmas 15 and 16,

NP
SAT[c]
b = NP//PF

SAT[2c−1]
tt = BH2c+1+1.

Since 2c+1 + 1 > k, by the standard upward collapse of the Boolean Hierarchy, BHk = BH2c+1+1.
Therefore, PSAT ⊆ BHk. 2

Since the Boolean Hierarchy and the bounded query language classes are intertwined, we also
have a complete upward collapse of the bounded query language classes. The corollary follows from
this fact [CGH+88, Bei91]:

PSAT[k] ⊆ BH2k ∩ coBH2k ⊆ BH2k ∪ coBH2k ⊆ PSAT[k+1].

Corollary 39 For all constants k, if PSAT[k] = PSAT[k+1] then PSAT ⊆ PSAT[k].
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6 Upward collapse

Combining the results in Sections 4 and 5, we can obtain upward collapses for the NPF
SAT[q(n)]
b

hierarchy and for some NP-approximation problems. The proofs of these lemmas and corollar-
ies demonstrate the connection between reducibility among NP-approximation problems and the
upward collapse of the nondeterministic bounded query classes.

Lemma 40 Let f(n) ∈ log log n + O(1) be a polynomial-time computable function. Then,

NPF
SAT[f(n)]
b = NPF

SAT[f(n)+1]
b =⇒ NPF

SAT[nO(1)]
b ⊆ NPF

SAT[O(log2 n)]
b .

Proof: By Lemma 18, the Boolean Hierarchy collapses to a level r(n) ∈ O(log n). Applying

Theorem 31 with q(n) = nO(1), we get NPF
SAT[nO(1)]
b ⊆ NPF//PFSAT[O(log2 n)]. By Lemma 12,

NPF//PFSAT[O(log2 n)] = NPF
SAT[O(log2 n)]
b . 2

Corollary 41 If MaxClique ≤P
m 2-approximating MaxClique, then

TSP ≡P
m (1 + n− log n)-approximating TSP.

Proof: By Corollary 24, MaxClique is complete for the class NPF
SAT[O(log n)]
b and 2-approximating

MaxClique is complete for NPF
SAT[log log n+O(1)]
b . Thus, NPF

SAT[log log n+O(1)]
b = NPF

SAT[O(log n)]
b .

We claim that for some r(n) ∈ O(log n), BLr(n) ≤P
m coBLω via a dimension preserving reduction.

By Lemma 35, we have NPF
SAT[nO(1)]
b ⊆ NPF

SAT[O(log2 n)]
b . Finally, by Corollary 29, TSP≡P

m (1 +
n− log n)-approximating TSP.

To see that BLr(n) ≤P
m coBLω via a dimension preserving reduction, consider the language

UBLf(n) = {〈x1, . . . , xm〉 ∈ BLω | m ≤ f(n), where n = |〈x1, . . . , xm〉|}.

Clearly, the characteristic function of UBLn0.5 is computable in PF
SAT[n0.5]
tt . Furthermore,

PF
SAT[n0.5]
tt ⊆ NPF

SAT[O(log n)]
b = NPF

SAT[log log n+O(1)]
b = NPF//PF

SAT[O(log n)]
tt .

Thus, for some s(n) ∈ O(log n), UBLn0.5 ∈ NP//PF
SAT[s(n)]
tt which equals BH2s(n)+1 by Lemma 16.

Let r(n) = 2s(n) + 2. Then, UBLn0.5 ∈ coBHr(n). Finally, note that the languages BLr(n) and
UBLn0.5 ∩ TUPLES[r(n)] can differ at only a finite number of strings. Hence, BLr(n) ∈ coBHr(n).
This gives us the desired dimension preserving reduction, as discussed in Section 5. 2

In the proof of Lemma 40, we could repeatedly apply Theorem 31 and get a lower collapse

of NPF
SAT[nO(1)]
b (say, down to log n log log log n queries instead of log2 n queries). However, the

theorem can only be used a constant number of times. Thus, when f(n) = log log n + O(1), we
cannot get a collapse of nO(1) queries down to O(log n) queries. We need a slightly smaller f(n)
for this.

Lemma 42 Let r(n) be polynomial-time computable such that r(n) ∈ O(log n/ log log n). Define
f(n) ∈ log log n − log log log n + O(1) such that r(n) = 2f(n)+1 − 1. If BLr(n) ≤P

m coBLω via a
dimension preserving reduction, then

NPF
SAT[nO(1)]
b ⊆ NPF

SAT[O(log n)]
b and NPF

SAT[O(log log n)]
b ⊆ NPF

SAT[f(n)+1]
b .
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Proof: Let k and k′ be constants such that f(n) ≤ log log n − log log log n + log k and r(n) ≤
k′ log n/(log log n). First, we prove that NPF

SAT[O(log log n)]
b ⊆ NPF

SAT[f(n)+1]
b . Let q1(n) = logc n,

then by Lemma 15

NPF
SAT[c log log n]
b ⊆ NPF//PF

SAT[q1(n)]
tt .

Furthermore, by elementary algebra, q1(n)r(n) equals nck′
and is polynomially bounded. Thus, we

can apply Lemma 34 and get NPF//PF
SAT[q1(n)]
tt ⊆ NPF//PF

SAT[r(n)−1]
tt . Observe that

NPF//PF
SAT[r(n)−1]
tt = NPF//PF

SAT[2f(n)+1−2]
tt ⊆ NPF

SAT[f(n)+1]
b .

Thus,

NPF
SAT[c log log n]
b ⊆ NPF//PF

SAT[logc n]
tt ⊆ NPF

SAT[f(n)+1]
b .

Next, we prove that NPF
SAT[nO(1)]
b ⊆ NPF

SAT[O(log n)]
b . Let q2(n) = nc. By Lemma 35,

NPF
SAT[nc]
b ⊆ NPF//PFSAT[r(n)(c log n+2)].

Since r(n) ≤ k′(log n)/(log log n), r(n)(log nc + 2) is bounded by log2 n. Thus,

NPF
SAT[nc]
b ⊆ NPF//PFSAT[log2 n]. (4)

Then, we apply Lemma 35 with q3(n) = log2(n) and get

NPF
SAT[log2 n]
b ⊆ NPF//PFSAT[r(n)(2 log log n+2)].

Since r(n) ≤ k′(log n)/(log log n), we have

NPF
SAT[log2 n]
b ⊆ NPF//PFSAT[3k′ log n]. (5)

Combining Equations 4 and 5, we have NPF
SAT[nc]
b ⊆ NPF//PFSAT[c′ log n]. 2

Corollary 43 Let f(n) ∈ log log n−log log log n+O(1) be a polynomial-time computable function.

If NPF
SAT[f(n)]
b = NPF

SAT[f(n)+1]
b , then

NPF
SAT[nO(1)]
b ⊆ NPF

SAT[O(log n)]
b and NPF

SAT[O(log log n)]
b ⊆ NPF

SAT[f(n)]
b .

Proof: By Lemma 18, the Boolean Hierarchy collapses to level r(n) = 2f(n)+1−1. Using Lemma 42,

NPF
SAT[nO(1)]
b ⊆ NPF

SAT[O(log n)]
b and NPF

SAT[O(log log n)]
b ⊆ NPF

SAT[f(n)+1]
b ⊆ NPF

SAT[f(n)]
b . 2

Corollary 44 If MaxClique ≤P
m (log n)-approximating MaxClique, then

TSP ≡P
m MaxClique ≡P

m (log n)-approximating MaxClique.
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Proof: By Corollary 24, we know that MaxClique is complete for NPF
SAT[O(log n)]
b and (log n)-

approximating MaxClique is complete for NPF
SAT[log log n−log log log n+O(1)]
b . Therefore, under the

assumption that MaxClique ≤P
m (log n)-approximating MaxClique,

NPF
SAT[O(log n)]
b = NPF

SAT[log log n−log log log n+O(1)]
b .

As in the proof of Corollary 41, we use UBLn0.5 to show that BLr(n) ≤P
m coBLω via a dimension pre-

serving reduction for r(n) ∈ O(log n/ log log n). By Lemma 42, NPF
SAT[nO(1)]
b = NPF

SAT[O(log n)]
b .

Therefore,

NPF
SAT[nO(1)]
b = NPF

SAT[log log n−log log log n+O(1)]
b .

Then, by the completeness of TSP, MaxClique and (log n)-approximating MaxClique, the three
problems are ≤P

m -equivalent. 2

In Corollary 43, we do not have a complete collapse of the NPF
SAT[q(n)]
b hierarchy — there is a

gap between O(log n) and O(log log n) queries where the classes may be different. To get a complete
upward collapse, we need to have an even smaller f(n).

Lemma 45 Let r(n) be polynomial-time computable such that r(n) ∈ O(log log n). Define f(n) ∈
log log log n + O(1) such that r(n) = 2f(n)+1 − 1. If BLr(n) ≤P

m coBLω via a dimension preserving

reduction, then NPF
SAT[nO(1)]
b ⊆ NPF

SAT[f(n)]
b .

Proof: Let k be a constant such that r(n) ≤ k log log n. We first apply Lemma 34 with

q(n) = (log n)(log log n)d−1
.

By elementary algebra, q(n)r(n) is polynomially bounded. Thus,

NPF
SAT[(log log n)d]
b ⊆ NPF//PF

SAT[q(n)]
tt ⊆ NPF//PF

SAT[r(n)−1]
tt ⊆ NPF

SAT[f(n)]
b . (6)

Then, we apply Lemma 35 twice with q(n) = nc and q(n) = log2 n and get:

NPF
SAT[nc]
b ⊆ NPF

SAT[r(n)(c log n+2)]
b ⊆ NPF

SAT[log2 n]
b (7)

NPF
SAT[log2 n]
b ⊆ NPF

SAT[r(n)(2 log log n+2)]
b ⊆ NPF

SAT[(log log n)3]
b . (8)

Combining Equations 6, 7 and 8, for all c, NPF
SAT[nc]
b ⊆ NPF

SAT[f(n)]
b . 2

Corollary 46 Let f(n) ∈ log log log n+O(1) be a polynomial-time computable function. Suppose

that NPF
SAT[f(n)]
b = NPF

SAT[f(n)+1]
b , then NPF

SAT[nO(1)]
b ⊆ NPF

SAT[f(n)]
b .

Corollary 47 If 2-approximating MaxClique ≤P
m 2-approximating Set Cover, then

TSP ≡P
m MaxClique ≡P

m 2-approximating MaxClique.
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Proof: Since 2-approximating Set Cover is in NPF
SAT[log log log n+O(1)]
b (we do not have complete-

ness), by hypothesis, 2-approximating MaxClique can be solved using log log log n+O(1) queries.
By the completeness of 2-approximating MaxClique and Lemma 45, we have

NPF
SAT[nO(1)]
b ⊆ NPF

SAT[log log log n+O(1)]
b .

Hence, for some r(n) ∈ log log n + O(1), UBLn0.5 ∈ coBHr(n), BLr(n) ≤P
m coBLω via a dimension

preserving reduction and

TSP ≡P
m MaxClique ≡P

m 2-approximating MaxClique.

2

7 Conclusion

We have illustrated an intricate connection linking the complexity of NP-approximation problems,

the NPF
SAT[q(n)]
b hierarchy and the Boolean Hierarchy. These links are quite strong. For example,

for all constants k we have

NPF
SAT[k]
b = NPF

SAT[k+1]
b =⇒ BH2k+1−1 = coBH2k+1−1

BH2k = coBH2k =⇒ NPF
SAT[k]
b = NPF

SAT[k+1]
b .

It is an open question whether BH2k+1−1 = coBH2k+1−1 is sufficient to collapse NPF
SAT[k]
b =

NPF
SAT[k+1]
b , but these statements do show that the Boolean Hierarchy collapses if and only if the

NPF
SAT[k]
b hierarchy collapses.

The link between the NP-approximation problems and the NPF
SAT[q(n)]
b hierarchy is also very

strong. The results we have proven are completeness results, so any class that captures the com-

plexity of these NP-approximation problems must also capture the properties of the NPF
SAT[q(n)]
b

machines. For example, any class C that contains a function which 2-approximates MaxClique,

also contains a function that is hard for NPF
SAT[O(log log n)]
b . In Section 4, we have not listed all the

known completeness results. We can prove similar theorems for Graph Coloring and MaxSAT.
Thus, we consider the upward collapse results presented here as a list of examples rather than an
exhaustive list of all known upward collapses.

As for open questions, it would be nice if we could strengthen some of our upward collapse
results. For example, we showed in Lemma 40 that

NPF
SAT[log log n]
b ⊆ NPF

SAT[log log n+1]
b =⇒ NPF

SAT[nO(1)]
b ⊆ NPF

SAT[O(log2 n)]
b .

Under the assumption that MaxClique ≤P
m 2-approximating MaxClique, this leaves a gap be-

tween O(log2 n) and O(log n) queries. If we can improve our results and show that

NPF
SAT[log log n]
b ⊆ NPF

SAT[log log n+1]
b =⇒ NPF

SAT[nO(1)]
b ⊆ NPF

SAT[O(log n)]
b ,

then we could claim the rather nice upward collapse:

MaxClique ≤P
m 2-approximating MaxClique =⇒ TSP ≡P

m 2-approximating TSP.

However, this improvement is beyond the reach of current techniques. We conjecture that there is
a yet undiscovered variation of the hard/easy argument which can produce the desired results.
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