
On the Query Complexity of

Clique Size and Maximum Satisfiability

Richard Chang†

Department of Computer Science
and Electrical Engineering

University of Maryland Baltimore County
Baltimore, MD 21228, USA

November 6, 1995

Abstract

This paper explores the bounded query complexity of approximating the size of the
maximum clique in a graph (Clique Size) and the number of simultaneously satisfiable
clauses in a 3CNF formula (MaxSat). The results in the paper show that for certain
approximation factors, approximating Clique Size and MaxSat are complete for cor-
responding bounded query classes under metric reductions. The completeness result
is important because it shows that queries and approximation are interchangeable:
NP queries can be used to solve NP-approximation problems and solutions to NP-
approximation problems answer queries to NP oracles. Completeness also shows the
existence of approximation preserving reductions from many NP-approximation prob-
lems to approximating Clique Size and MaxSat (e.g., from approximating Chromatic
Number to approximating Clique Size). Since query complexity is a quantitative com-
plexity measure, these results also provide a framework for comparing the complexities
of approximating Clique Size and approximating MaxSat. In addition, this paper ex-
amines the query complexity of the minimization version of the satisfiability problem,
MinUnsat, and shows that the complexity of approximating MinUnsat is very similar
to the complexity of approximating Clique Size. Since MaxSat and MinUnsat share
the same solution space, the “approximability” of MaxSat is not due to the intrinsic
complexity of satisfiability, but is an artifact of viewing the approximation version of
satisfiability as a maximization problem.

†Supported in part by NSF Research Grant CCR-9309137 and the University of Maryland Institute for
Advanced Computer Studies. Email: chang@cs.umbc.edu.

1 Introduction

The study of NP-approximation problems is a well-established field of theoretical computer
science. In the past, this area has been explored primarily from an algorithmic point of view.
The main objective of this approach is to determine the extent to which an NP-optimization
problem can be approximated by an efficient algorithm. For example, an NP-optimization
problem is generally considered “approximable” if there exists a constant factor polynomial
time approximation algorithm for the problem. The questions asked in this line of research
tend to be qualitative in nature, hence the approximation classes such as MAXNP, MAXSNP
and MAXΠ1 were defined in an attempt to separate “approximable” problems from “non-
approximable” ones [PY91, PR90]. Furthermore, these classes are syntax based rather than
machine based. In contrast, the traditional complexity classes, such as time and space
bounded classes, are resource-bounded complexity classes which allow quantitative compar-
isons between problems in those classes. In their seminal paper which defined MAXNP,
Papadimitriou and Yannakakis [PY91] argue against using a machine model to classify ap-
proximation problems, claiming that “computation is an inherently unstable, non-robust
mathematical object, in the sense that it can be turned from non-accepting to accepting by
changes that would be insignificant in any metric.”

It is difficult to argue against such conventional wisdom. However, we would like a model
which allows us to address some basic questions about the complexity of approximation
problems. For example:

• What computational resources are sufficient to solve the approximation problem?

• Could fewer resources be used?

• Is it easier to find the approximate solution than to find the exact solution?

• Are coarser approximations easier to find than finer approximations?

• How does the complexity of approximating different problems compare to each other?

In summary, we want a computational model which allows us to quantitatively measure the
complexity of approximation problems.

In this paper, we argue that bounded query complexity is a natural way to measure the
complexity of NP-approximation problems. The bounded query class PFSAT[q(n)] is the set
of functions computed by polynomial time Turing machines which ask at most q(n) queries
to the SAT oracle. Bounded query classes have been well studied, beginning with Krentel’s
work which used bounded query classes to classify the difficulty of NP-optimization problems
[Kre88]. Subsequent studies showed that for many query bounds q(n) the class PFSAT[q(n)] is
strictly larger than the class PFSAT[q(n)−1] [ABG90, AG88, HN93] unless some intractability
assumptions are violated. Thus, bounded query complexity is a fine-grained complexity
measure and, in our opinion, well suited for measuring the complexity of approximation
problems.

In previous work, Chang, Gasarch and Lund [CG93, CGL94] gave upper bounds and
relative lower bounds on the number of queries needed to compute an approximation of
the maximum clique size of a graph. They showed that for a “nice” approximation factor

1

k(n) ≥ 2, ⌈log⌈logk(n) n⌉⌉ queries to SAT can be used to find an approximation of the
maximum clique size within a factor of k(n). Moreover, no polynomial time computable
function can find such an approximation with a constant fewer queries to any oracle X
unless P = NP. This constant does not depend on the factor k(n).1 These results do depend
upon breakthroughs on the non-approximability of clique size and probabilistically checkable
proofs for NP languages [ALM+92]. Chang, Gasarch and Lund also obtained similar upper
and lower bounds for approximating the chromatic number of a graph and explored the
query complexity of finding the size of the minimum set cover.

In this paper, we show a tighter connection between bounded queries and the complexity
of NP-approximation problems by showing that approximating Clique Size within a factor
of k(n) is hard for a corresponding bounded query class under metric reductions. To do
this, we first show that the function RMSAT

r(n) is complete for the bounded query classes. For
several approximation factors, this hardness result can be restated as completeness results
as well. In the following, let a and k be constants such that a ≤ 1 and k ≥ 1.

• (1 + n−a)-approximating Clique Size is ≤P
mt -complete for PFSAT[O(log n)].

• (1 + 1/ logk n)-approximating Clique Size is ≤P
mt -complete for PFSAT[(k+1) log log n+O(1)].

• k-approximating Clique Size is ≤P
mt -complete for PFSAT[log log n+O(1)].

• (logk n)-approximating Clique Size is ≤P
mt -complete for PFSAT[log log n−log log log n+O(1)].

These completeness results show that functions which approximate Clique Size are natu-
ral representatives of the functions in the bounded query classes. Completeness is important
because it shows that bounded queries and approximations are inseparable. Finding better
approximations produces answers to more queries to SAT — and answering more queries to
SAT generates better approximations. The completeness result also shows that many other
NP-approximation problems can be reduced to approximating Clique Size. Moreover, these
reductions are approximation preserving in the sense that a better approximation of Clique
Size will result in a better approximation of the original problem.

In this paper, we also explore the query complexity of approximating the maximum num-
ber of simultaneously satisfiable formulas in a 3CNF formula (MAX3SAT). The MAX3SAT
problem is different from the Clique Size problem because there exists a polynomial time
algorithm which approximates MAX3SAT within a factor of 4/3. Due to results by Khanna,
Motwani, Sudan and Vazirani [KMSV94], we can show that approximating MAX3SAT within
a factor of k(n) is hard for the class PFSAT[log logk(n)(1+δ′)], where δ′ is a constant that does
not depend on k(n). Again this lower bound differs from the upper bound of log logk(n)(4/3)
by only a constant number of queries.

Finally, we address the following anomaly. Considering that the decision problems 3SAT
and Clique are both NP-complete, why can MAX3SAT be approximated within a constant
factor and not Clique Size? We could say that 3SAT is “easier” than Clique. Instead, we
argue informally that MAX3SAT is approximable only because it contains padding. We
show that by adding a linear amount of padding to Clique Size, the resulting approximation
problem has a complexity that is very similar to MAX3SAT. Our intuitive interpretation of

1Under the assumption that RP 6= NP, this constant is 6.

2

this observation is that MAX3SAT contains a lot of “fluff” that is approximable in polynomial
time. We then argue that the “non-approximable” part of MAX3SAT requires just as many
queries to approximate as Clique Size does. Hence, in its core, MAX3SAT is just as difficult
as Clique Size. Note that such comparisons can only be made after we have established a
uniform quantitative complexity measure to gauge the difficulty of approximating Clique Size
and MAX3SAT. Furthermore, we show that by viewing the approximation version of 3SAT
as a minimization problem, which we call MIN3UNSAT, the complexity of the resulting
approximation problem is very similar to that of approximating Clique Size. Therefore, we
conclude that the “approximability” of MAX3SAT is not due to 3SAT being easier than
Clique, but is an artifact of treating the approximation version of 3SAT as a maximization
problem.

The rest of this paper is organized as follows. Section 2 explains the terminology and
notation used in the paper. Section 3 shows the hardness and completeness of approximating
Clique Size. In Section 4, we construct an approximation preserving reduction from Chro-
matic Number to Clique Size. Section 5 establishes the query complexity of the MAX3SAT
problem. Section 6 shows a connection between the structure of bounded query classes and
the self-improvability of Clique Size. Section 7 compares the complexities of approximating
Clique Size and MAX3SAT. Section 8 shows that by viewing the approximation version
of 3SAT as a minimization problem instead of a maximization problem, the resulting NP-
approximation problem has the same complexity as approximating Clique Size. Finally in
Section 9, we provide some updated references to results from more recent works.

2 Preliminaries

We are interested in two NP-optimization problems: Clique and MAX3SAT. The Clique
problem is identifying the vertices of a maximum clique in a graph and the MAX3SAT
problem is finding an assignment to the variables in a 3CNF formula which satisfies the
largest number of clauses. We will work with a variation of Clique and MAX3SAT, Clique
Size and MaxSat, which merely asks for the size of the optimum solution. We now define
precisely what it means for a function to approximate Clique Size and MaxSat.

Definition 1 Given a graph G with n vertices, we use |G| to denote the number of vertices
in G (rather than the length of the encoding of G) and we write ω(G) for the size of the
maximum clique in the graph. We say that a number x is an approximation of ω(G) within
a factor of k(n) if x ≤ ω(G) < k(n) · x. To shorten the terminology, we will also say that
the number x k(n)-approximates ω(G). Let f be a function such that for all graphs G, f(G)
k(|G|)-approximates ω(G). Then we say that the function f k(·)-approximates Clique Size.

Definition 2 Let F be a 3CNF formula with n clauses. We use |F | to denote the number of
clauses in the formula F (rather than the length of encoding of F), and we define MaxSat(F)
to be the maximum number of simultaneously satisfiable clauses in F . Then, a number x
is an approximation of MaxSat(F) within a factor of k(n) if x ≤ MaxSat(F) < k(n) · x.
In this case, we also say that the number x k(n)-approximates MaxSat(F). A function f
k(·)-approximates MaxSat if for all formulas F , f(F) k(|F |)-approximates MaxSat.

3

Traditionally, approximation factors for maximum clause satisfiability are less than 1.
E.g., Yannakakis’s approximation algorithm for MAX3SAT [Yan92] is usually cited as a 3/4
approximation rather than a 4/3 approximation. In this paper, we use consistent terminology
and always state approximation factors that are greater than 1.

Since approximation problems are solved by functions rather than languages, we have
to use metric reductions between functions instead of many-one reductions. The following
definition of metric reduction is due to Krentel [Kre88]:

Definition 3 Let f and g be two functions. A metric reduction from f to g, written f ≤P
mt g,

is a pair of polynomial time computable functions T1 and T2 such that for all x,

f(x) = T2(x, g(T1(x))).

Intuitively, T1 transforms the input x into the domain of the function g, then T2 takes the
answer given by g(T1(x)) and computes the value of f(x). So, T1 and T2 allow you to solve
f(x) if you have a way of computing g.

The complexity measure we use in this paper is the number of oracle queries that a
polynomial time Turing machine needs to compute a function.

Definition 4 Let PFX[q(n)] be the class of functions computed by polynomial time oracle
Turing machines which ask at most q(n) queries to the oracle X. Since the queries are
adaptive, the query strings may depend on answers to previous queries.

Note that for constant k, PFX[k] is closed under metric reductions, but for growing
functions q(n), PFX[q(n)] might not be closed under metric reductions. For example, suppose
that f ≤P

mt g and g ∈ PFSAT[q(n)]. Then, it is possible that f 6∈ PFSAT[q(n)], because the
reduction from f to g can stretch the input to g by a polynomial factor. Hence, computing
f(x) may require q(nO(1)) queries to SAT. As a result, our completeness results are stated for
classes like PFSAT[log log n+O(1)] which are closed under metric reductions. We will return to
this topic in Section 6 where we observe a connection between closure under metric reductions
and the self-improvability of NP-approximation problems.

In the next section, we will prove that some problems involving sequences of Boolean
formulas are ≤P

mt -complete for corresponding bounded query classes.

Definition 5 For a sequence F1, . . . , Fr of Boolean formulas, we define #SAT
r (F1, . . . , Fr) to

be the number of formulas in {F1, . . . , Fr} which are satisfiable and RMSAT
r (F1, . . . , Fr) to

be the index of the rightmost satisfiable formula. That is,

#SAT
r (F1, . . . , Fr) = |{F1, . . . , Fr} ∩ SAT|,

RMSAT
r (F1, . . . , Fr) = max

1≤i≤r
{i | Fi ∈ SAT}.

If none of F1, . . . , Fr are satisfiable, then we let RMSAT
r (F1, . . . , Fr) = 0.

In this paper, we will also need to consider sets of sequences of Boolean formulas with
growing “arity”. Without loss of generality, we can assume that all of the formulas in a
sequence have the same number of clauses n and we will let the number of formulas r(n)

4

vary as a function of n. This notational device makes it easier to discuss the complexity of
functions like #SAT

log n. In this case, the function expects to see inputs of the form F1, . . . , Fr

where r ≤ log |Fi|. Strictly speaking, the size of F1, . . . , Fr(n) is n · r(n). However, the query
complexity of #SAT

r(n) and RMSAT
r(n) depends on r(n), the arity of the tuple, rather than the

length of the tuple. Thus, we count the queries as a function of n or r(n) rather than the
length of the encoding of F1, . . . , Fr(n). For running times, however, are still expressed in
terms of the length of the input. We need this convention to state the upper and lower
bounds on the number of queries needed to compute RMSAT

r(t) .

For polynomial time computable r(n), both RMSAT
r(n) and #SAT

r(n) can be computed using
⌈log(r(n) + 1)⌉ queries to SAT by binary search. In previous work, Chang, Gasarch and
Lund [CGL94] showed a relative lower bound on the number of queries needed to solve a
certain “promise problem” using standard tree pruning techniques [ABG90, HN93]. This
result provides the following corollary on the number of queries needed to compute RMSAT

r(n) .

Corollary 6 Let r(n) be a logarithmically bounded polynomial time computable function.
If there exists an oracle X such that some polynomial time function computes RMSAT

r(n) using
fewer than ⌈log(r(n) + 1)⌉ queries to X, then P = NP.

In this paper, we need lower bounds on RMSAT
r(n) for cases where r(n) ∈ nO(1). We could

obtain some lower bounds by translating the terseness results by Amir, Beigel and Gasarch
[ABG90] and Beigel [Bei88]. However, the lower bounds would not be optimal, because there
would be some difficulty translating the terminology between the papers regarding the “size”
of the input.2 Thus, we prove the following lemma using the tree-pruning techniques from
Amir, Beigel and Gasarch.

Theorem 7 Let r(n) ∈ nO(1) be a polynomial time computable function. If there exists
an oracle X such that some polynomial time function computes RMSAT

r(n) using fewer than
⌈log(r(n) + 1)⌉ queries to X, then P = NP.

Proof: This is a straightforward tree-pruning argument. Let M be a polynomial time Turing
machine that computes RMSAT

r(n) using fewer than ⌈log(r(n) + 1)⌉ queries to some oracle X.
Given an input sequence F1, . . . , Fr(n) to M , we can search the entire oracle query tree in
polynomial time and enumerate a list of outputs from M for each sequence of oracle replies.
This list will have fewer than r(n) + 1 values, one of which is RMSAT

r(n)(F1, . . . , Fr(n)). Since

RMSAT
r(n)(F1, . . . , Fr(n)) can range in value from 0 to r(n), one of the possible values, call it z,

is not in the list. We know that z 6= RMSAT
r(n)(F1, . . . , Fr(n)) and we found z in deterministic

polynomial time without using any oracle queries.
Now, given a Boolean formula F with n clauses, we will prune the disjunctive self-

reduction tree of F to try to find a satisfying assignment for F . We expand the root of

2Previous versions of this paper [Cha94a, Cha95] stated that Corollary 6 can be used to obtain terseness
results. While this is true, the statement of Corollary 9 in those versions is incorrect. In particular, the
terseness results we could obtain would not supersede the theorems shown by Beigel [Bei88], Amir-Beigel-
Gasarch[ABG90] or Krentel [Kre88]. The difficulty lies in the fact that in this paper we do not count queries

based on the length of the input. Even though we can show that PFSAT[q(n)] can solve RMSAT
2q(n)−1 but

PFSAT[q(n)−1] cannot (unless P = NP), the n here is not the length of the input.

5

the tree until we have at least r(n) nodes in the deepest level. Let F1, . . . , Fr(n) be the first
r(n) nodes in the deepest level. Use the algorithm outlined above to find an index z such
that z 6= RMSAT

r(n)(F1, . . . , Fr(n)). If z = 0, then we know that at least one of F1, . . . , Fr(n) is
satisfiable which implies that F ∈ SAT. So, we can accept F outright. If z 6= 0, then we
remove the node Fz from the tree. We can safely remove Fz because we know that Fz is not

the rightmost satisfiable formula. So, if F1, . . . , Fr(n) contains satisfiable formulas, then at
least one remains after removing Fz. We repeat this process until there are only r(n) − 1
nodes in the deepest level. Then, we expand the tree and repeat the pruning process again.
When the leaves of tree are reached, there are only polynomially many leaves left in the tree.
We can check each one and accept if and only if a satisfying assignment is found. Thus,
SAT ∈ P and P = NP. 2

In many parts of the paper, using nested sequences of formulas will greatly simplify our
calculations. The corollary below adapts Theorem 7 for nested sequences.

Definition 8 We say that the sequence F1, . . . , Fr of Boolean formulas is a nested sequence
if for all i, 1 ≤ i < r, Fi+1 ∈ SAT =⇒ Fi ∈ SAT. For a nested sequence F1, . . . , Fr,

#SAT
r (F1, . . . , Fr) = RMSAT

r (F1, . . . , Fr).

Corollary 9 Let r(n) ∈ nO(1) be a polynomial time computable function and let X be any
oracle. If there exists a polynomial time Turing machine which can determine the value of
#SAT

r(n)(F1, . . . , Fr(n)) using fewer than ⌈log(r(n) + 1)⌉ queries to X for every nested sequence
F1, . . . , Fr(n) then P = NP.

Proof: We will show that under the hypothesis we can also compute RMSAT
r′(n) using fewer

than ⌈log(r′(n) + 1)⌉ queries to X for some r′(n) ∈ nO(1). Hence, P = NP by Theorem 7.
Now, let F ′

1, . . . , F
′
r′(m) be a sequence of Boolean formulas, not necessarily nested, such that

|F ′
i | = m. For each F ′

i , we construct a formula Fi with n clauses such that

Fi ∈ SAT ⇐⇒ ∃j ≤ i, F ′
j ∈ SAT.

We can simply let Fi be the disjunction of F ′
1, . . . , F

′
i . (If it is necessary for Fi to be a formula

in conjunctive normal form, we can resort to Karp’s reduction.) By padding, we can assume
without loss of generality that every Fi has exactly n = p(m) clauses for some polynomially
bounded p(). By defining r′(m) = r(p(m)) = r(n), it is syntactically correct to say that

RMSAT
r′(m)(F

′
1, . . . , F

′
r′(m)) = #SAT

r(n)(F1, . . . , Fr(n)).

(Recall that the domain of the function RMSAT
r′(m) is the set of sequences F ′

1, . . . , F
′
ℓ such that

ℓ ≤ r′(|F ′
i |).) Then, by hypothesis, #SAT

r(n)(F1, . . . , Fr(n)) can be computed using fewer than
⌈log(r(n) + 1)⌉ queries to X. In terms of m, the same machine can be used to compute
RMSAT

r′(m)(F
′
1, . . . , F

′
r′(m)) using fewer than ⌈log(r′(m) + 1)⌉ to X. By Theorem 7, this implies

that P = NP. 2

6

p0 p1 p2 p3

q7

p4 p5 p6 p7

n

n

n n n n

y

y y

y yyy

n

q1

q2

q4 q5 q6

q3

Figure 1: A query tree for 3 queries.

3 Hardness and Completeness

We start this section by showing that every function in PFSAT[q(n)] can be ≤P
mt -reduced to

RMSAT
2q(n)−1, when q(n) is bounded above by O(logn). Using this reduction, we show that any

function which k(·)-approximates Clique Size is ≤P
mt -hard for a corresponding bounded query

class. Then, combined with the upper bounds on the complexity of approximating Clique
Size, we translate the hardness results into completeness results for certain approximation
factors.

Theorem 10 Let q(n) ∈ O(log n) be a nondecreasing polynomial time computable function
and let r(n) = 2q(n) − 1. The function RMSAT

r(n) is complete for PFSAT[q(n)] under metric
reductions. In particular, there exist polynomial time computable functions T1 and T2 such
that for all functions f ∈ PFSAT[q(n)] and for all x,

T1(x) = 〈F1, . . . , Fr(|x|)〉
f(x) = T2(x, RMSAT

r(n)(F1, . . . , Fr(|x|))).

Proof: First, we need to show that RMSAT
r(n) can be solved by a function in PFSAT[q(n)].

Without loss of generality, we can assume that q(n) is a whole number since a PFSAT[q(n)]

machine will make at most ⌊q(n)⌋ queries. Using binary search and the SAT oracle, we can
determine the rightmost formula in a sequence F1, . . . , Fr(n) that is satisfiable. Note that the
answer will range from 0 to r(n), so there are r(n)+1 possible answers. Thus, binary search
would use log(r(n) + 1) = q(n) queries to SAT.

To show that every function in PFSAT[q(n)] can be reduced to RMSAT
r(n) , look at the query

tree with q(n) serial queries. Each node of this tree represents a query to SAT. The left
subtree of a node represents the computation of the PFSAT[q(n)] machine if the answer to the
query is “no”. The right subtree corresponds to a “yes” answer to the query. Each path in
the query tree (from the root to a leaf) represents a full computation of the machine asking
q(n) queries to some oracle. The goal of the reduction is to determine which path is taken
when the oracle is SAT. We call this path the true path.

Given any path in the query tree, we say that a query on the path is positive if the path
goes through the right subtree of the query node. Otherwise, the query is negative. For

7

example in Figure 1, on path p5, queries q1 and q6 are positive queries and q3 is a negative
query. Note that being positive or negative is relative to the path. Now, for each of the r(n)
paths p1, . . . , pr, we construct a Boolean formula. For path pi, the corresponding formula Fi

is the conjunction of all the positive queries on the path. In our example, F5 = q1 ∧ q6 and
F3 = q2 ∧ q5. We ignore the path p0 because there are no positive queries on this path.

Let pz be the true path in the query tree. We make two observations. First, Fz ∈ SAT,
since all the positive queries in path pz are satisfiable formulas. Second, for all i > z,
Fi 6∈ SAT. To see this, note that i > z implies that the path pi is to the right of the path pz.
Hence some positive query qt on path pi must be a negative query on path pz. Since pz is the
true path, qt must be unsatisfiable. Hence, Fi is unsatisfiable. On the other hand, if i < z,
then Fi may be satisfiable or unsatisfiable. For example, if p5 is the true path in Figure 1,
then F2 is satisfiable iff q2 is satisfiable, which is independent of the queries on the true path.
The result is that we have produced a sequence F1, . . . , Fr(n) such that RMSAT

r(n)(F1, . . . , Fr(n))
is exactly the index of the true path.

We may assume that all of the Fi have the same number of clauses m. Since m ≥ n
without loss of generality, using RMSAT

r(n)(F1, . . . , Fr(n)) is an abuse of notation (it should be

RMSAT
r(m)(F1, . . . , Fr(m)). However, r(·) is a non-decreasing function, so r(n) ≤ r(m). Thus,

F1, . . . , Fr(n) is a properly formatted input to the function RMSAT
r(m).

Finally, let f be a function in PFSAT[q(n)]. We define a metric reduction to reduce the
function f and an input string x to the function RMSAT

r(n) as follows. We let T1 be the
function which prints out the sequence F1, . . . , Fr(n) as described above. Now, if we are
given RMSAT

r(n)(F1, . . . , Fr(n)), then we have the index of the true path pz. Thus, we can
compute the value f(x), by simulating the computation of f(x) along the true path. This
simulation does not require any oracle queries. 2

The metric reduction in Theorem 10 is query preserving in the following sense. The
transducer T1 stretches the size of the input x; however, RMSAT

2q(n)−1(F1, . . . , F2q(n)−1) can
always be solved with q(n) serial queries to SAT. So, even when f is a function that requires

q(n) serial queries, the output of T1 can be solved with q(n) serial queries.
As in Corollary 9, since we can convert a sequence F1, . . . , Fr(n) into a nested sequence

F ′
1, . . . , F

′
r(n) where

RMSAT
r(n)(F1, . . . , Fr(n)) = #SAT

r(n)(F
′
1, . . . , F

′
r(n)),

Theorem 10 also shows that #SAT
r(n) is complete.

Corollary 11 Let q(n) ∈ O(log n) be nondecreasing and polynomial time computable.
Then, #SAT

r(n) is complete for PFSAT[q(n)] where r(n) = 2q(n) − 1.

The following corollary is a special case of Corollary 11 when r(n) is a constant k.
This corollary also shows an interesting connection between bounded query function classes
and bounded query languages classes, because the canonical ≤P

m -complete language for
the language class PSAT[k] is the language ODDSAT

2k−1 ⊕ EVENSAT
2k−1 [Bei91, CGH+88]. Here,

ODDSAT
r (and respectively EVENSAT

r) is the set of nested sequences F1, . . . , Fr such that
#SAT

r (F1, . . . , Fr) is odd (even).

Corollary 12 For all constant k, the function #SAT
2k−1 is ≤P

mt -complete for PFSAT[k].

8

We are now ready to show the completeness of approximating Clique Size. The following
upper bound is from Chang, Gasarch and Lund [CG93, CGL94]:

Lemma 13 Let Π be an NP-optimization problem and let OPTΠ(x) be the cost of the
optimum solution for an instance x. Suppose that the best polynomial time approximation
algorithm can approximate OPTΠ within a factor of A(n). Then, for k(n) ≤ A(n), there
exists a polynomial time algorithm which k(·)-approximates OPTΠ using ⌈log⌈logk(n) A(n)⌉⌉
queries to SAT.

Proof: First, assume that Π is a maximization problem. Given an instance x of Π, we
first use the polynomial time algorithm to approximate OPTΠ(x) within a factor of A(n),
where n = |x|. This algorithm will produce a number z and we know that z ≤ OPTΠ(x) <
A(n) · z. Now, we divide the number line between z and A(n) · z into intervals of the
form [zk(n)i, zk(n)i+1). There are at most logk(n) A(n) such intervals. Since Π is an NP-
optimization problem, a query to SAT can determine whether OPTΠ(x) ≥ y for some number
y. Thus, using binary search ⌈log⌈logk(n) A(n)⌉⌉ queries is sufficient to find an interval
that contains OPTΠ(x). We can then report the lower endpoint of the interval as a k(n)-
approximation of OPTΠ(x). Minimization problems are handled analogously. 2

For Clique Size, we know that the ω(G) ranges from 2 to n for a graph of size n (by first
checking if the graph has any edges). Thus, we have the following corollary.

Corollary 14 Let k(n) be a polynomial time computable function such that 1 < k(n) < n.
Then there exists a function in PFSAT[⌈log⌈logk(n) n⌉⌉] which k(·)-approximates Clique Size.

The upper bound on the complexity of approximating Clique Size is achieved by binary
search. The difficult part is to show that every function computable using a constant fewer
queries ≤P

mt -reduces to k(·)-approximating Clique Size. To do so, we need to review some
consequences of the existence of probabilistically checkable proofs for NP.

Lemma 15 [ALM+92] There exist constants s, b and d, 1 < s < b < d, such that given a
Boolean formula F with t clauses, we can construct in polynomial time a graph G with td

vertices, where
F ∈ SAT =⇒ ω(G) = tb

F 6∈ SAT =⇒ ω(G) = ts.

The lemma as cited only shows that ω(G) < ts in the case that F 6∈ SAT. A simple
padding argument will give equality in this case. We make this modification because it will
greatly simplify our calculations.

Lemma 15 can be rephrased as a statement on the approximability of ω(G). Let ǫ =
(b − s)/d. Then the ratio of the size of the big clique, tb, to the size of the small clique, ts,
is (td)ǫ. Since |G| = td, Lemma 15 shows that an nǫ-approximation of ω(G) will determine
whether the original formula F is satisfiable. Throughout the rest of this paper, we will fix
the values of ǫ, b, s and d to be these constants.

We would like to state our theorem about the hardness of approximating ω(G) in the
most general terms possible. Since the number of queries required to solve the approximation

9

problem increases as the approximation factor becomes finer (smaller), the statement of our
results depend on the approximation factor. In general, this factor does not have to be a
constant or even an increasing function. Our theorem is restricted to the classes PFSAT[q(n)]

where q(n) is non-decreasing.

Theorem 16 (Main Theorem) Let c = 1 + log(1 + 1/ǫ) and let q(n) ∈ O(log n) be a
non-decreasing polynomial time computable function. Define the function k(n) such that

q(n) = log logk(n) n − c (i.e., k(n) = n2−q(n)−c

). If h is a function which k(·)-approximates

Clique Size and f ∈ PFSAT[q(n)], then f ≤P
mt h.

The proof of our main theorem modifies the construction of Chang, Gasarch and Lund
[CGL94]. However, in this proof, we are able to remove several restrictions on the approx-
imation factor k(n). In particular, we can handle cases where k(n) is a fractional value
between 1 and 2. Also, the calculations are simplified in this proof. Our main construction
is encapsulated in the following lemma which will also be used to prove Theorem 18. This
lemma constructs a graph H with m vertices such that a k(m)-approximation of ω(G) will
tell us the number of satisfiable formulas in a nested sequence F1, . . . , Fr(t). In what follows,
the constants b, s, d and ǫ = (b − s)/d are from Lemma 15.

Lemma 17 (Construction Lemma) Let k(·) be a polynomial time computable function
such that k(n) ≥ 1 +

√
2/nδ for δ = ǫ/(4 + 4ǫ). Let F1, . . . , Fr(t) be a nested sequence with

|Fi| = t, m = tb−s+d and

r(t) ≤
⌊

logk(m) t(b−s)/2
⌋

.

Then, in polynomial time we can construct a graph H with m vertices and whole numbers
y0 < · · · < yr(t) such that k(m)yi < yi+1 for 0 ≤ i ≤ r(t) − 1, and

ω(H) = yz ⇐⇒ #SAT
r(t) (F1, . . . , Fr(t)) = z.

Proof: We will first construct a graph H ′ with fewer than m vertices, then the graph H
is produced from H ′ by simply adding m − |H ′| unconnected vertices. To construct H ′, we
take each Fi and produce a graph Gi with td vertices according to Lemma 15. We want to
define two operations on graphs: addition ⊕ and scalar multiplication ⊗. These operations
commute with ω():

ω(G1 ⊕ G2) = ω(G1) + ω(G2)

ω(a ⊗ G) = a · ω(G).

The vertices of the graph G′ = G1 ⊕ G2 is the disjoint union of the vertices of G1 and G2.
The edges in G′ are all the edges in G1 and G2 plus the edges (u, v) for each u ∈ G1 and
v ∈ G2. Then, scalar multiplication for a whole number a is simply repeated addition.

To simplify our notation, let g = k(m) and r = r(t). Note that g does not have to be a
whole number. We define a sequence of whole numbers a1, . . . , ar inductively:

ai =

{

1 if i = 1

⌈gai−1⌉ for 2 ≤ i ≤ r

10

We define the graph H ′ to be (a1⊗G1)⊕(a2⊗G2)⊕· · ·⊕(ar⊗Gr). Clearly, H ′ has
∑r

i=1 ait
d

vertices. To estimate the value of
∑r

i=1 ai, note that for i ≥ 2, we have ai < g · ai−1 + 1, so

ai ≤ gi−1 + gi−2 + · · ·+ 1 =
gi − 1

g − 1
. (1)

Thus, we have the estimate

r
∑

i=1

ai ≤
r
∑

i=1

gi − 1

g − 1
<

g

g − 1

r−1
∑

i=0

gi =
g(gr − 1)

(g − 1)2
. (2)

By the restriction on r, we know that

g(gr − 1)

(g − 1)2
<

g

(g − 1)2
· t(b−s)/2.

If g ≥ 2, we know that g/(g − 1)2 ≤ 2. If g ≤ 2, then from the lower bound on k(m) and
the fact that tb−s = mǫ/(1+ǫ) we can deduce that

g

(g − 1)2
≤ t(b−s)/2.

In either case, H ′ has at most tdtb−s vertices. Since m = tb−s+d, we also have |H ′| < m. Then,
we can construct H by simply adding dummy vertices to H ′. The result is that |H| = m
and ω(H) =

∑r
i=1 aiω(Gi). Also, when z = #SAT

r (F1, . . . , Fr), by Lemma 15 we have

ω(H) =
z
∑

j=1

ajt
b +

r
∑

j=z+1

ajt
s.

So, we can define the numbers y0, . . . , yr as:

yi =
i
∑

j=1

ajt
b +

r
∑

j=i+1

ajt
s.

It is easy to see that ω(H) ∈ {y0, . . . , yr} and that z = #SAT
r (F1, . . . , Fr) =⇒ ω(H) = yz. We

still need to show that yi+1 > gyi. From the definition of yi and the fact that gai ≤ ai+1, it
follows that

yi+1 − gyi ≥ tb − gart
s.

By Equation 1, it suffices to show that

g(gr − 1)

g − 1
< tb−s. (3)

From the restriction on r, we know that

g(gr − 1)

g − 1
<

g

g − 1
t(b−s)/2.

11

As before, when g ≥ 2, we have g/(g − 1) ≤ 2. When g ≤ 2, the lower bound on k(m)
provides us with the bound:

g

g − 1
≤

√
2 · t(b−s)/4.

In either case, we have satisfied the inequality in Equation 3 for large enough t. Since,
g = k(m), we can finally conclude that k(m) · yi < yi+1. Thus, y0 < y1 < · · · < yr and

ω(H) = yz ⇐⇒ #SAT
r (F1, . . . , Fr) = z.

2

Proof of Main Theorem: Let k(n) be as defined in the hypothesis. First, we will assume
that k(n) ≥ 1 +

√
2/nδ for some δ < ǫ/(4 + 4ǫ). Let f be any function in PFSAT[q(n)].

Since q(n) ∈ O(log n), we can use Theorem 10 to reduce f to RMSAT
r(n) via T1 and T2 where

r(n) = 2⌊q(n)⌋ − 1. Thus, given an input x to the function f , with |x| = n, we can produce
F ′

1, . . . , F
′
r(n) such that

f(x) = T2(x, RMSAT
r(n)(F

′
1, . . . , F

′
r(n))).

In addition, we transform F ′
1, . . . , F

′
r(n) into a nested sequence F1, . . . , Fr(n) as described in

Corollary 9. Without loss of generality, assume that every Fi has the same length t which
is greater than n. The function k(n) was defined so that log logk(n) n − c = q(n). Using the
definition of r(n), we can conclude that

log(r(n) + 1) = ⌊q(n)⌋ ≤ q(n) = log logk(n) n − c.

Thus,
r(n) + 1 < 2−c · logk(n) n.

Now, q(n) is nondecreasing and c is a constant, so the function logk(n) n must also be non-

decreasing. Let m = tb−s+d. Then, n < t < m, so

r(n) + 1 < 2−c · logk(n) n ≤ 2−c · logk(m) m.

From the definition of c, we obtain:

2−c =
ǫ

2(1 + ǫ)
=

b − s

2(b − s + d)
.

Thus, we can rewrite 2−c logk(m) m as

2−c logk(m) m =
b − s

2(b − s + d)
logk(m) tb−s+d = logk(m) t(b−s)/2.

This provides the desired restriction on r, since

r(n) < logk(m) t(b−s)/2 − 1 <
⌊

logk(m) t(b−s)/2
⌋

which satisfies the hypothesis of the Construction Lemma. Thus, we obtain a graph H and
numbers y1, . . . , yr(n) such that

ω(H) = yz ⇐⇒ #SAT
r(n)(F1, . . . , Fr(n)) = z.

12

Since F1, . . . , Fr(n) is nested, we also know that RMSAT
r(n)(F

′
1, . . . , F

′
r(n)) = #SAT

r(n)(F1, . . . , Fr(n)).
The Construction Lemma also guarantees that the yi’s are separated by a factor of k(m),
where m = |H|. So, if a function h k(·)-approximates ω(·), then given y = h(H), we can
find the unique z such that yz ≤ y < k(m) · yz. Then, f(x) = T2(x, z) and we have reduced
f to h by a metric reduction.

Now, if k(n) < 1+
√

2/nδ, then we cannot use the Construction Lemma directly. Instead,
let k′(n) = 1 +

√
2/nδ and q′(n) = log logk(n) n − c. Then, we can reduce any function f ′

in PFSAT[q′(n)] to k′(·)-approximating ω(·). Since k(n) < k′(n), f ′ also reduces to k(·)-
approximating ω(·). Now, q′(n) is Θ(log n), so every function in PFSAT[O(log n)] reduces to
some f ′ ∈ PFSAT[q′(n)] by a simple padding argument. Thus, every function in PFSAT[q(n)]

reduces to k(·)-approximating ω(·).
To see that q′(n) is indeed Θ(log n), note that the Taylor series for ln(1+ 1/N) allows us

to approximate ln(1 + 1/N) as 1/N for large values of N . Thus,

q′(n) = log lnn − log ln(1 + 1/nδ) − c ≈ log ln n + δ log n − c.

For large n, the lower order terms of the Taylor series would not contribute significantly, so
the δ log n term dominates the value of q′(n). So, q′(n) is indeed Θ(log n). 2

Remark: If we are willing to settle for a randomized reduction with exponentially small er-
ror, then combining the techniques of Bellare, Goldwasser, Lund and Russell [BGLR93] with
those of Zuckerman [Zuc93] as described by Chang, Gasarch and Lund [CGL94, Section 6],
we have ǫ = 1/31 and c = 1 + log(1 + 31) = 6.

Using the same Construction Lemma, we can obtain a relative lower bound on the number
of queries needed to compute a k(n)-approximation of ω(G). The improvement over the
results in Chang, Gasarch and Lund [CGL94] is twofold. First, we no longer need to make
any “niceness” assumptions on k(n). Also, the proof works for k(n) < 2.

Theorem 18 Let k(n) be polynomial time computable such that 1 +
√

2/nδ ≤ k(n) ≤ n,
for some δ < ǫ/(4 + 4ǫ). If there exists a polynomial time computable function which k(·)-
approximates ω(G) using log logk(n) n − c queries to any oracle X for all graphs G with n
vertices and c = 1 + log(1 + 1/ǫ), then P = NP.

Proof: Suppose there exists a function h which k(n)-approximates ω(G) using no more
than log logk(n) n− c queries to X. We will show that for some r(t) ∈ nO(1), #SAT

r(t) for nested
sequences can be computed using fewer than ⌈log(r(t) + 1)⌉ queries to X. This in turn
implies that P = NP by Corollary 9.

As required by the Construction Lemma, let m = tb−s+d and

r(t) =
⌊

logk(m) t(b−s)/2
⌋

.

Let F1, . . . , Fr(t) be a nested sequence, where |Fi| = t. We build the graph H with |H| = m
according to the Construction Lemma. We then compute a number y which is a k(m)-
approximation of ω(H) using the function h and log logk(m) m − c queries to X. As before,

13

the unique z such that yz ≤ y < k(m) · yz allows us to compute #SAT
r(t) (F1, . . . , Fr(t)). As in

the proof of Theorem 16,
2−c logk(m) m = logk(m) t(b−s)/2.

So, log logk(m) m − c < log(r(t) + 1) ≤ ⌈log(r(t) + 1)⌉. Since k(m) ≥ 1 +
√

2/nδ, the
function r(t) is polynomially bounded. Thus, the number of queries we used to compute
#SAT

r(t) (F1, . . . , Fr(t)) violates the relative lower bound of Corollary 9 and P = NP. 2

Remark: Slightly better bounds can be achieved for the Main Theorem and Theorem 18 in
certain cases. For example, when k(n) ≥ 1+1/no(1) (e.g., k(n) = 1+1/ logn and k(n) = 2),
these theorems hold for all c > log(1 + 1/ǫ). This is accomplished by restricting r(t) in the
Construction Lemma by

r(t) ≤
⌊

logk(m)

tb−s(k(m) − 1)2

k(m)2

⌋

and showing that for large enough t,

2−c · logk(m) m < logk(m)

tb−s(k(m) − 1)2

k(m)2
.

The calculations are somewhat involved and omitted in this paper.

For several approximation factors, we can restate the hardness results as completeness
results. Note that the bounded query classes in the following corollary are closed under
metric reductions and are different unless P = NP.

Corollary 19 For all constants k ≥ 1 and all constants a with 0 < a ≤ 1:

• (1 + n−a)-approximating Clique Size is ≤P
mt -complete for PFSAT[O(log n)].3

• (1 + 1/ logk n)-approximating Clique Size is ≤P
mt -complete for PFSAT[(k+1) log log n+O(1)].

• k-approximating Clique Size is ≤P
mt -complete for PFSAT[log log n+O(1)].

• (logk n)-approximating Clique Size is ≤P
mt -complete for PFSAT[log log n−log log log n+O(1)].

Proof: Consider the case of a constant approximation factor k. Corollary 14 shows that we
can k-approximate Clique Size using log logk n + O(1) queries to SAT.

Let h be a function which k-approximates Clique Size and take any f in PFSAT[log log n+q]

for some constant q. We want to show that f ≤P
mt h, but Theorem 16 only shows that every

function in PFSAT[log logk n−c] ≤P
mt -reduces to h. To overcome the deficit of c + q queries, we

use a simple padding trick and define a new function f ′ to be:

f ′(x#1|x|
c+q

) = f(x).

Now, f ′ is a function in PFSAT[log log n−c], so f ′ ≤P
mt h. Since f ≤P

mt f ′, it follows that f ≤P
mt h.

Thus, approximating Clique Size within a constant factor is complete under metric reductions
for PFSAT[log log n+O(1)].

3This statement can also be derived directly from the self-improvability of the Clique problem.

14

The other cases are proven using a similar padding argument and the Taylor series ap-
proximation ln(1 + 1/N) ≈ 1/N for large N . 2

The results in this section show that bounded queries and approximating Clique Size are
inseparable. That is, you can obtain good approximations of Clique Size if and only if you
can answer oracle queries to SAT. Moreover, if you want a closer approximation of Clique
Size, then you need more queries to the oracle. For example, we have shown that finding
log n-approximations of Clique Size is equivalent to answering log log n− log log log n+O(1)
queries to SAT and that finding constant factor approximations of Clique Size is equivalent
to answering log log n + O(1) queries to SAT.

Completeness, as opposed to lower bounds, is important here because completeness im-
plies that any complexity class that is closed under metric reductions and contains these
two problems must also contain the two bounded query classes. Thus, any measure of
complexity which can distinguish between constant factor approximations and log n factor
approximations must be fine enough to distinguish the between the number of oracle queries.
We view this as evidence that using bounded queries is a natural complexity measure for
approximation problems.

These results can also be extended to some other NP-approximation problems, most
notably to Chromatic Number. The hardness results follow from the work of Lund and Yan-
nakakis [LY94] which provides a reduction from Clique to Coloring. Thus, for example, we
can claim that 2-approximating Chromatic Number is ≤P

mt -complete for PFSAT[log log n+O(1)]

under metric reductions. In the next section, we show that the hardness of these approx-
imation problems provides another benefit. We can now reduce many NP-approximation
problems to approximating Clique Size in an approximation preserving manner.

4 Reductions to Clique Size

The results of the preceding section showed that every function f ∈ PFSAT[O(log n)] ≤P
mt -

reduces to any function h that k(n)-approximates Clique Size, for some approximation factor
k(n). The more queries it takes to compute f , the smaller the approximation factor k(n).
However, when f itself is also solving an NP-approximation problem, this reduction takes
on some approximation preserving characteristics. We demonstrate these characteristics by
way of an example.

Suppose that we are given a graph G with n vertices and we want to 2-approximate χ(G),
the chromatic number of G. This approximation can be found with ⌈log⌈log n⌉⌉ queries to
SAT using binary search. By Corollary 19, 2-approximating Chromatic Number ≤P

mt -reduces
to 2-approximating Clique Size, but this reduction has some additional properties.

Let us examine this reduction more closely. First, the binary search routine which ap-
proximates χ(G) does so by asking questions of the form:

Is χ(G) ≤ n/2i ?

There are ⌈log n)⌉ questions of this form. Turn each question into a Boolean formula, Fi,
so that Fi ∈ SAT if and only if χ(G) ≤ n/2i. Since this results in a nested sequence, we
can reduce it directly to 2-approximating Clique Size. To do this, we build a graph H as

15

described in Theorem 16 and compute y0, . . . , yr such that 2yi < yi+1 and ω(H) = yi ⇐⇒
#SAT

r (F1, . . . , Fr) = i. Now, suppose we are given a number x and are told that it is a
2-approximation of ω(H). Then, let yz be the unique yi such that x ≤ yz < 2x and we have
determined that ω(H) = yz. So, n/2z is a 2-approximation of χ(G). On the other hand, if
we are told that x is a 4-approximation of ω(H), then we cannot determine ω(H) exactly.
Instead, we could have the situation that x ≤ yz < yz+1 < 4x. Again, we use n/2z as an
approximation of χ(G), but this time it is a 4-approximation. In general we do not have to
be given a guarantee that x is within a certain factor of ω(H). We just find the unique yz

such that x ≤ yz < 2x and use n/2z as an approximation of χ(G). If x is a k-approximation
of ω(H), then n/2z is an approximation of χ(G) within 2⌈log k⌉ < 2k. Thus, we have the
following theorem:

Theorem 20 There exist polynomial time computable functions T1 and T2 such that for
all graphs G and all numbers x, if x is a k-approximation of ω(T1(G)), then T2(G, x) is a
2k-approximation of χ(G).

Of course, we can replace Chromatic Number with any NP-approximation problem where
the solution is between 1 and na. Thus, approximating Clique Size is complete in the
sense that all these NP-approximation problems reduce to approximating Clique Size in an
approximation preserving manner.

5 The Complexity of MAX3SAT

In this section, we examine the complexity of the NP-approximation problem MAX3SAT.
As we have mentioned before, the MAX3SAT problem does have polynomial time algorithms
which achieve a constant factor approximation. For example, Yannakakis [Yan92] presents
a 4/3 factor approximation. A consequence of this approximation algorithm is that the
number of queries needed to k(n)-approximate MaxSat is lower than the number of queries
needed to k(n)-approximate Clique Size. Using Lemma 13, we have:

Corollary 21 Let k(n) be a polynomial time computable function such that 1 < k(n) < n.
Then there exists a function in PFSAT[⌈log logk(n)(4/3)⌉] which k(n)-approximates MaxSat.

To prove the lower bounds, we need a result from probabilistically checkable proofs
[ALM+92] which states that there exists a constant k such that no polynomial time algorithm
can k-approximate MaxSat unless P = NP. As pointed out by Khanna et al., [KMSV94]
this result can be interpreted as follows:

Lemma 22 [KMSV94] There exist constants δ, c1, c2 and a polynomial time computable
function f such that 0 < δ < 1, 1 ≤ c1, 1 ≤ c2 and given a 3CNF formula F with t clauses,
f produces a 3CNF formula F ′ with ℓ(t) = c1t

c2 clauses, where

F ∈ SAT =⇒ F ′ ∈ SAT =⇒ MaxSat(F ′) = ℓ(t)

F 6∈ SAT =⇒ MaxSat(F ′) = ℓ(t)/(1 + δ).

16

Proof Sketch: This proof was originally reported by Khanna, et al. [KMSV94], but we
include a sketch of this proof for the sake of completeness. We start with the verifier for a
probabilistically checkable proof for SAT. The verifier V uses c log n random bits and looks
at O(1) bits of the proof. If the given formula F is satisfiable then there exists a proof that
causes V to accept with probability 1. If the formula is not satisfiable, then we modify the
standard verifier to accept some proof with probability exactly 1/2. Note that in this case,
no proof can cause the verifier to accept with probability greater than 1/2.

Now, the computation of the verifier after each random string z has been chosen depends
only on the O(1) bits of the proof. This computation can be described by a formula Fz using
Karp’s reduction. Since the size of the input to this part of the verifier’s computation is
constant, |Fz| is also bounded by a constant — even as the length of the original formula F
grows.

Let c1 be the number of clauses in Fz. A closer examination of Karp’s reduction will
show that if the verifier V using the random string z rejected, then MaxSat(Fz) = c1 − 1.
(Essentially, the only unsatisfiable clause is the one that forces the final state to be an
accepting state. This condition holds even when Karp’s reduction is modified to give 3CNF
formulas.) Now, let F ′ be the conjunction of every Fz for each random string z. Since there
are tc2 random strings, F ′ has ℓ(t) = c1t

c2 clauses. If F is satisfiable, then F ′ is satisfiable
and MaxSat(F ′) = ℓ(t). On the other hand, if F is not satisfiable, then we can satisfy exactly
half of the Fz’s. Thus,

MaxSat(F ′) =
c1t

c2

2
+

(c1 − 1)tc2

2
= ℓ(t) − ℓ(t)

2c1

=
ℓ(t)

1 + δ

by choosing δ = 1/(2c1 − 1). 2

Using this lemma, Khanna et al. [KMSV94] showed that every NP-optimization problem
which has a constant factor polynomial time approximation algorithm can be reduced to
MAX3SAT by what they call an L-reduction with scaling. Our results show a quantitative
relationship between the complexity of approximating MaxSat and bounded queries. Our
results also allow a direct comparison between the complexity of approximating MaxSat and
approximating Clique Size.

Theorem 23 Let q(n) ∈ O(log n) be a non-decreasing polynomial time computable func-
tion. Define the function k(n) such that q(n) = log logk(n)(1 + δ′) for some constant δ′,

0 < δ′ < δ. If h is a function which k(·)-approximates MaxSat and f ∈ PFSAT[q(n)], then
f ≤P

mt h.

As in Theorem 16, the proof of Theorem 23 is straightforward after we prove the following
Construction Lemma.

Lemma 24 (Construction Lemma for MAX3SAT)
Let k(n) be a polynomial time computable function such that 1 + n−1/3 ≤ k(n) ≤ 1 + δ′,
for some constant δ′ with 0 < δ′ < δ. Let F1, . . . , Fr(t) be a nested sequence with |Fi| = t,
m = ℓ(t)2 and

r(t) ≤
⌊

logk(m)(1 + δ′)
⌋

.

17

Then, in polynomial time we can construct a 3CNF formula H with m clauses and whole
numbers y0 < · · · < yr(t) such that k(m)yi < yi+1 for 0 ≤ i ≤ r(t) − 1, and

MaxSat(H) = yz ⇐⇒ #SAT
r(t) (F1, . . . , Fr(t)) = z.

Proof: Let F0 be a known unsatisfiable formula with t clauses. Let F ′
0, F

′
1, . . . , F

′
r(t) be

formulas with ℓ(t) clauses constructed by applying Lemma 22 to F0, F1, . . . , Fr(t). We will
use F ′

0 for padding. We construct a formula H which is the conjunction of ℓ(t) formulas
taken from {F ′

0, . . . , F
′
r(t)}. So, we know that |H| = ℓ(t)2 = m.

To simplify our notation, let ℓ = ℓ(t), r = r(t) and g = k(m). We now define a sequence
of whole numbers a0, . . . , ar as follows:

ai =

{

0 if i = 0

⌈gai−1 + ℓ(g − 1)/δ⌉ + 1 for 1 ≤ i ≤ r

The formula H is the conjunction of ai − ai−1 copies of Fi, for 1 ≤ i ≤ r, and ℓ − ar copies
of F ′

0. We will show below that ℓ ≥ ar. For now, let α = δ/(1 + δ) and β = 1/(1 + δ). That
is, δ = α/β and for each Fi,

Fi ∈ SAT =⇒ MaxSat(F) = αℓ + βℓ

Fi 6∈ SAT =⇒ MaxSat(F) = βℓ.

When #SAT
r (F1, . . . , Fr) = 0, MaxSat(H) = βℓ2 since H is composed of ℓ formulas from

{F ′
0, . . . , F

′
r} each with ℓ clauses. In general, if #SAT

r (F1, . . . , Fr) = z, then

MaxSat(H) = αazℓ + βℓ2.

Thus, we define yi = αazℓ + βℓ2. The fact that k(m)yi ≤ yi+1 follows easily from the
definition of ai because yi+1 − gyi ≥ 1.

Proving that ar ≤ ℓ requires a bit more work. We use the relationship

ai ≤ gai−1 +
ℓ(g − 1)

δ
+ 2

to show that

ai ≤
(

ℓ(g − 1)

δ
+ 2

)

·
i−1
∑

j=1

gj =

(

ℓ(g − 1)

δ
+ 2

)

·
(

gi − 1

g − 1

)

.

Thus, ar ≤ ℓ when

gr ≤ 1 + δ − 2δ2

ℓ(g − 1) + 2δ
. (4)

Since k(m) ≥ 1 + n−1/3 and ℓ =
√

m, it follows that ℓ(g − 1) ≥ m1/6. Therefore, the last
term in the right hand side of Equation 4 approaches zero as t gets larger. Thus, Equation 4
is satisfied by the requirement that for some δ′ < δ,

r(t) ≤
⌊

logk(m)(1 + δ′)
⌋

.

2

18

Corollary 25 For all constants k ≥ 1 and all constants a with 0 < a ≤ 1:

• (1 + n−a)-approximating MaxSat is ≤P
mt -complete for PFSAT[O(log n)].

• (1 + 1/ logk n)-approximating MaxSat is ≤P
mt -complete for PFSAT[k log log n+O(1)].

As in Theorem 18, we can use the Construction Lemma for MAX3SAT to derive a lower
bound on the number of queries needed to approximate MaxSat. Note that the upper bound
of log logk(n)(4/3) queries and the lower bound of log logk(n)(1+ δ′) queries given below differ
only by a constant: log log1+δ′(4/3). This difference represents the fact that for k between
(1+δ) and 4/3, we do not know if there exist polynomial time algorithms that k-approximate
MaxSat. If such algorithms exist then we can reduce the upper bound.

Theorem 26 Let k(n) be polynomial time computable such that 1 + n−1/3 ≤ k(n) ≤ 1 + δ′

for some constant δ′ with 0 < δ′ < δ. If there exists a polynomial time computable function
which k(·)-approximates MaxSat using log logk(n)(1 + δ′) or fewer queries to any oracle X,
then P = NP.

Proof: Analogous to the proof of Theorem 18. 2

The results in this section can be extended to cover any MAXNP-complete and MAXSNP-
complete problem, since every MAXNP problem has a constant factor polynomial time
approximation algorithm and MAX3SAT reduces to these problems by L-reductions. In the
next section, we discuss the relationship between bounded queries and self-improvability.

6 Queries and Self-improvement

In this section, we explore some connections between the structure of bounded query classes
and the self-improvability of NP-approximation problems. An NP-approximation problem is
self-improvable if for all constants k1 and k2, with k1 < k2, k1-approximating the problem can
be reduced to any function that k2-approximates the problem. Intuitively, when a function
is self-improvable, we can reduce a finer approximation problem to a coarser approximation
problem for constant factor approximations.

The Clique Size problem is known to be self-improvable [GJ79]. For example, we can
reduce 2-approximating Clique Size to 4-approximating Clique Size as follows. Given a graph
G with n vertices, construct a graph G′ with n2 vertices such that ω(G′) = ω(G)2. Now if a
number x 4-approximates ω(G′),

√
x would 2-approximate ω(G).

Our first observation is that the self-improving reduction above does not really reduce
the number of queries needed to 2-approximate w(G). This is because it takes roughly
log log4(n

2) queries to SAT to 4-approximate ω(G′). However, log log4(n
2) = log log n and

using log log n queries we can 2-approximate ω(G) directly. So, self-improving reductions are
not query saving reductions.

Secondly, we point out that the self-improvement property of Clique Size can be deduced
from the hardness of Clique Size shown in Theorem 16. Suppose that k1 and k2 are two
constant approximation factors where k1 < k2. Let log log n + q1 be the number of queries

19

needed to k1-approximate Clique Size using binary search. Also, let q2 be the constant from
Theorem 16 such that every function in PFSAT[log log n−q2] ≤P

mt -reduces to any function that k2-
approximates Clique Size. By a simple padding argument, every function in PFSAT[log log n+q1]

≤P
mt -reduces to a function in PFSAT[log log n−q2]. Thus, we can reduce k1-approximating Clique

Size to any function which k2-approximates Clique Size.
In contrast, if MaxSat were self-improvable, then we can use Yannakakis’s algorithm to

k-approximate MaxSat for every constant k. By the lower bounds in Section 5, this would
imply that P = NP. Again, the fact that MaxSat is not self-improvable can be deduced from
its query complexity. The padding argument for the self-improvability of Clique Size works
because stretching the input size increases the number of queries available to a PFSAT[log log n]

machine. For example, squaring the input size makes 1 more query available. On the other
hand, we only use a constant number of queries to k-approximate MaxSat. Since the number
of queries does not depend on the input size, padding the input will not increase the number
of queries available. This is also the reason why we only have a hardness result, and not a
completeness result, on the query complexity of n1/a-approximating Clique Size.

Thus, we can often deduce the self-improvability of an NP-approximation problem after
we have discovered its query complexity. For example, we can now show that Chromatic
Number and similar problems have the self-improvement property.4

Lemma 27 The NP-approximation problems Chromatic Number, Clique Partition, Clique
Cover, and Biclique Cover have the self-improvement property. That is, given constants k1

and k2, with k1 < k2, and a function h that k2-approximates the given problem, there exists
a function f which k1-approximates the problem such that f ≤P

mt h.

Proof: To prove this lemma, we use the results of Lund and Yannakakis [LY94] which showed
an approximation preserving reduction from Clique Size to each of the given problems. Thus,
for constant k, k-approximating each of these problems is complete for PFSAT[log log n+O(1)].
Hence, by the preceding discussion, these problems are self-improvable. 2

7 Clique Size versus MaxSat

In this section, we compare the complexity of approximating Clique Size and approximating
MaxSat using bounded queries as a quantitative complexity measure. We use these com-
parisons to argue that the approximability of MaxSat is not an indication that 3SAT is
“easier” than Clique. Instead, it is an indication that MaxSat has a lot of “fluff” that is
approximable. We argue this case by showing that if we add a linear amount of padding to
Clique Size, then the resulting problem has a similar complexity to MaxSat. We also show
that finding good approximations to the “non-approximable” part of MaxSat requires just
as many queries as approximating Clique Size.

In our first comparison, we compare the query complexities of approximating Clique
Size and MaxSat directly. By Corollaries 19 and 25, both 2-approximating Clique Size and

4These self-improvability results can be derived from previous work [PR90, LY94, KMSV94]. Our main
point here is the relationship between bounded query classes and structural properties of NP-approximation
problems.

20

(1 + 1/ log n)-approximating MaxSat are complete for PFSAT[log log n+O(1)]. Thus, these two
problems are inter-reducible. For finer approximations, we note that for both problems,
obtaining a (1+n−a)-approximation for constant a, 0 < a < 1 is complete for PFSAT[O(log n)].
Thus, in either case, approximating within a factor of 1 + n−a is ≤P

mt -equivalent to find-
ing the optimal solution. For coarser approximations, note that approximating MaxSat
within a constant factor requires only a constant number of queries. On the other hand,
k-approximating Clique Size is complete for log log n +O(1) queries. Thus, for constant fac-
tor approximations the complexity of approximating Clique Size and approximating MaxSat
diverges. This can be explained by examining the upper bound given in Lemma 13. The
number of queries used to find an k(n)-approximation of OPTΠ is the following (assuming
there is a polynomial time algorithm which A(n)-approximates OPTΠ):

log log A(n) − log log k(n).

When k(n) ≥ 2, the log log A(n) term is significant. However, when k(n) diminishes to 1
(e.g., k(n) = 1 + 1/ log n), the second term tends to dominate. For example, if we write
k(n) as 1 + 1/f(n) for some unbounded f(n), we can use the Taylor series approximation
ln(1 + 1/N) ≈ 1/N for large N and rewrite the number of queries to be approximately:

log ln A(n) + log f(n).

For large f(n), the log f(n) term dominates the sum. This relationship explains why com-
puting the ω(G) and MaxSat(F) exactly have the same complexity, but finding constant
factor approximations of these two problems have different complexities.

Another method of comparing the complexities of MaxSat and Clique Size is to alter
the Clique Size problem so we can match the upper and lower bounds of MaxSat. To do
this, we define an admittedly contrived problem: Padded Clique Size. An instance of this
problem is a padded graph — one that has a large obvious clique. To produce a padded
graph from a general graph G with n vertices we can attach a 3n-clique to G. The resulting
graph G′ will have 4n vertices and ω(G′) = ω(G) + 3n. So, the number 3n is always a
4/3-approximation of ω(G′). Then, by altering Lemma 15, we can find constants ǫ1, ǫ2, with
3/4 < ǫ1 < ǫ2 < 1, and a polynomial time computable function f such that given any 3CNF
formula F , f produces a padded graph G′ with n vertices with the property that:5

F ∈ SAT =⇒ ω(G′) = ǫ2n and

F 6∈ SAT =⇒ ω(G′) = ǫ1n.

Thus, no polynomial time algorithm can (ǫ2/ǫ1)-approximate Padded Clique Size, unless
P = NP. In fact, every function in PFSAT[log a] ≤P

mt -reduces to a function h that (ǫ2/ǫ1)
1/a-

approximates Padded Clique Size. Therefore, the complexities of approximating MaxSat
and Padded Clique Size are very similar.

5Here we do not want to use the graphs generated by the function in Lemma 15. These graphs have
td vertices and cliques of size tb or ts, so the ratio tb/td diminishes to zero. Instead, we will take the
graph constructed from the probabilistically checkable proof for SAT which uses O(log n) random bits and a
constant number of query bits. When F ∈ SAT, the graph constructed from these probabilistically checkable
proofs have cliques with a constant fraction of the vertices.

21

The preceding discussion shows that the traditional approach of using approximation
factors to measure the quality of an approximation is highly sensitive to padding. We wonder
if at its core, the complexity of approximating MaxSat is equivalent to the complexity of
approximating Clique Size. For example, let F ′ be a formula produced by the reduction in
Lemma 22. This formula has m clauses, but we know a priori that at least m/(1+ δ) clauses
are simultaneously satisfiable. Thus, if we want a function to guarantee good approximations,
it would make sense to ask for the approximation x to guarantee that

MaxSat(F ′) − m

1 + δ
< k(m) ·

(

x − m

1 + δ

)

,

instead of simply asking for MaxSat(F ′) < k(m)x. That is, we would consider only the
number of clauses in excess of the number we already know to be satisfiable. The complex-
ity of finding an approximation x with such a guarantee would require roughly log logk(m) m
queries — essentially the same as approximating Clique Size. Note that the value of δ in
Lemma 22 is constructible and can be deduced from the size of the verifier in the probabilis-
tically checkable proofs for SAT. The difficulty of generalizing this approach is that it would
be difficult, if not impossible, to find the value of “δ” for general 3CNF formulas.6 So, this
measure of the quality of an approximation of MaxSat(F) would only make sense for the
formulas produced by the reduction in Lemma 22. Nevertheless, this example suggests that
approximating the “hard part” of MaxSat(F) is just as difficult as approximating Clique
Size. In the next section, we show that if we treat the approximation version of 3SAT as
a minimization problem instead of a maximization problem, then approximating 3SAT has
the same complexity as approximating Clique Size.

8 Minimizing Unsatisfiability

The optimization version of the satisfiability problem is usually defined as a maximization
problem: if we cannot find an assignment that satisfies all of the clauses, then we should at
least try to find one that satisfies the largest number of clauses. This optimization problem
has an equivalent minimization analog: finding an assignment that minimizes the number
of unsatisfied clauses. We call this problem MIN3UNSAT. Note that the solution space
of MAX3SAT and MIN3UNSAT are identical—they are truth assignments to the variables
of the given Boolean formula. In fact, a better solution to the MIN3UNSAT problem is a
better solution to the MAX3SAT problem. The only difference between the two problems is
the cost which we associate with each feasible solution. For example, take a formula F with
120 clauses, let solution A be an assignment which satisfies 100 clauses and solution B be
an assignment which satisfies 110 clauses. It would be typical to say that solution B is a 10
percent improvement over solution A. However, from the point of view of minimizing the
number of unsatisfied clauses, solution B leaves only 10 clauses unsatisfied while solution
A leaves 20 clauses unsatisfied. In this measure, solution B is twice as good as solution A.
However, both measures regard solution B as the better solution. Only the quantitative
ratio between the solutions changes from one measure to another.

6In general, if F is a 3CNF formula with n clauses, we know that at least n/2 of the clauses are simulta-
neously satisfiable.

22

In this section we show that the complexity of approximating MIN3UNSAT is equivalent
to the complexity of approximating Clique Size. As a result, we can conclude that the
approximability of MAX3SAT is not due to a lower intrinsic complexity of 3SAT, but is an
artifact of our choice of viewing satisfiability as a maximization problem.

Definition 28 Let F be a 3CNF formula with n clauses. We define MinUnsat(F) to be the
minimum number of unsatisfied clauses resulting from any assignment of truth values to the
variables of F . A number x k(n)-approximates MinUnsat(F) if x/k(n) < MinUnsat(F) ≤ x.
In the special case where MinUnsat(F) = 0, we will allow 0 to be a k(n)-approximation of
MinUnsat(F). A function f k(·)-approximates MIN3UNSAT if f(F) k(|F |)-approximates
MinUnsat(F) for all formulas F .

For a 3CNF formula F with n clauses, we know that MinUnsat(F) ≤ n/2, because given
any assignment of truth values to the variables in F , either the assignment or its complement
will satisfy half of the clauses in F . So, we know that MinUnsat(F) ranges from 0 to n/2.
We can handle the special case where MinUnsat(F) = 0 by making 0 a singleton interval.
Thus, using Lemma 13 we can produce an upper bound on the number of queries needed to
approximate MinUnsat.

Corollary 29 Let k(n) be polynomial time computable such that 1 < k(n) < n/2. Then
there exists a function in PFSAT[q(n)] which k(·)-approximates MinUnsat, where q(n) =
⌈log⌈logk(n)(n/2 + 1) + 1⌉⌉.

Theorem 30 Let q(n) ∈ O(log n) be a non-decreasing polynomial time computable func-
tion. Define k(n) such that q(n) = log logk(n) n−2. If h is a function which k(·)-approximates

MinUnsat and f ∈ PFSAT[q(n)], then f ≤P
mt h.

As before, the key to the theorem is a construction lemma. For this lemma, we need to
translate Lemma 22 to the context of minimizing unsatisfied clauses.

Corollary 31 There exist constants α, c1, c2 and a polynomial time computable function f
such that 0 < α < 1, 1 ≤ c1, 1 ≤ c2 and given a 3CNF formula F with t clauses, f produces
a 3CNF formula F ′ with ℓ(t) = c1t

c2 clauses, where

F ∈ SAT =⇒ F ′ ∈ SAT =⇒ MinUnsat(F ′) = 0

F 6∈ SAT =⇒ MinUnsat(F ′) = αℓ(t).

Remark: The proof of Theorem 30 exploits the fact that MinUnsat(F ′) may be 0 to
simplify the combinatorial analysis. However, this convenient feature is not an essential
element of the proof. Similar theorems can be proven even if we restrict F ′ to be unsatisfiable
or modified the objective function so that MinUnsat(F ′) ≥ 1.

23

Lemma 32 (Construction Lemma for MIN3UNSAT)
Let k(n) be polynomial time computable such that 1 + 2n−1/4 ≤ k(n) ≤ n/2 and let
F1, . . . , Fr(t) be a nested sequence where |Fi| = t, m = ℓ(t)2 and

r(t) ≤
⌊

(logk(m) m)/4
⌋

.

Then, in polynomial time we can construct a 3CNF formula H with m clauses and whole
numbers y0 > y1 > . . . > yr(t) such that yi > k(m)yi+1 for 0 ≤ i ≤ r(t) − 1, and

MinUnsat(H) = yz ⇐⇒ #SAT
r(t) (F1, . . . , Fr(t)) = z.

Proof: This proof is analogous to the construction in Lemma 24. One main difference is that
MIN3UNSAT is a minimization problem. To construct H , let F0 be an obviously satisfiable
formula with t clauses. We take each Fi and use Lemma 31 to construct a formula F ′

i with
ℓ(t) clauses. As usual we let ℓ = ℓ(t), r = r(t) and g = k(m). We define

ai =

{

0 if i = 0

⌈gai−1⌉ + 1 for 1 ≤ i ≤ r

The combined formula H is the conjunction of ℓ − ar copies of F ′
0, ar − ar−1 copies of F ′

1,
ar−1 − ar−2 copies of F ′

2, . . . and one copy of F ′
r. Now, if all of the formulas in F1, . . . , Fr are

satisfiable, then MinUnsat(H) = 0. If Fr is the only unsatisfiable formula, then we know
that MinUnsat(H) = αℓ. In general, if #SAT

r (F1, . . . , Fr) = r− i, then MinUnsat(H) = αaiℓ.
So, we can define yr−i to be αaiℓ, for 0 ≤ i ≤ r. The requirement that yi > gyi+1 follows
directly from the definition of ai+1. Furthermore, the restriction that k(m) ≥ 1+2n−1/4 and
r ≤ ⌊(logk(m) m)/4⌋ guarantees that ar ≤ ℓ. We omit the calculations here. 2

Corollary 33
Let k(n) be polynomial time computable such that 1+2n−1/4 ≤ k(n) ≤ n. If there exists

a polynomial time function which k(·)-approximates MinUnsat(F) using log logk(n) n − 2
queries to an oracle X for all 3CNF formulas F with n clauses, then P = NP.

The results in this section show that the complexity of approximating MinUnsat is very
close to the complexity of approximating Clique Size. The difference between the number of
queries only differ by a constant. For classes closed under ≤P

mt -reductions, approximating
MinUnsat has the same complexity as approximating Clique Size.

Corollary 34 For all constants k ≥ 1 and all constants a with 0 < a ≤ 1:

• (1 + n−a)-approximating MinUnsat is ≤P
mt -complete for PFSAT[O(log n)].

• (1 + 1/ logk n)-approximating MinUnsat is ≤P
mt -complete for PFSAT[(k+1) log log n+O(1)].

• k-approximating MinUnsat is ≤P
mt -complete for PFSAT[log log n+O(1)].

• (logk n)-approximating MinUnsat is ≤P
mt -complete for PFSAT[log log n−log log log n+O(1)].

24

Thus, approximating Clique Size within a constant factor reduces to approximating
MinUnsat within a constant factor, and vice versa. Furthermore, by the discussion in Sec-
tion 4, these reductions are “approximation preserving.” Hence, we can argue that approxi-
mating Clique Size and approximating MinUnsat really have the same complexity. Thus, the
“approximability” MAX3SAT is not an indication that 3SAT has an intrinsically lower com-
plexity than Clique. It is merely an artifact of viewing MAX3SAT as a maximization problem
instead of a minimization problem. We prefer to think of MAX3SAT and MIN3UNSAT as
complementary views of the same approximation problem.

There are other examples of such complementary NP-approximation problems. For a
graph G = (V, E), V ′ is a vertex cover if and only if V − V ′ is an independent set [GJ79].
An approximate solution to the vertex cover problem leads immediately to an approximate
solution to independent set (which is equivalent to Clique) and vice versa. Thus, approx-
imating the size of the smallest vertex cover has the same complexity as approximating
MaxSat and approximating the size of the largest independent set has the same complexity
as approximating Clique Size and MinUnsat. Finally, it is interesting to point out that find-
ing the optimal solutions to these problems are all complete for PFSAT[O(log n)] and are thus
equivalent under ≤P

mt -reductions [Kre88].

9 Discussion

The results in this paper along with the results in Chang, Gasarch and Lund [CGL94] show
that counting queries is a good measure of the complexity of NP-approximation problems.
We have derived close upper bounds and relative lower bounds on the number of queries
needed to solve various NP-approximation problems. Furthermore, the completeness results
show that queries to SAT and finding approximate solutions to these NP-approximation prob-
lems are equivalent. That is, with more queries we can find better solutions, and if we can
find better solutions then we can answer more queries. In addition, we can quantify the rela-
tionship between the approximation factor and the number of queries. This quantitative rela-
tionship allows us to deduce some structural results about the NP-approximation problems
— namely, self-improvability and inter-reducibility between NP-approximation problems.
Finally, using a uniform and quantitative complexity measure has allowed us to compare the
difficulty of approximating clique size and satisfiability. We have shown that whether one
prefers to view these two problems as having equivalent complexity (or whether one prefers
the conventional wisdom that maximum clique is more difficult than satisfiability) does not
depend upon the intrinsic complexity of these problems. Instead, it depends on whether one
prefers to treat satisfiability as a maximization problem or a minimization problem.

Further studies in this area have expanded the applicability of using bounded queries as a
complexity measure for NP-approximation problems. Crescenzi, Kann, Silvestri and Trevisan
[CKST95] have considered whether there exists a reduction from finding the vertices of the
largest clique to a function that merely finds the vertices of a 2-approximate clique. They
have shown that if such a reduction exists, then the Polynomial Hierarchy must collapse.
These results must deal with not just finding an approximation of the size of the largest
clique, but also producing the vertices in the approximate clique. It turns out that the
quantitative results in this paper can also be extended to the domain of finding approximate

25

solutions to an NP-optimization problem Π instead of simply approximating the cost of the
optimal solution OPTΠ. For example, an NP machine with ⌈log⌈log n⌉⌉ queries to SAT
in its entire computation tree can find the vertices of a 2-approximate clique. Moreover,
every multi-valued function computed by such NP machines can be reduced to finding the
vertices of a 2-approximate clique. Furthermore, one can show that an NP machine with
additional queries to SAT can compute more functions unless PH collapses. These theorems
depend upon results about the Boolean Hierarchy and is beyond the scope of this paper. We
encourage the reader to consult the literature on expositions of these recent developments
[Cha94b].

Acknowledgments

The author would like to thank Bill Gasarch, Carsten Lund, Madhu Sudan, Suresh Chari,
Christine Piatko and Ming Li for several fruitful discussions. In addition many thanks go
to Richard Beigel, Jacobo Torán and Luca Trevisan for suggestions in revising this paper.
Finally, the author would like to acknowledge the journal referee for several simplifications
in the proof of the main theorem.

References

[ABG90] A. Amir, R. Beigel, and W. I. Gasarch. Some connections between bounded
query classes and non-uniform complexity. In Proceedings of the 5th Structure in

Complexity Theory Conference, pages 232–243, 1990.

[AG88] A. Amir and W. I. Gasarch. Polynomial terse sets. Information and Computation,
77:37–56, April 1988.

[ALM+92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification
and hardness of approximation problems. In Proceedings of the IEEE Symposium

on Foundations of Computer Science, pages 14–23, 1992.

[Bei88] R. Beigel. NP-hard sets are p-superterse unless R = NP. Technical Report 4,
Department of Computer Science, The Johns Hopkins University, 1988.

[Bei91] R. Beigel. Bounded queries to SAT and the Boolean hierarchy. Theoretical

Computer Science, 84(2):199–223, July 1991.

[BGLR93] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically
checkable proofs and applications to approximations. In ACM Symposium on

Theory of Computing, pages 294–304, 1993.

[CG93] R. Chang and W. I. Gasarch. On bounded queries and approximation. In Pro-

ceedings of the IEEE Symposium on Foundations of Computer Science, pages
547–556, November 1993.

26

[CGH+88] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner,
and G. Wechsung. The Boolean hierarchy I: Structural properties. SIAM Journal

on Computing, 17(6):1232–1252, December 1988.

[CGL94] R. Chang, W. I. Gasarch, and C. Lund. On bounded queries and approximation.
Technical Report TR CS-94-05, Department of Computer Science, University
of Maryland Baltimore County, April 1994. To appear in SIAM Journal on

Computing.

[Cha94a] R. Chang. On the query complexity of clique size and maximum satisfiability. In
Proceedings of the 9th Structure in Complexity Theory Conference, pages 31–42,
June 1994.

[Cha94b] R. Chang. Structural complexity column: A machine model for NP-approx-
imation problems and the revenge of the Boolean hierarchy. Bulletin of the

European Association for Theoretical Computer Science, 54:166–182, October
1994.

[Cha95] R. Chang. On the query complexity of clique size and maximum satisfiability.
Technical Report TR CS-95-01, Department of Computer Science, University of
Maryland Baltimore County, May 1995.

[CKST95] P. Crescenzi, V. Kann, R. Silvestri, and L. Trevisan. Structure in approximation
classes. In Proceedings of the 1st Computing and Combinatorics Conference,
August 1995.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[HN93] A. Hoene and A. Nickelsen. Counting, selecting, sorting by query-bounded ma-
chines. In Proceedings of the 10th Symposium on Theoretical Aspects of Computer

Science, volume 665 of Lecture Notes in Computer Science. Springer-Verlag, 1993.

[KMSV94] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus com-
putational views of approximability. In Proceedings of the IEEE Symposium on

Foundations of Computer Science, pages 819–830, November 1994.

[Kre88] M. W. Krentel. The complexity of optimization problems. Journal of Computer

and System Sciences, 36(3):490–509, 1988.

[LY94] C. Lund and M. Yannakakis. On the hardness of approximating minimization
problems. Journal of the ACM, 41(5):960–981, September 1994.

[PR90] A. Panconesi and D. Ranjan. Quantifiers and approximation. In ACM Symposium

on Theory of Computing, pages 446–456, 1990.

[PY91] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and
complexity classes. Journal of Computer and System Sciences, 43:425–440, 1991.

27

[Yan92] M. Yannakakis. On the approximation of maximum satisfiability. In Proceedings

of the 3rd Symposium on Discrete Algorithms, pages 1–9, 1992.

[Zuc93] D. Zuckerman. NP-complete problems have a version that’s hard to approximate.
In Proceedings of the 8th Structure in Complexity Theory Conference, pages 305–
312, 1993.

28

