

Due: Thursday October 20, 2005

1. A function f is m -enumerable if there exists a polynomial-time computable function g such that for all x , $g(x) = \langle y_1, \dots, y_m \rangle$ and $f(x) \in \{y_1, \dots, y_m\}$. I.e., g generates m possible outputs and one of them is $f(x)$.

Now, define χ_5^{SAT} as follows:

$$\chi_5^{\text{SAT}}(\phi_1, \phi_2, \phi_3, \phi_4, \phi_5) = d_1 d_2 d_3 d_4 d_5$$

where each $d_i \in \{0, 1\}$ and $d_i = 1 \iff \phi_i \in \text{SAT}$. Note that χ_5^{SAT} is trivially 32-enumerable. Show that if χ_5^{SAT} is 5-enumerable, then $\text{P} = \text{NP}$ using tree pruning, the self-reducibility of SAT and the following combinatorial lemma:

Lemma: Given ℓ distinct bit vectors b_1, \dots, b_ℓ each with j bits, where $\ell \leq j$, there exists a coordinate k such that the bit vectors can be distinguished without using the k -th coordinate.

Hint: During the tree-pruning of the self-reduction tree of a formula ϕ , if $g(\phi_1, \phi_2, \phi_3, \phi_4, \phi_5)$ does not contain the bit vector 00000, where the ϕ_i 's are descendants of ϕ in the self-reduction tree for ϕ , then you already know that $\phi \in \text{SAT}$.

2. For a class of languages \mathcal{C} , we define $\exists \cdot \mathcal{C}$ and $\text{BP} \cdot \mathcal{C}$ as follows:

Defn: $L \in \exists \cdot \mathcal{C}$ if there exists a language $A \in \mathcal{C}$ and a polynomial $p()$ such that

$$x \in L \iff \exists y, |y| = p(|x|) \text{ and } \langle x, y \rangle \in A.$$

Defn: $L \in \text{BP} \cdot \mathcal{C}$ if there exists a language $A \in \mathcal{C}$ and a polynomial $p()$ such that

$$x \in L \implies \text{Prob}_y[\langle x, y \rangle \in A] \geq 2/3$$

$$x \notin L \implies \text{Prob}_y[\langle x, y \rangle \in A] \leq 1/3$$

where y is chosen uniformly at random from strings with length $p(|x|)$.

Observe that if $\mathcal{C} = \text{P}$ then $\exists \cdot \text{P} = \text{NP}$ and $\text{BP} \cdot \mathcal{C} = \text{BPP}$.

Prove that $\exists \cdot \text{BP} \cdot \text{P} \subseteq \text{BP} \cdot \exists \cdot \text{P}$.

Justify any amplification claims you make (but you do not have to reprove the Chernoff bounds). Also, when you claim that you have a $\text{BP} \cdot \exists \cdot \text{P}$ machine M for some language $L \in \exists \cdot \text{BP} \cdot \text{P}$, make sure you prove both directions of $L \subseteq L(M)$ and $L(M) \subseteq L$.

Does your proof work for $\text{BP} \cdot \exists \cdot \text{P} \subseteq \exists \cdot \text{BP} \cdot \text{P}$? Why or why not?