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1. The Karp-Lipton-Sipser result suggests that co-NP 6⊆ NP/poly, if we, for example, “believe”
that PH does not collapse. The situation is very different for nondeterministic exponential
time. Define NE as:

NE =
⋃
c≥1

NTIME [2cn]

and as usual define co-NE to be the complements:

co-NE = {L | L ∈ NE}.

Show that co-NE ⊆ NE/poly. Hint: Think census.

2. For a class of languages C, we define ∃·C and BP·C as follows:

Defn: L ∈ ∃·C if there exists a language A ∈ C and a polynomial p() such that

x ∈ L ⇐⇒ ∃y, |y| = p(|x|) and 〈x, y〉 ∈ A.

Defn: L ∈ BP·C if there exists a language A ∈ C and a polynomial p() such that

x ∈ L =⇒ Proby[〈x, y〉 ∈ A] ≥ 2/3

x 6∈ L =⇒ Proby[〈x, y〉 ∈ A] ≤ 1/3

where y is chosen uniformly at random from strings with length p(|x|).

Observe that if C = P then ∃·P = NP and BP·C = BPP.

Prove that ∃·BP·P ⊆ BP·∃·P.

Justify any amplification claims you make (but you do not have to reprove the Chernoff
bounds). Also, when you claim that you have a BP·∃·P machine M for some language
L ∈ ∃·BP·P, make sure you prove both directions of L ⊆ L(M) and L(M) ⊆ L.

Does your proof work for BP·∃·P ⊆ ∃·BP·P? Why or why not?

3. Let #SAT(φ) be the number of satisfying assignments of a Boolean formula φ. We have
assumed in class that #SAT is complete for #P. This relies on the fact that there is a version
of Cook’s reduction from NP computations to SAT that is parsimonious. That is, given an
NP machine N and an input string x, the parsimonious reduction will construct a Boolean
formula φ such that #accN (x) = #SAT(φ). I.e., the number of accepting paths of machine
N on input x equals the number of satisfying assignments of φ.

Consider the version of Cook’s reduction in Theorem 7.37 of the textbook. Is the reduction
as presented parsimonious? Justify your answer.


