1. The Karp-Lipton-Sipser result suggests that co-NP ⊈ NP/poly, if we, for example, "believe" that PH does not collapse. The situation is very different for nondeterministic exponential time. Define NE as:

$$\mathrm{NE} = \bigcup_{c \ge 1} \mathrm{NTIME} \left[2^{cn} \right]$$

and as usual define co-NE to be the complements:

$$co-NE = \{ \overline{L} \mid L \in NE \}.$$

Show that co-NE \subseteq NE/poly. *Hint:* Think census.

2. For a class of languages \mathcal{C} , we define $\exists \mathcal{C}$ and $\mathrm{BP} \cdot \mathcal{C}$ as follows:

Defn: $L \in \exists \cdot \mathcal{C}$ if there exists a language $A \in \mathcal{C}$ and a polynomial p() such that

$$x \in L \iff \exists y, \ |y| = p(|x|) \text{ and } \langle x, y \rangle \in A.$$

Defn: $L \in \text{BP-}\mathcal{C}$ if there exists a language $A \in \mathcal{C}$ and a polynomial p() such that

$$x \in L \Longrightarrow \operatorname{Prob}_{y}[\langle x, y \rangle \in A] \ge 2/3$$

$$x \notin L \Longrightarrow \operatorname{Prob}_y[\langle x, y \rangle \in A] \le 1/3$$

where y is chosen uniformly at random from strings with length p(|x|).

Observe that if C = P then $\exists P = NP$ and $BP \cdot C = BPP$.

Prove that $\exists \cdot BP \cdot P \subseteq BP \cdot \exists \cdot P$.

Justify any amplification claims you make (but you do not have to reprove the Chernoff bounds). Also, when you claim that you have a $BP \cdot \exists \cdot P$ machine M for some language $L \in \exists \cdot BP \cdot P$, make sure you prove both directions of $L \subseteq L(M)$ and $L(M) \subseteq L$.

Does your proof work for $BP \cdot \exists \cdot P \subseteq \exists \cdot BP \cdot P$? Why or why not?

3. Let $\#SAT(\phi)$ be the number of satisfying assignments of a Boolean formula ϕ . We have assumed in class that #SAT is complete for #P. This relies on the fact that there is a version of Cook's reduction from NP computations to SAT that is parsimonious. That is, given an NP machine N and an input string x, the parsimonious reduction will construct a Boolean formula ϕ such that $\#acc_N(x) = \#SAT(\phi)$. I.e., the number of accepting paths of machine N on input x equals the number of satisfying assignments of ϕ .

Consider the version of Cook's reduction in Theorem 7.37 of the textbook. Is the reduction as presented parsimonious? Justify your answer.