
8-2

PROGRAMMING WITH THE X87 FPU

the MMX registers are aliased to the x87 FPU data registers. Therefore, when writing code that
mixed x87 FPU and MMX instructions, the programmer must explicitly manage the x87 FPU
and MMX state (see Section 9.5., “Compatibility with x87 FPU Architecture”).

8.1.1. x87 FPU Data Registers

The x87 FPU data registers (shown in Figure 8-1) consist of eight 80-bit registers. Values are
stored in these registers in the double extended-precision floating-point format shown in Figure
4-3. When floating-point, integer, or packed BCD integer values are loaded from memory into
any of the x87 FPU data registers, the values are automatically converted into double extended-
precision floating-point format (if they are not already in that format). When computation results
are subsequently transferred back into memory from any of the x87 FPU registers, the results
can be left in the double extended-precision floating-point format or converted back into a
shorter floating-point format, an integer format, or the packed BCD integer format. (See Section
8.2., “x87 FPU Data Types” for a description of the data types operated on by the x87 FPU.)

The x87 FPU instructions treat the eight x87 FPU data registers as a register stack (see Figure
8-2). All addressing of the data registers is relative to the register on the top of the stack. The
register number of the current top-of-stack register is stored in the TOP (stack TOP) field in the
x87 FPU status word. Load operations decrement TOP by one and load a value into the new top-
of-stack register, and store operations store the value from the current TOP register in memory
and then increment TOP by one. (For the x87 FPU, a load operation is equivalent to a push and

Figure 8-1. x87 FPU Execution Environment

079

R7

R6

R5

R4

R3

R2

R1

R0

Data Registers

Exponent Significand

78 64 63

15

Control
Register

0

Status
Register

Tag
Register

047

Last Instruction Pointer

Last Data (Operand) Pointer

10

Opcode

0

Sign

8-3

PROGRAMMING WITH THE X87 FPU

a store operation is equivalent to a pop.) Note that load and store operations are also available
that do not push and pop the stack.

If a load operation is performed when TOP is at 0, register wraparound occurs and the new value
of TOP is set to 7. The floating-point stack-overflow exception indicates when wraparound
might cause an unsaved value to be overwritten (see Section 8.5.1.1., “Stack Overflow or Under-
flow Exception (#IS)”).

Many floating-point instructions have several addressing modes that permit the programmer to
implicitly operate on the top of the stack, or to explicitly operate on specific registers relative to
the TOP. Assemblers supports these register addressing modes, using the expression ST(0), or
simply ST, to represent the current stack top and ST(i) to specify the ith register from TOP in
the stack (0 ! i ! 7). For example, if TOP contains 011B (register 3 is the top of the stack), the
following instruction would add the contents of two registers in the stack (registers 3 and 5):

FADD ST, ST(2);

Figure 8-3 shows an example of how the stack structure of the x87 FPU registers and instruc-
tions are typically used to perform a series of computations. Here, a two-dimensional dot
product is computed, as follows:

1. The first instruction (FLD value1) decrements the stack register pointer (TOP) and loads
the value 5.6 from memory into ST(0). The result of this operation is shown in snap-shot
(a).

2. The second instruction multiplies the value in ST(0) by the value 2.4 from memory and
stores the result in ST(0), shown in snap-shot (b).

3. The third instruction decrements TOP and loads the value 3.8 in ST(0).

4. The fourth instruction multiplies the value in ST(0) by the value 10.3 from memory and
stores the result in ST(0), shown in snap-shot (c).

5. The fifth instruction adds the value and the value in ST(1) and stores the result in ST(0),
shown in snap-shot (d).

Figure 8-2. x87 FPU Data Register Stack

7

6

5

4

3

2

1

0

FPU Data Register Stack

ST(2)

ST(1)

ST(0)

Top

011B

Growth
Stack

8-4

PROGRAMMING WITH THE X87 FPU

The style of programming demonstrated in this example is supported by the floating-point
instruction set. In cases where the stack structure causes computation bottlenecks, the FXCH
(exchange x87 FPU register contents) instruction can be used to streamline a computation.

8.1.1.1. PARAMETER PASSING WITH THE X87 FPU REGISTER STACK

Like the general-purpose registers, the contents of the x87 FPU data registers are unaffected by
procedure calls, or in other words, the values are maintained across procedure boundaries. A
calling procedure can thus use the x87 FPU data registers (as well as the procedure stack) for
passing parameter between procedures. The called procedure can reference parameters passed
through the register stack using the current stack register pointer (TOP) and the ST(0) and ST(i)
nomenclature. It is also common practice for a called procedure to leave a return value or result
in register ST(0) when returning execution to the calling procedure or program.

When mixing MMX and x87 FPU instructions in the procedures or code sequences, the
programmer is responsible for maintaining the integrity of parameters being passed in the x87
FPU data registers. If an MMX instruction is executed before the parameters in the x87 FPU data
registers have been passed to another procedure, the parameters may be lost (see Section 9.5.,
“Compatibility with x87 FPU Architecture”).

Figure 8-3. Example x87 FPU Dot Product Computation

(a)

R7

R6

R5

R4

R3

R2

R1

R0

Computation

ST(0)5.6

(b)

R7

R6

R5

R4

R3

R2

R1

R0

ST(0)13.44

(c)

R7

R6

R5

R4

R3

R2

R1

R0

ST(1)

ST(0)

13.44

(d)

R7

R6

R5

R4

R3

R2

R1

R0

ST

ST39.14

13.44

52.58

Dot Product = (5.6 x 2.4) + (3.8 x 10.3)

Code:
FLD value1 ;(a) value1=5.6

FMUL value2 ;(b) value2=2.4

FLD value3 ; value3=3.8

FMUL value4 ;(c)value4=10.3

FADD ST(1) ;(d)

8-21

PROGRAMMING WITH THE X87 FPU

Like the CMOVcc instructions, the FCMOVcc instructions are useful for optimizing small IF
constructions. They also help eliminate branching overhead for IF operations and the possibility
of branch mispredictions by the processor.

Software can check if the FCMOVcc instructions are supported by checking the processor’s
feature information with the CPUID instruction (see “CPUID—CPU Identification” in Chapter
3 of the Intel Architecture Software Developer’s Manual, Volume 2).

8.3.4. Load Constant Instructions

The following instructions push commonly used constants onto the top [ST(0)] of the x87 FPU
register stack:

FLDZ Load +0.0
FLD1 Load +1.0
FLDPI Load !
FLDL2T Load log2 10
FLDL2E Load log2e
FLDLG2 Load log102
FLDLN2 Load loge2

The constant values have full double extended-precision floating-point precision (64 bits) and
are accurate to approximately 19 decimal digits. They are stored internally in a format more
precise than double extended-precision floating point. When loading the constant, the x87 FPU
rounds the more precise internal constant according to the RC (rounding control) field of the x87
FPU control word. See Section 8.3.8., “Pi”, for information on the ! constant.

8.3.5. Basic Arithmetic Instructions

The following floating-point instructions perform basic arithmetic operations on floating-point
numbers. Where applicable, these instructions match IEEE Standard 754:

FADD/FADDP Add floating point
FIADD Add integer to floating point
FSUB/FSUBP Subtract floating point
FISUB Subtract integer from floating point
FSUBR/FSUBRP Reverse subtract floating point
FISUBR Reverse subtract floating point from integer
FMUL/FMULP Multiply floating point
FIMUL Multiply integer by floating point
FDIV/FDIVP Divide floating point
FIDIV Divide floating point by integer
FDIVR/FDIVRP Reverse divide
FIDIVR Reverse divide integer by floating point
FABS Absolute value
FCHS Change sign
FSQRT Square root

3-198

INSTRUCTION SET REFERENCE

FADD/FADDP/FIADD—Add

Description

Adds the destination and source operands and stores the sum in the destination location. The
destination operand is always an FPU register; the source operand can be a register or a memory
location. Source operands in memory can be in single-precision or double-precision floating-
point format or in word or doubleword integer format.

The no-operand version of the instruction adds the contents of the ST(0) register to the ST(1)
register. The one-operand version adds the contents of a memory location (either a floating-point
or an integer value) to the contents of the ST(0) register. The two-operand version, adds the
contents of the ST(0) register to the ST(i) register or vice versa. The value in ST(0) can be
doubled by coding:

FADD ST(0), ST(0);

The FADDP instructions perform the additional operation of popping the FPU register stack
after storing the result. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1. (The no-operand version of the floating-point add
instructions always results in the register stack being popped. In some assemblers, the
mnemonic for this instruction is FADD rather than FADDP.)

The FIADD instructions convert an integer source operand to double extended-precision
floating-point format before performing the addition.

The table on the following page shows the results obtained when adding various classes of
numbers, assuming that neither overflow nor underflow occurs.

When the sum of two operands with opposite signs is 0, the result is +0, except for the round
toward !" mode, in which case the result is !0. When the source operand is an integer 0, it is
treated as a +0.

When both operand are infinities of the same sign, the result is " of the expected sign. If both
operands are infinities of opposite signs, an invalid-operation exception is generated.

Opcode Instruction Description

D8 /0 FADD m32fp Add m32fp to ST(0) and store result in ST(0)

DC /0 FADD m64fp Add m64fp to ST(0) and store result in ST(0)

D8 C0+i FADD ST(0), ST(i) Add ST(0) to ST(i) and store result in ST(0)

DC C0+i FADD ST(i), ST(0) Add ST(i) to ST(0) and store result in ST(i)

DE C0+i FADDP ST(i), ST(0) Add ST(0) to ST(i), store result in ST(i), and pop the
register stack

DE C1 FADDP Add ST(0) to ST(1), store result in ST(1), and pop the
register stack

DA /0 FIADD m32int Add m32int to ST(0) and store result in ST(0)

DE /0 FIADD m16int Add m16int to ST(0) and store result in ST(0)

3-199

INSTRUCTION SET REFERENCE

FADD/FADDP/FIADD—Add (Continued)

.

NOTES:

F Means finite floating-point value.

I Means integer.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FIADD

THEN

DEST ! DEST + ConvertToDoubleExtendedPrecisionFP(SRC);

ELSE (* source operand is floating-point value *)

DEST ! DEST + SRC;

FI;

IF instruction ! FADDP

THEN

PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 ! not roundup; 1 ! roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of unlike sign.

DEST

"# "F "0 +0 +F +# NaN

-# -# -# -# -# -# * NaN

"F or "I -# "F SRC SRC ±F or ±0 +# NaN

SRC "0 -# DEST "0 ±0 DEST +# NaN

+0 -# DEST ±0 +0 DEST +# NaN

+F or +I -# ±F or ±0 SRC SRC +F +# NaN

+# * +# +# +# +# +# NaN

NaN NaN NaN NaN NaN NaN NaN NaN

; File: double1.asm
;
; Using C printf function to print double values
;

; Declare some external functions
;
 extern printf ; the C function, we'll call

 SECTION .data ; Data section

msg: db "Answer: %f", 10, 0 ; The string to print.
pi: dq 3.14159265

 SECTION .text ; Code section.

 global main
main:
 push ebp ; set up stack frame
 mov ebp,esp

 mov eax, [pi+4]
 push eax
 mov eax, [pi]
 push eax

 ; Answer should be at the top of the stack
 push DWORD msg ; address of ctrl string
 call printf ; Call C function
 add esp, 12 ; pop 2 args from stack

 sub esp, 8
 fld QWORD [pi]
 fstp QWORD [esp]

 push DWORD msg ; address of ctrl string
 call printf ; Call C function
 add esp, 12 ; pop 2 args from stack

 ; return from main
 mov esp, ebp ; takedown stack frame
 pop ebp ; same as "leave" op

 ret

linuxserver2% nasm -f elf double1.asm
linuxserver2% gcc double1.o

linuxserver2% a.out
Answer: 3.141593
Answer: 3.141593

; File: double2.asm
;
; Using C printf function to print double values
;

; Declare some external functions
 extern printf ; the C function, we'll call

 SECTION .data ; Data section
msg: db "Answer: %f", 10, 0 ; The string to print.
dv1: dq 1.111
dv2: dq 2.222
dv3: dq 3.333
dv4: dq 4.444
dv5: dq 5.555
dv6: dq 6.666
dv7: dq 7.777
dv8: dq 8.888
dv9: dq 9.999
dva: dq 10.101010

 SECTION .text ; Code section.

 global main
main:
 push ebp ; set up stack frame
 mov ebp,esp
 push ebx

 fld QWORD [dv1]
 fld QWORD [dv2]
 fld QWORD [dv3]

 sub esp, 8
 push DWORD msg ; address of ctrl string
 mov ebx, 3

loop1: fstp QWORD [esp+4]
 call printf ; Call C function
 dec ebx
 jnz loop1

 add esp, 12 ; pop 2 args from stack

 ; return from main
 pop ebx
 mov esp, ebp ; takedown stack frame
 pop ebp ; same as "leave" op
 ret

linuxserver2% nasm -f elf double2.asm
linuxserver2% gcc double2.o

linuxserver2% ./a.out
Answer: 3.333000
Answer: 2.222000
Answer: 1.111000

; File: double3.asm
 extern printf ; the C function, we'll call

 SECTION .data ; Data section
msg: db "Answer: %f", 10, 0 ; The string to print.
dv1: dq 1.111
dv2: dq 2.222
dv3: dq 3.333
dv4: dq 4.444
dv5: dq 5.555
dv6: dq 6.666
dv7: dq 7.777
dv8: dq 8.888
dv9: dq 9.999
dva: dq 10.101010

 SECTION .text ; Code section.
 global main
main:
 push ebp ; set up stack frame
 mov ebp,esp
 push ebx

 fld QWORD [dv1]
 fld QWORD [dv2]
 fld QWORD [dv3]
 fld QWORD [dv4]
 fld QWORD [dv5]
 fld QWORD [dv6]
 fld QWORD [dv7]
 fld QWORD [dv8]
 fld QWORD [dv9]
 fld QWORD [dva]

 sub esp, 8
 push DWORD msg ; address of ctrl string
 mov ebx, 10

loop1: fstp QWORD [esp+4]
 call printf ; Call C function
 dec ebx
 jnz loop1

 add esp, 12 ; pop 2 args from stack

 ; return from main
 pop ebx
 mov esp, ebp ; takedown stack frame
 pop ebp ; same as "leave" op
 ret

linuxserver2% nasm -f elf double3.asm
linuxserver2% gcc double3.o

linuxserver2% ./a.out
Answer: nan
Answer: nan
Answer: 8.888000
Answer: 7.777000
Answer: 6.666000
Answer: 5.555000
Answer: 4.444000
Answer: 3.333000
Answer: nan
Answer: nan

; File: double4.asm
;
; Using C printf function to print double values
; Checking out floating point arithmetic
;

; Declare some external functions
;
 extern printf ; the C function, we'll call

 SECTION .data ; Data section

msg: db "Answer: %f", 10, 0 ; The string to print.
dv1: dq 1.111
dv2: dq 2.222
dv3: dq -3.333
dv4: dq -4.444
dv5: dq 5.555
dv6: dq 6.666
dv7: dq 7.777

 SECTION .text ; Code section.

 global main
main:
 push ebp ; set up stack frame
 mov ebp,esp

 sub esp, 8
 push DWORD msg ; address of ctrl string

 fld QWORD [dv1]
 fld QWORD [dv2]
 fadd st0, st1 ; floating point add
 fstp QWORD [esp+4]
 call printf ; Call C function

 ; note that 1.111 is still on the FPU stack

 fld QWORD [dv3]
 fsubp st1, st0 ; st1 := st1 - st0, pop
 fstp QWORD [esp+4]
 call printf ; Call C function

 ; note that FPU stack is at bottom

 fld QWORD [dv3]
 fld QWORD [dv4]
 fmulp st1, st0 ; f.p. multiply + pop
 fstp QWORD [esp+4]
 call printf

 fld QWORD [dv6]
 fld QWORD [dv3]
 fdivp st1, st0 ; f.p. divide + pop
 fstp QWORD [esp+4]
 call printf

 fld QWORD [dv7]
 fsqrt ; Compute the square root
 fstp QWORD [esp+4]
 call printf ; Call C function

 add esp, 12 ; pop 2 args from stack

 ; return from main
 mov esp, ebp ; takedown stack frame
 pop ebp ; same as "leave" op

 ret

linuxserver2% nasm -f elf double4.asm
linuxserver2% gcc double4.o

linuxserver2% ./a.out
Answer: 3.333000
Answer: 4.444000
Answer: 14.811852
Answer: -2.000000
Answer: 2.788727

3-212

INSTRUCTION SET REFERENCE

FCOM/FCOMP/FCOMPP—Compare Floating Point Values

Description

Compares the contents of register ST(0) and source value and sets condition code flags C0, C2,
and C3 in the FPU status word according to the results (see the table below). The source operand
can be a data register or a memory location. If no source operand is given, the value in ST(0) is
compared with the value in ST(1). The sign of zero is ignored, so that –0.0 ! +0.0.

NOTE:

* Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.

This instruction checks the class of the numbers being compared (see “FXAM—Examine” in
this chapter). If either operand is a NaN or is in an unsupported format, an invalid-arithmetic-
operand exception (#IA) is raised and, if the exception is masked, the condition flags are set to
“unordered.” If the invalid-arithmetic-operand exception is unmasked, the condition code flags
are not set.

The FCOMP instruction pops the register stack following the comparison operation and the
FCOMPP instruction pops the register stack twice following the comparison operation. To pop
the register stack, the processor marks the ST(0) register as empty and increments the stack
pointer (TOP) by 1.

Opcode Instruction Description

D8 /2 FCOM m32fp Compare ST(0) with m32fp.

DC /2 FCOM m64fp Compare ST(0) with m64fp.

D8 D0+i FCOM ST(i) Compare ST(0) with ST(i).

D8 D1 FCOM Compare ST(0) with ST(1).

D8 /3 FCOMP m32fp Compare ST(0) with m32fp and pop register stack.

DC /3 FCOMP m64fp Compare ST(0) with m64fp and pop register stack.

D8 D8+i FCOMP ST(i) Compare ST(0) with ST(i) and pop register stack.

D8 D9 FCOMP Compare ST(0) with ST(1) and pop register stack.

DE D9 FCOMPP Compare ST(0) with ST(1) and pop register stack twice.

Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) ! SRC 1 0 0

Unordered* 1 1 1

8-5

PROGRAMMING WITH THE X87 FPU

8.1.2. x87 FPU Status Register

The 16-bit x87 FPU status register (see Figure 8-4) indicates the current state of the x87 FPU.
The flags in the x87 FPU status register include the FPU busy flag, top-of-stack (TOP) pointer,
condition code flags, error summary status flag, stack fault flag, and exception flags. The x87
FPU sets the flags in this register to show the results of operations.

The contents of the x87 FPU status register (referred to as the x87 FPU status word) can be
stored in memory using the FSTSW/FNSTSW, FSTENV/FNSTENV, FSAVE/FNSAVE, and
FXSAVE instructions. It can also be stored in the AX register of the integer unit, using the
FSTSW/FNSTSW instructions.

8.1.2.1. TOP OF STACK (TOP) POINTER

A pointer to the x87 FPU data register that is currently at the top of the x87 FPU register stack
is contained in bits 11 through 13 of the x87 FPU status word. This pointer, which is commonly
referred to as TOP (for top-of-stack), is a binary value from 0 to 7. See Section 8.1.1., “x87
FPU Data Registers”, for more information about the TOP pointer.

8.1.2.2. CONDITION CODE FLAGS

The four condition code flags (C0 through C3) indicate the results of floating-point comparison
and arithmetic operations. Table 8-1 summarizes the manner in which the floating-point instruc-
tions set the condition code flags. These condition code bits are used principally for conditional
branching and for storage of information used in exception handling (see Section 8.1.3.,
“Branching and Conditional Moves on Condition Codes”).

Figure 8-4. x87 FPU Status Word

FPU Busy

15 1314 11 10 9 8 7 6 5 4 3 2 1 0

B
I
E

P
E

O
E

U
E

Z
E

D
E

TOP

Top of Stack Pointer

Exception Flags

 Precision
 Underflow

 Overflow
 Zero Divide

 Denormalized Operand
 Invalid Operation

Stack Fault

Error Summary Status

Condition
 Code

C
2

C
1

C
0

E
S

S
F

C
3

3-756

INSTRUCTION SET REFERENCE

TEST—Logical Compare

Description

Computes the bit-wise logical AND of first operand (source 1 operand) and the second operand
(source 2 operand) and sets the SF, ZF, and PF status flags according to the result. The result is
then discarded.

Operation

TEMP ! SRC1 AND SRC2;

SF ! MSB(TEMP);

IF TEMP ! 0

THEN ZF ! 1;

ELSE ZF ! 0;

FI:

PF ! BitwiseXNOR(TEMP[0:7]);

CF ! 0;

OF ! 0;

(*AF is Undefined*)

Flags Affected

The OF and CF flags are cleared to 0. The SF, ZF, and PF flags are set according to the result
(see the “Operation” section above). The state of the AF flag is undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

A8 ib TEST AL,imm8 AND imm8 with AL; set SF, ZF, PF according to result

A9 iw TEST AX,imm16 AND imm16 with AX; set SF, ZF, PF according to result

A9 id TEST EAX,imm32 AND imm32 with EAX; set SF, ZF, PF according to result

F6 /0 ib TEST r/m8,imm8 AND imm8 with r/m8; set SF, ZF, PF according to result

F7 /0 iw TEST r/m16,imm16 AND imm16 with r/m16; set SF, ZF, PF according to result

F7 /0 id TEST r/m32,imm32 AND imm32 with r/m32; set SF, ZF, PF according to result

84 /r TEST r/m8,r8 AND r8 with r/m8; set SF, ZF, PF according to result

85 /r TEST r/m16,r16 AND r16 with r/m16; set SF, ZF, PF according to result

85 /r TEST r/m32,r32 AND r32 with r/m32; set SF, ZF, PF according to result

8-25

PROGRAMMING WITH THE X87 FPU

in the EFLAGS register if the condition code flags indicate an unordered result; otherwise,
the ZF flag will be set. The JNZ instruction can then be used to transfer control (if
necessary) to a procedure for handling unordered operands.

2. Check ordered comparison result. Use the constants given in Table 8-8 in the TEST
instruction to test for a less than, equal to, or greater than result, then use the corresponding
conditional branch instruction to transfer program control to the appropriate procedure or
section of code.

If a program or procedure has been thoroughly tested and it incorporates periodic checks for
QNaN results, then it is not necessary to check for the unordered result every time a comparison
is made.

See Section 8.1.3., “Branching and Conditional Moves on Condition Codes”, for another tech-
nique for branching on x87 FPU condition codes.

Some non-comparison x87 FPU instructions update the condition code flags in the x87 FPU
status word. To ensure that the status word is not altered inadvertently, store it immediately
following a comparison operation.

8.3.7. Trigonometric Instructions

The following instructions perform four common trigonometric functions:

FSIN Sine
FCOS Cosine
FSINCOS Sine and cosine
FPTAN Tangent
FPATAN Arctangent

These instructions operate on the top one or two registers of the x87 FPU register stack and they
return their results to the stack. The source operands for the FSIN, FCOS, FSINCOS, and
FPTAN instructions must be given in radians; the source operand for the FPATAN instruction is
given in rectangular coordinate units.

The FSINCOS instruction returns both the sine and the cosine of a source operand value. It oper-
ates faster than executing the FSIN and FCOS instructions in succession.

The FPATAN instruction computes the arctangent of ST(1) divided by ST(0), returning a result
in radians. It is useful for converting rectangular coordinates to polar coordinates.

Table 8-8. TEST Instruction Constants for Conditional Branching

Order Constant Branch

ST(0) > Source Operand 4500H JZ

ST(0) < Source Operand 0100H JNZ

ST(0) = Source Operand 4000H JNZ

Unordered 0400H JNZ

; File: double5.asm
;
; Using C printf function to print double values
; Checking out comparisons
;
; Declare some external functions
;
 extern printf ; the C function, we'll call

 SECTION .data ; Data section
; Strings to print
msg1: db "dv2 > dv1", 10, 0
msg2: db "dv2 <= dv1", 10, 0

msg3: db "dv3 < dv2", 10, 0
msg4: db "dv3 >= dv2", 10, 0

msg5: db "dv5 == dv2 + dv4", 10, 0
msg6: db "dv5 != dv2 + dv4", 10, 0

dv1: dq 1.111
dv2: dq 2.222
dv3: dq -3.333
dv4: dq 4.444
dv5: dq 5.555
dv6: dq 6.666
dv7: dq 7.777

 SECTION .text ; Code section.

 global main
main:
 push ebp ; set up stack frame
 mov ebp,esp

 fld QWORD [dv1]
 fld QWORD [dv2]
 fcompp ; compare then 2x pop
 fstsw ax ; store status of comp

 test ax, 4500H ; logial AND
 jz st0_gt_st1
 push DWORD msg2
 call printf
 add esp, 4
 jmp done1
st0_gt_st1:
 push DWORD msg1
 call printf
 add esp, 4
done1:

 fld QWORD [dv2]
 fld QWORD [dv3]
 fcompp ; compare then 2x pop
 fstsw ax ; store status of comp

 test ax, 0100H ; logial AND
 jnz st0_lt_st1 ; note the 'n' in jnz
 push DWORD msg4
 call printf
 add esp, 4
 jmp done2
st0_lt_st1:
 push DWORD msg3
 call printf
 add esp, 4
done2:

 fld QWORD [dv2]
 fld QWORD [dv4]
 faddp st1, st0
 fld QWORD [dv5]
 fcompp
 fstsw ax

 test ax, 4000H ; logial AND
 jnz st0_eq_st1 ; note the 'n' in jnz
 push DWORD msg6
 call printf
 add esp, 4
 jmp done3
st0_eq_st1:
 push DWORD msg5
 call printf
 add esp, 4
done3:

 ; return from main
 mov esp, ebp ; takedown stack frame
 pop ebp ; same as "leave" op

 ret

linuxserver2% nasm -f elf double5.asm
linuxserver2% gcc double5.o

linuxserver2% ./a.out
dv2 > dv1
dv3 < dv2
dv5 != dv2 + dv4

