Bison

The Yacc-compatible Parser Generator
2 April 2009, Bison Version 2.4.1

by Charles Donnelly and Richard Stallman

This manual (2 April 2009) is for GNU Bison (version 2.4.1), the GNU parser generator.

Copyright (© 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998, 1999, 2000, 2001, 2002, 2003,
2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify

this GNU manual. Buying copies from the FSF supports it in developing GNU
and promoting software freedom.”

Published by the Free Software Foundation

51 Franklin Street, Fifth Floor

Boston, MA 02110-1301 USA

Printed copies are available from the Free Software Foundation.
ISBN 1-882114-44-2

Cover art by Etienne Suvasa.

Table of Contents

Introduction
Conditions for Using Bison........................
GNU GENERAL PUBLIC LICENSE
1 The Concepts of Bison........................

1.1 Languages and Context-Free Grammars
1.2 From Formal Rules to Bison Input
1.3 Semantic Values
1.4 Semantic Actions
1.5 Writing GLR Parsers......... ..o,
1.5.1 Using GLR on Unambiguous Grammars...................
1.5.2 Using GLR to Resolve Ambiguities........................

1.5.3 GLR Semantic Actions...............oiiiiiiiiiii., 25

1.5.4 Considerations when Compiling GLR Parsers 26

1.6 Locationso 26

1.7 Bison Output: the Parser File................................. 27

1.8 Stages in Using Bison i 27

1.9 The Overall Layout of a Bison Grammar 28

Examples................. .., 29

2.1 Reverse Polish Notation Calculator.................... 29

2.1.1 Declarations for rpcalccooviiiiiiiiiiiiia.. 29

2.1.2 Grammar Rules for rpcalc.......... ..., 30

2.1.2.1 Explanation of input......... oo 30

2.1.2.2 Explanation of line...........o, 31

2.1.2.3 Explanation of expr........l 31

2.1.3 The rpcalc Lexical Analyzer............................. 32

2.1.4 The Controlling Function............. 33

2.1.5 The Error Reporting Routine............................. 33

2.1.6 Running Bison to Make the Parser 34

2.1.7 Compiling the Parser File 34

2.2 Infix Notation Calculator: calc.............coiiiiiiiii.. 35

2.3 Simple Error Recovery ... 36

2.4 Location Tracking Calculator: 1tcalc....................o.... 37

2.4.1 Declarations for 1tcalcooueieiiiieiniieennne... 37

2.4.2 Grammar Rules for 1tcalc............oooiiiiii... 38

2.4.3 The 1tcalc Lexical Analyzer............................. 38

2.5 Multi-Function Calculator: mfcalc............ocoviiiiaa... 40

2.5.1 Declarations for mfcalccooveiiiieiiiienninn... 40

2.5.2 Grammar Rules formfcalc..........o ... 41

ii

2.5.3 The mfcalc Symbol Table..................., 42
2.6 EXOICISES. . .t 45
Bison Grammar Files 47
3.1 Outline of a Bison Grammar, 47
3.1.1 The prologue. ... 47
3.1.2 Prologue Alternatives ...t 48
3.1.3 The Bison Declarations Section........................... 52
3.1.4 The Grammar Rules Section.............................. 52
3.1.5 Theepilogue...... ..o 52
3.2 Symbols, Terminal and Nonterminal........................... 52
3.3 Syntax of Grammar Rules........... 54
3.4 Recursive Rules......... .o 55
3.5 Defining Language Semantics.ooiiiiiiieiiia.. 56
3.5.1 Data Types of Semantic Values........................... 56
3.5.2 More Than One Value Type............ooooiiiiiiiii.. 56
3.5.3 ACHIONS ..o 57
3.5.4 Data Types of Values in Actions.......................... 58
3.5.5 Actions in Mid-Rule......... 58
3.6 Tracking Locations. ..., 61
3.6.1 Data Type of Locations ...t 61
3.6.2 Actions and Locations............ o i, 62
3.6.3 Default Action for Locations 63
3.7 Bison Declarations............. . i 64
3.7.1 Require a Version of Bison, 64
3.7.2 Token Type Names........oovuuiiiiiiii i 64
3.7.3 Operator Precedence 65
3.7.4 The Collection of Value Types...............cooiiiia.. 66
3.7.5 Nonterminal Symbols.......... 66
3.7.6 Performing Actions before Parsing........................ 67
3.7.7 Freeing Discarded Symbols........... i 67
3.7.8 Suppressing Conflict Warnings. 69
3.7.9 The Start-Symbol o 69
3.7.10 A Pure (Reentrant) Parser.............................. 70

3. 711 A PushParser......... ..., 70
3.7.12 Bison Declaration Summary.............. 72
3.8 Multiple Parsers in the Same Program......................... 78
Parser C-Language Interface 79
4.1 The Parser Function yyparse, 79
4.2 The Push Parser Function yypush_parse...................... 80
4.3 The Pull Parser Function yypull_parse....................... 80
4.4 The Parser Create Function yystate_new..................... 80
4.5 The Parser Delete Function yystate_delete.................. 80
4.6 The Lexical Analyzer Function yylext 81
4.6.1 Calling Convention for yylex............ ..., 81
4.6.2 Semantic Values of Tokens 82

4.6.3 Textual Locations of Tokens............ ... i, 82

Bison 2.4.1

4.6.4 Calling Conventions for Pure Parsers..................... 83
4.7 The Error Reporting Function yyerror........................ 84
4.8 Special Features for Use in Actions............................ 85
4.9 Parser Internationalizationol 87

The Bison Parser Algorithm.................. 89
5.1 Lookahead Tokens i 89
5.2 Shift/Reduce Conflictst 90
5.3 Operator Precedence.......... ..., 91

5.3.1 When Precedence is Needed 91

5.3.2 Specifying Operator Precedence 92

5.3.3 Precedence Examples..............oiiiiiiiiiiii... 92

5.3.4 How Precedence Works. ..., 92
5.4 Context-Dependent Precedence................................ 93
5.5 Parser States.........c.ooiiiiiii 93
5.6 Reduce/Reduce Conflicts..... ... 94
5.7 Mysterious Reduce/Reduce Conflicts....................... .. 95
5.8 Generalized LR (GLR) Parsing, 97
5.9 Memory Management, and How to Avoid Memory Exhaustion

... 99
Error Recovery 101
Handling Context Dependencies............ 103

7.1 Semantic Info in Token Types............coiiiiiiiii .. 103
7.2 Lexical Tie-inso 104
7.3 Lexical Tie-ins and Error Recovery........................... 105

Debugging Your Parser...................... 107
8.1 Understanding Your Parsero oL, 107
8.2 Tracing Your Parser 113

Invoking Bison 115
9.1 Bison Optionsooiutii 115
9.2 Option Cross Key. ... 118

9.3 Yacc Library. ... 119

iii

iv

10 Parsers Written In Other Languages...... 121
10.1 CH Parsers . ..ot 121
10.1.1 C++ Bison Interface...............oo i 121
10.1.2 C++ Semantic Values................ ..., 121
10.1.3 C++ Location Values...............oo ... 122
10.1.4 C++ Parser Interface............. ... 123
10.1.5 C++ Scanner Interface............ 123
10.1.6 A Complete C++ Example, 123
10.1.6.1 Calc++ — C++ Calculator....................... 124

10.1.6.2 Calc++ Parsing Driver.......... 124

10.1.6.3 Calct++ Parser....... ... 126

10.1.6.4 Calc++ Scanneroiiiiiieiinn.. 128

10.1.6.5 Calc++ Top Level ... 130

10.2 Java Parsers........... i 130
10.2.1 Java Bison Interface.......... 130
10.2.2 Java Semantic Values 131
10.2.3 Java Location Values.......... 131
10.2.4 Java Parser Interface............. 132
10.2.5 Java Scanner Interface 133
10.2.6 Special Features for Use in Java Actions................ 134
10.2.7 Differences between C/C++ and Java Grammars. 135
10.2.8 Java Declarations Summaryoooiiiii.. 136

11 Frequently Asked Questions 139
11.1 Memory Exhaustedo i 139
11.2 How Can I Reset the Parser........, 139
11.3 Strings are Destroyedot 140
11.4 Implementing Gotos/LoOpSouvuiiiiiiiiiiii . 141
11.5 Multiple start-symbols......... ... i i 141
11.6 Secure? Conform?ooiiiiimiiiia 142
11.7 Tcan’t build Bison...........c i 142
11.8 Where can I find help?.......... ... i 142
11.9 Bug Reports.... ... 143
11.10 More Languagesottt 143
11.11 Beta Testing.......oooviii e 143
11.12 Mailing Lists ..o 144
Appendix A Bison Symbols................... 145
Appendix B Glossary.......................... 153
Appendix C Copying This Manual........... 157

Bison 2.4.1

Introduction 1

Introduction

Bison is a general-purpose parser generator that converts an annotated context-free gram-
mar into an LALR(1) or GLR parser for that grammar. Once you are proficient with Bison,
you can use it to develop a wide range of language parsers, from those used in simple desk
calculators to complex programming languages.

Bison is upward compatible with Yacc: all properly-written Yacc grammars ought to
work with Bison with no change. Anyone familiar with Yacc should be able to use Bison
with little trouble. You need to be fluent in C or C++ programming in order to use Bison
or to understand this manual.

We begin with tutorial chapters that explain the basic concepts of using Bison and show
three explained examples, each building on the last. If you don’t know Bison or Yacc,
start by reading these chapters. Reference chapters follow which describe specific aspects
of Bison in detail.

Bison was written primarily by Robert Corbett; Richard Stallman made it
Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added multi-character
string literals and other features.

This edition corresponds to version 2.4.1 of Bison.

Conditions for Using Bison 3

Conditions for Using Bison

The distribution terms for Bison-generated parsers permit using the parsers in nonfree
programs. Before Bison version 2.2, these extra permissions applied only when Bison was
generating LALR(1) parsers in C. And before Bison version 1.24, Bison-generated parsers
could be used only in programs that were free software.

The other GNU programming tools, such as the GNU C compiler, have never had such
a requirement. They could always be used for nonfree software. The reason Bison was
different was not due to a special policy decision; it resulted from applying the usual General
Public License to all of the Bison source code.

The output of the Bison utility—the Bison parser file—contains a verbatim copy of a
sizable piece of Bison, which is the code for the parser’s implementation. (The actions from
your grammar are inserted into this implementation at one point, but most of the rest of
the implementation is not changed.) When we applied the GPL terms to the skeleton code
for the parser’s implementation, the effect was to restrict the use of Bison output to free
software.

We didn’t change the terms because of sympathy for people who want to make software
proprietary. Software should be free. But we concluded that limiting Bison’s use to free
software was doing little to encourage people to make other software free. So we decided to
make the practical conditions for using Bison match the practical conditions for using the
other GNU tools.

This exception applies when Bison is generating code for a parser. You can tell whether
the exception applies to a Bison output file by inspecting the file for text beginning with
“As a special exception. ..”. The text spells out the exact terms of the exception.

GNU GENERAL PUBLIC LICENSE 5

GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007
Copyright (©) 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

http://fsf.org/

6 Bison 2.4.1

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

GNU GENERAL PUBLIC LICENSE 7

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.
3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

Bison 2.4.1

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c¢. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

GNU GENERAL PUBLIC LICENSE 9

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

¢. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

10

Bison 2.4.1

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

GNU GENERAL PUBLIC LICENSE 11

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

12

10.

11.

Bison 2.4.1

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

GNU GENERAL PUBLIC LICENSE 13

12.

13.

14.

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

Revised Versions of this License.

14

15.

16.

17.

Bison 2.4.1

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

GNU GENERAL PUBLIC LICENSE 15

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show ¢’ for details.
The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a

GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it more
useful to permit linking proprietary applications with the library. If this is what you want
to do, use the GNU Lesser General Public License instead of this License. But first, please
read http://www.gnu.org/philosophy/why-not-1gpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html

Chapter 1: The Concepts of Bison 17

1 The Concepts of Bison

This chapter introduces many of the basic concepts without which the details of Bison will
not make sense. If you do not already know how to use Bison or Yacc, we suggest you start
by reading this chapter carefully.

1.1 Languages and Context-Free Grammars

In order for Bison to parse a language, it must be described by a context-free grammar.
This means that you specify one or more syntactic groupings and give rules for constructing
them from their parts. For example, in the C language, one kind of grouping is called an
‘expression’. One rule for making an expression might be, “An expression can be made of a
minus sign and another expression”. Another would be, “An expression can be an integer”.
As you can see, rules are often recursive, but there must be at least one rule which leads
out of the recursion.

The most common formal system for presenting such rules for humans to read is Backus-
Naur Form or “BNF”, which was developed in order to specify the language Algol 60. Any
grammar expressed in BNF is a context-free grammar. The input to Bison is essentially
machine-readable BNF.

There are various important subclasses of context-free grammar. Although it can handle
almost all context-free grammars, Bison is optimized for what are called LALR(1) grammars.
In brief, in these grammars, it must be possible to tell how to parse any portion of an input
string with just a single token of lookahead. Strictly speaking, that is a description of
an LR(1) grammar, and LALR(1) involves additional restrictions that are hard to explain
simply; but it is rare in actual practice to find an LR(1) grammar that fails to be LALR(1).
See Section 5.7 [Mysterious Reduce/Reduce Conflicts], page 95, for more information on
this.

Parsers for LALR(1) grammars are deterministic, meaning roughly that the next gram-
mar rule to apply at any point in the input is uniquely determined by the preceding input
and a fixed, finite portion (called a lookahead) of the remaining input. A context-free gram-
mar can be ambiguous, meaning that there are multiple ways to apply the grammar rules to
get the same inputs. Even unambiguous grammars can be nondeterministic, meaning that
no fixed lookahead always suffices to determine the next grammar rule to apply. With the
proper declarations, Bison is also able to parse these more general context-free grammars,
using a technique known as GLR parsing (for Generalized LR). Bison’s GLR parsers are able
to handle any context-free grammar for which the number of possible parses of any given
string is finite.

In the formal grammatical rules for a language, each kind of syntactic unit or grouping
is named by a symbol. Those which are built by grouping smaller constructs according
to grammatical rules are called nonterminal symbols; those which can’t be subdivided
are called terminal symbols or token types. We call a piece of input corresponding to a
single terminal symbol a token, and a piece corresponding to a single nonterminal symbol
a grouping.

We can use the C language as an example of what symbols, terminal and nonterminal,
mean. The tokens of C are identifiers, constants (numeric and string), and the various key-
words, arithmetic operators and punctuation marks. So the terminal symbols of a grammar

18 Bison 2.4.1

for C include ‘identifier’, ‘number’; ‘string’, plus one symbol for each keyword, operator
or punctuation mark: ‘if’, ‘return’; ‘const’, ‘static’, ‘int’, ‘char’; ‘plus-sign’, ‘open-brace’,
‘close-brace’, ‘comma’ and many more. (These tokens can be subdivided into characters,
but that is a matter of lexicography, not grammar.)

Here is a simple C function subdivided into tokens:

int /* keyword ‘int’ */
square (int x) /* identifier, open-paren, keyword ‘int’, identifier, close-paren */
{ /* open-brace */

return x * x; /* keyword ‘return’, identifier, asterisk, identifier, semicolon */
} /* close-brace */

The syntactic groupings of C include the expression, the statement, the declaration,
and the function definition. These are represented in the grammar of C by nonterminal
symbols ‘expression’, ‘statement’, ‘declaration’ and ‘function definition’. The full grammar
uses dozens of additional language constructs, each with its own nonterminal symbol, in
order to express the meanings of these four. The example above is a function definition;
it contains one declaration, and one statement. In the statement, each ‘x’ is an expression
and so is ‘x * x’.

Each nonterminal symbol must have grammatical rules showing how it is made out of
simpler constructs. For example, one kind of C statement is the return statement; this
would be described with a grammar rule which reads informally as follows:

A ‘statement’ can be made of a ‘return’ keyword, an ‘expression’ and a ‘semi-
colon’.

There would be many other rules for ‘statement’; one for each kind of statement in C.

One nonterminal symbol must be distinguished as the special one which defines a com-
plete utterance in the language. It is called the start symbol. In a compiler, this means a
complete input program. In the C language, the nonterminal symbol ‘sequence of definitions
and declarations’ plays this role.

For example, ‘1 + 2’ is a valid C expression—a valid part of a C program—Dbut it is not
valid as an entire C program. In the context-free grammar of C, this follows from the fact
that ‘expression’ is not the start symbol.

The Bison parser reads a sequence of tokens as its input, and groups the tokens using the
grammar rules. If the input is valid, the end result is that the entire token sequence reduces
to a single grouping whose symbol is the grammar’s start symbol. If we use a grammar for
C, the entire input must be a ‘sequence of definitions and declarations’. If not, the parser
reports a syntax error.

1.2 From Formal Rules to Bison Input

A formal grammar is a mathematical construct. To define the language for Bison, you must
write a file expressing the grammar in Bison syntax: a Bison grammar file. See Chapter 3
[Bison Grammar Files], page 47.

A nonterminal symbol in the formal grammar is represented in Bison input as an iden-
tifier, like an identifier in C. By convention, it should be in lower case, such as expr, stmt
or declaration.

Chapter 1: The Concepts of Bison 19

The Bison representation for a terminal symbol is also called a token type. Token types
as well can be represented as C-like identifiers. By convention, these identifiers should be
upper case to distinguish them from nonterminals: for example, INTEGER, IDENTIFIER,
IF or RETURN. A terminal symbol that stands for a particular keyword in the language
should be named after that keyword converted to upper case. The terminal symbol error
is reserved for error recovery. See Section 3.2 [Symbols|, page 52.

A terminal symbol can also be represented as a character literal, just like a C character
constant. You should do this whenever a token is just a single character (parenthesis,
plus-sign, etc.): use that same character in a literal as the terminal symbol for that token.

A third way to represent a terminal symbol is with a C string constant containing several
characters. See Section 3.2 [Symbols|, page 52, for more information.

The grammar rules also have an expression in Bison syntax. For example, here is the
Bison rule for a C return statement. The semicolon in quotes is a literal character token,
representing part of the C syntax for the statement; the naked semicolon, and the colon,
are Bison punctuation used in every rule.

stmt: RETURN expr ’;°

See Section 3.3 [Syntax of Grammar Rules|, page 54.

1.3 Semantic Values

A formal grammar selects tokens only by their classifications: for example, if a rule mentions
the terminal symbol ‘integer constant’, it means that any integer constant is grammatically
valid in that position. The precise value of the constant is irrelevant to how to parse the
input: if ‘x+4’ is grammatical then ‘x+1’ or ‘x+3989’ is equally grammatical.

But the precise value is very important for what the input means once it is parsed.
A compiler is useless if it fails to distinguish between 4, 1 and 3989 as constants in the
program! Therefore, each token in a Bison grammar has both a token type and a semantic
value. See Section 3.5 [Defining Language Semantics], page 56, for details.

The token type is a terminal symbol defined in the grammar, such as INTEGER,
IDENTIFIER or ’,’. It tells everything you need to know to decide where the token may
validly appear and how to group it with other tokens. The grammar rules know nothing
about tokens except their types.

The semantic value has all the rest of the information about the meaning of the token,
such as the value of an integer, or the name of an identifier. (A token such as ’,’ which is
just punctuation doesn’t need to have any semantic value.)

For example, an input token might be classified as token type INTEGER and have the
semantic value 4. Another input token might have the same token type INTEGER but
value 3989. When a grammar rule says that INTEGER is allowed, either of these tokens is
acceptable because each is an INTEGER. When the parser accepts the token, it keeps track
of the token’s semantic value.

Each grouping can also have a semantic value as well as its nonterminal symbol. For
example, in a calculator, an expression typically has a semantic value that is a number. In
a compiler for a programming language, an expression typically has a semantic value that
is a tree structure describing the meaning of the expression.

20 Bison 2.4.1

1.4 Semantic Actions

In order to be useful, a program must do more than parse input; it must also produce some
output based on the input. In a Bison grammar, a grammar rule can have an action made
up of C statements. Each time the parser recognizes a match for that rule, the action is
executed. See Section 3.5.3 [Actions], page 57.

Most of the time, the purpose of an action is to compute the semantic value of the whole
construct from the semantic values of its parts. For example, suppose we have a rule which
says an expression can be the sum of two expressions. When the parser recognizes such a
sum, each of the subexpressions has a semantic value which describes how it was built up.
The action for this rule should create a similar sort of value for the newly recognized larger
expression.

For example, here is a rule that says an expression can be the sum of two subexpressions:
expr: expr ’+’ expr { $$ = $1 + $3; 2

The action says how to produce the semantic value of the sum expression from the values
of the two subexpressions.

1.5 Writing GLR Parsers

In some grammars, Bison’s standard LALR(1) parsing algorithm cannot decide whether
to apply a certain grammar rule at a given point. That is, it may not be able to decide
(on the basis of the input read so far) which of two possible reductions (applications of a
grammar rule) applies, or whether to apply a reduction or read more of the input and apply
a reduction later in the input. These are known respectively as reduce/reduce conflicts
(see Section 5.6 [Reduce/Reduce|, page 94), and shift/reduce conflicts (see Section 5.2
[Shift /Reduce], page 90).

To use a grammar that is not easily modified to be LALR(1), a more general parsing
algorithm is sometimes necessary. If you include %glr-parser among the Bison declarations
in your file (see Section 3.1 [Grammar Outline], page 47), the result is a Generalized LR
(GLR) parser. These parsers handle Bison grammars that contain no unresolved conflicts
(i.e., after applying precedence declarations) identically to LALR(1) parsers. However, when
faced with unresolved shift/reduce and reduce/reduce conflicts, GLR parsers use the simple
expedient of doing both, effectively cloning the parser to follow both possibilities. Each of
the resulting parsers can again split, so that at any given time, there can be any number
of possible parses being explored. The parsers proceed in lockstep; that is, all of them
consume (shift) a given input symbol before any of them proceed to the next. Each of the
cloned parsers eventually meets one of two possible fates: either it runs into a parsing error,
in which case it simply vanishes, or it merges with another parser, because the two of them
have reduced the input to an identical set of symbols.

During the time that there are multiple parsers, semantic actions are recorded, but not
performed. When a parser disappears, its recorded semantic actions disappear as well, and
are never performed. When a reduction makes two parsers identical, causing them to merge,
Bison records both sets of semantic actions. Whenever the last two parsers merge, reverting
to the single-parser case, Bison resolves all the outstanding actions either by precedences
given to the grammar rules involved, or by performing both actions, and then calling a

Chapter 1: The Concepts of Bison 21

designated user-defined function on the resulting values to produce an arbitrary merged
result.

1.5.1 Using GLR on Unambiguous Grammars

In the simplest cases, you can use the GLR algorithm to parse grammars that are unam-
biguous, but fail to be LALR(1). Such grammars typically require more than one symbol of
lookahead, or (in rare cases) fall into the category of grammars in which the LALR(1) algo-
rithm throws away too much information (they are in LR(1), but not LALR(1), Section 5.7
[Mystery Conflicts], page 95).

Consider a problem that arises in the declaration of enumerated and subrange types in
the programming language Pascal. Here are some examples:

type subrange = lo .. hi;
type enum = (a, b, c);

The original language standard allows only numeric literals and constant identifiers for the
subrange bounds (‘1lo’ and ‘hi’), but Extended Pascal (ISO/IEC 10206) and many other
Pascal implementations allow arbitrary expressions there. This gives rise to the following
situation, containing a superfluous pair of parentheses:

type subrange = (a) .. b;
Compare this to the following declaration of an enumerated type with only one value:
type enum = (a);

(These declarations are contrived, but they are syntactically valid, and more-complicated
cases can come up in practical programs.)

These two declarations look identical until the ‘..’ token. With normal LALR(1) one-
token lookahead it is not possible to decide between the two forms when the identifier ‘a’
is parsed. It is, however, desirable for a parser to decide this, since in the latter case ‘a’
must become a new identifier to represent the enumeration value, while in the former case
‘a’ must be evaluated with its current meaning, which may be a constant or even a function
call.

You could parse ‘(a)’ as an “unspecified identifier in parentheses”, to be resolved later,
but this typically requires substantial contortions in both semantic actions and large parts
of the grammar, where the parentheses are nested in the recursive rules for expressions.

You might think of using the lexer to distinguish between the two forms by returning
different tokens for currently defined and undefined identifiers. But if these declarations
occur in a local scope, and ‘a’ is defined in an outer scope, then both forms are possible—
either locally redefining ‘a’, or using the value of ‘a’ from the outer scope. So this approach
cannot work.

A simple solution to this problem is to declare the parser to use the GLR algorithm.
When the GLR parser reaches the critical state, it merely splits into two branches and
pursues both syntax rules simultaneously. Sooner or later, one of them runs into a parsing
error. If there is a ‘..’ token before the next ¢;’, the rule for enumerated types fails since
it cannot accept ‘..’ anywhere; otherwise, the subrange type rule fails since it requires

a ‘..’ token. So one of the branches fails silently, and the other one continues normally,
performing all the intermediate actions that were postponed during the split.

22 Bison 2.4.1

If the input is syntactically incorrect, both branches fail and the parser reports a syntax
error as usual.

The effect of all this is that the parser seems to “guess” the correct branch to take, or
in other words, it seems to use more lookahead than the underlying LALR(1) algorithm
actually allows for. In this example, LALR(2) would suffice, but also some cases that are
not LALR(k) for any k£ can be handled this way.

In general, a GLR parser can take quadratic or cubic worst-case time, and the current
Bison parser even takes exponential time and space for some grammars. In practice, this
rarely happens, and for many grammars it is possible to prove that it cannot happen. The
present example contains only one conflict between two rules, and the type-declaration
context containing the conflict cannot be nested. So the number of branches that can exist
at any time is limited by the constant 2, and the parsing time is still linear.

Here is a Bison grammar corresponding to the example above. It parses a vastly simpli-
fied form of Pascal type declarations.

%token TYPE DOTDOT ID

hleft 747 7=
%left)% ;/7

oo

type_decl : TYPE ID ’=’ type ’;’

b

type : ’(’ id_list ’)’
| expr DOTDOT expr

’

id_list : ID
| id_1ist ’,’ ID

expr : ’(’ expr ’)’

| expr ’+’ expr
| expr ’-’ expr
| expr ’*’ expr
| expr ’/’ expr
| ID

When used as a normal LALR(1) grammar, Bison correctly complains about one re-
duce/reduce conflict. In the conflicting situation the parser chooses one of the alternatives,
arbitrarily the one declared first. Therefore the following correct input is not recognized:

type t = (@) .. b;

Chapter 1: The Concepts of Bison 23

The parser can be turned into a GLR parser, while also telling Bison to be silent about
the one known reduce/reduce conflict, by adding these two declarations to the Bison input
file (before the first ‘%%’):

hglr-parser

hexpect-rr 1
No change in the grammar itself is required. Now the parser recognizes all valid declarations,
according to the limited syntax above, transparently. In fact, the user does not even notice
when the parser splits.

So here we have a case where we can use the benefits of GLR, almost without disadvan-
tages. Even in simple cases like this, however, there are at least two potential problems
to beware. First, always analyze the conflicts reported by Bison to make sure that GLR
splitting is only done where it is intended. A GLR parser splitting inadvertently may cause
problems less obvious than an LALR parser statically choosing the wrong alternative in a
conflict. Second, consider interactions with the lexer (see Section 7.1 [Semantic Tokens],
page 103) with great care. Since a split parser consumes tokens without performing any
actions during the split, the lexer cannot obtain information via parser actions. Some cases
of lexer interactions can be eliminated by using GLR to shift the complications from the
lexer to the parser. You must check the remaining cases for correctness.

In our example, it would be safe for the lexer to return tokens based on their current
meanings in some symbol table, because no new symbols are defined in the middle of a type
declaration. Though it is possible for a parser to define the enumeration constants as they
are parsed, before the type declaration is completed, it actually makes no difference since
they cannot be used within the same enumerated type declaration.

1.5.2 Using GLR to Resolve Ambiguities

Let’s consider an example, vastly simplified from a C++ grammar.

hi
#include <stdio.h>
#define YYSTYPE char const *
int yylex (void);
void yyerror (char const *);

%}
token TYPENAME ID

hright ’=’
hleft >+

hglr-parser
Yotk
prog :

| prog stmt { printf ("\n"); }

’

24 Bison 2.4.1

stmt : expr ’;’ Ydprec 1
| decl %dprec 2

expr : ID { printf ("%s ", 3);
| TYPENAME ’(° expr ’)’
{ printf ("%s <cast> ", $1); }
| expr ’+’ expr { printf ("+ "); }
| expr ’=’ expr { printf ("= "); }

decl : TYPENAME declarator ’;’
{ printf ("%s <declare> ", $1); }
| TYPENAME declarator ’=’ expr ’;’
{ printf ("%s <init-declare> ", $1); }

declarator : ID { printf ("\"%s\" ", $1); }
| >’ declarator ’)’

This models a problematic part of the C++ grammar—the ambiguity between certain dec-
larations and statements. For example,

T (x) = y+z;
parses as either an expr or a stmt (assuming that ‘T’ is recognized as a TYPENAME and
‘x” as an ID). Bison detects this as a reduce/reduce conflict between the rules expr : ID
and declarator : ID, which it cannot resolve at the time it encounters x in the example
above. Since this is a GLR parser, it therefore splits the problem into two parses, one for each
choice of resolving the reduce/reduce conflict. Unlike the example from the previous section
(see Section 1.5.1 [Simple GLR Parsers|, page 21), however, neither of these parses “dies,”
because the grammar as it stands is ambiguous. One of the parsers eventually reduces stmt
: expr ’;’ and the other reduces stmt : decl, after which both parsers are in an identical
state: they’ve seen ‘prog stmt’ and have the same unprocessed input remaining. We say
that these parses have merged.

At this point, the GLR parser requires a specification in the grammar of how to choose
between the competing parses. In the example above, the two %dprec declarations specify
that Bison is to give precedence to the parse that interprets the example as a decl, which
implies that x is a declarator. The parser therefore prints

"x" y z + T <init-declare>

The %dprec declarations only come into play when more than one parse survives. Con-
sider a different input string for this parser:

T (x) +y;
This is another example of using GLR to parse an unambiguous construct, as shown in
the previous section (see Section 1.5.1 [Simple GLR Parsers|, page 21). Here, there is no

ambiguity (this cannot be parsed as a declaration). However, at the time the Bison parser
encounters x, it does not have enough information to resolve the reduce/reduce conflict

Chapter 1: The Concepts of Bison 25

(again, between x as an expr or a declarator). In this case, no precedence declaration
is used. Again, the parser splits into two, one assuming that x is an expr, and the other
assuming x is a declarator. The second of these parsers then vanishes when it sees +, and
the parser prints

x T <cast> y +

Suppose that instead of resolving the ambiguity, you wanted to see all the possibilities.
For this purpose, you must merge the semantic actions of the two possible parsers, rather
than choosing one over the other. To do so, you could change the declaration of stmt as
follows:

stmt : expr ’;’ Ymerge <stmtMerge>
| decl Jmerge <stmtMerge>

b

and define the stmtMerge function as:

static YYSTYPE
stmtMerge (YYSTYPE x0, YYSTYPE x1)
{

printf ("<OR> ");

return "";

}

with an accompanying forward declaration in the C declarations at the beginning of the
file:

YA,
#define YYSTYPE char const x*
static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);

%}

With these declarations, the resulting parser parses the first example as both an expr and
a decl, and prints

Nt y z + T <init-declare> x T <cast> y z + = <0R>

Bison requires that all of the productions that participate in any particular merge have
identical ‘/merge’ clauses. Otherwise, the ambiguity would be unresolvable, and the parser
will report an error during any parse that results in the offending merge.

1.5.3 GLR Semantic Actions

By definition, a deferred semantic action is not performed at the same time as the associated
reduction. This raises caveats for several Bison features you might use in a semantic action
in a GLR parser.

In any semantic action, you can examine yychar to determine the type of the lookahead
token present at the time of the associated reduction. After checking that yychar is not set
to YYEMPTY or YYEQF, you can then examine yylval and yylloc to determine the lookahead
token’s semantic value and location, if any. In a nondeferred semantic action, you can also
modify any of these variables to influence syntax analysis. See Section 5.1 [Lookahead
Tokens|, page 89.

In a deferred semantic action, it’s too late to influence syntax analysis. In this case,
yychar, yylval, and yylloc are set to shallow copies of the values they had at the time

26 Bison 2.4.1

of the associated reduction. For this reason alone, modifying them is dangerous. Moreover,
the result of modifying them is undefined and subject to change with future versions of
Bison. For example, if a semantic action might be deferred, you should never write it to
invoke yyclearin (see Section 4.8 [Action Features|, page 85) or to attempt to free memory
referenced by yylval.

Another Bison feature requiring special consideration is YYERROR (see Section 4.8 [Action
Features|, page 85), which you can invoke in a semantic action to initiate error recovery.
During deterministic GLR operation, the effect of YYERROR is the same as its effect in an
LALR(1) parser. In a deferred semantic action, its effect is undefined.

Also, see Section 3.6.3 [Default Action for Locations|, page 63, which describes a special
usage of YYLLOC_DEFAULT in GLR parsers.

1.5.4 Considerations when Compiling GLR Parsers

The GLR parsers require a compiler for ISO C89 or later. In addition, they use the inline
keyword, which is not C89, but is C99 and is a common extension in pre-C99 compilers. It
is up to the user of these parsers to handle portability issues. For instance, if using Autoconf
and the Autoconf macro AC_C_INLINE, a mere

hi

#include <config.h>

%}

will suffice. Otherwise, we suggest

YA
#if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
#define inline
#endif

h}

1.6 Locations

Many applications, like interpreters or compilers, have to produce verbose and useful error
messages. To achieve this, one must be able to keep track of the textual location, or location,
of each syntactic construct. Bison provides a mechanism for handling these locations.

Each token has a semantic value. In a similar fashion, each token has an associated
location, but the type of locations is the same for all tokens and groupings. Moreover, the
output parser is equipped with a default data structure for storing locations (see Section 3.6
[Locations], page 61, for more details).

Like semantic values, locations can be reached in actions using a dedicated set of con-
structs. In the example above, the location of the whole grouping is @$, while the locations
of the subexpressions are @1 and @3.

When a rule is matched, a default action is used to compute the semantic value of its left
hand side (see Section 3.5.3 [Actions|, page 57). In the same way, another default action
is used for locations. However, the action for locations is general enough for most cases,
meaning there is usually no need to describe for each rule how @$ should be formed. When
building a new location for a given grouping, the default behavior of the output parser is
to take the beginning of the first symbol, and the end of the last symbol.

Chapter 1: The Concepts of Bison 27

1.7 Bison Output: the Parser File

When you run Bison, you give it a Bison grammar file as input. The output is a C source file
that parses the language described by the grammar. This file is called a Bison parser. Keep
in mind that the Bison utility and the Bison parser are two distinct programs: the Bison
utility is a program whose output is the Bison parser that becomes part of your program.

The job of the Bison parser is to group tokens into groupings according to the grammar
rules—for example, to build identifiers and operators into expressions. As it does this, it
runs the actions for the grammar rules it uses.

The tokens come from a function called the lexical analyzer that you must supply in some
fashion (such as by writing it in C). The Bison parser calls the lexical analyzer each time it
wants a new token. It doesn’t know what is “inside” the tokens (though their semantic values
may reflect this). Typically the lexical analyzer makes the tokens by parsing characters of
text, but Bison does not depend on this. See Section 4.6 [The Lexical Analyzer Function
yylex|, page 81.

The Bison parser file is C code which defines a function named yyparse which implements
that grammar. This function does not make a complete C program: you must supply some
additional functions. One is the lexical analyzer. Another is an error-reporting function
which the parser calls to report an error. In addition, a complete C program must start
with a function called main; you have to provide this, and arrange for it to call yyparse or
the parser will never run. See Chapter 4 [Parser C-Language Interface], page 79.

Aside from the token type names and the symbols in the actions you write, all symbols
defined in the Bison parser file itself begin with ‘yy’ or ‘YY’. This includes interface functions
such as the lexical analyzer function yylex, the error reporting function yyerror and the
parser function yyparse itself. This also includes numerous identifiers used for internal
purposes. Therefore, you should avoid using C identifiers starting with ‘yy’ or ‘YY’ in the
Bison grammar file except for the ones defined in this manual. Also, you should avoid using
the C identifiers ‘malloc’ and ‘free’ for anything other than their usual meanings.

In some cases the Bison parser file includes system headers, and in those cases your
code should respect the identifiers reserved by those headers. On some non-GNU hosts,
<alloca.h>, <malloc.h>, <stddef.h>, and <stdlib.h> are included as needed to declare
memory allocators and related types. <libintl.h> is included if message translation is in
use (see Section 4.9 [Internationalization], page 87). Other system headers may be included
if you define YYDEBUG to a nonzero value (see Section 8.2 [Tracing Your Parser|, page 113).

1.8 Stages in Using Bison

The actual language-design process using Bison, from grammar specification to a working
compiler or interpreter, has these parts:

1. Formally specify the grammar in a form recognized by Bison (see Chapter 3 [Bison
Grammar Files|, page 47). For each grammatical rule in the language, describe the
action that is to be taken when an instance of that rule is recognized. The action is
described by a sequence of C statements.

2. Write a lexical analyzer to process input and pass tokens to the parser. The lexical
analyzer may be written by hand in C (see Section 4.6 [The Lexical Analyzer Function
yylex]|, page 81). It could also be produced using Lex, but the use of Lex is not
discussed in this manual.

28 Bison 2.4.1

3. Write a controlling function that calls the Bison-produced parser.

4. Write error-reporting routines.

To turn this source code as written into a runnable program, you must follow these steps:
1. Run Bison on the grammar to produce the parser.
2. Compile the code output by Bison, as well as any other source files.
3. Link the object files to produce the finished product.

1.9 The Overall Layout of a Bison Grammar

The input file for the Bison utility is a Bison grammar file. The general form of a Bison
grammar file is as follows:

hi

Prologue

h}

Bison declarations

hle

Grammar rules

o

Epilogue
The ‘%%, ‘%{ and ‘%}’ are punctuation that appears in every Bison grammar file to separate
the sections.

The prologue may define types and variables used in the actions. You can also use
preprocessor commands to define macros used there, and use #include to include header
files that do any of these things. You need to declare the lexical analyzer yylex and the
error printer yyerror here, along with any other global identifiers used by the actions in
the grammar rules.

The Bison declarations declare the names of the terminal and nonterminal symbols, and
may also describe operator precedence and the data types of semantic values of various
symbols.

The grammar rules define how to construct each nonterminal symbol from its parts.

The epilogue can contain any code you want to use. Often the definitions of functions
declared in the prologue go here. In a simple program, all the rest of the program can go
here.

Chapter 2: Examples 29

2 Examples

Now we show and explain three sample programs written using Bison: a reverse polish
notation calculator, an algebraic (infix) notation calculator, and a multi-function calculator.
All three have been tested under BSD Unix 4.3; each produces a usable, though limited,
interactive desk-top calculator.

These examples are simple, but Bison grammars for real programming languages are
written the same way. You can copy these examples into a source file to try them.

2.1 Reverse Polish Notation Calculator

The first example is that of a simple double-precision reverse polish notation calculator (a
calculator using postfix operators). This example provides a good starting point, since oper-
ator precedence is not an issue. The second example will illustrate how operator precedence
is handled.

The source code for this calculator is named ‘rpcalc.y’. The ‘.y’ extension is a con-
vention used for Bison input files.

2.1.1 Declarations for rpcalc

Here are the C and Bison declarations for the reverse polish notation calculator. As in C,
comments are placed between ‘/*...*/’.

/* Reverse polish notation calculator. */

i
#define YYSTYPE double
#include <math.h>
int yylex (void);
void yyerror (char const *);

A
%token NUM

%% /* Grammar rules and actions follow. */

The declarations section (see Section 3.1.1 [The prologue], page 47) contains two pre-
processor directives and two forward declarations.

The #define directive defines the macro YYSTYPE, thus specifying the C data type for
semantic values of both tokens and groupings (see Section 3.5.1 [Data Types of Semantic
Values|, page 56). The Bison parser will use whatever type YYSTYPE is defined as; if you don’t
define it, int is the default. Because we specify double, each token and each expression
has an associated value, which is a floating point number.

The #include directive is used to declare the exponentiation function pow.

The forward declarations for yylex and yyerror are needed because the C language
requires that functions be declared before they are used. These functions will be defined in
the epilogue, but the parser calls them so they must be declared in the prologue.

30 Bison 2.4.1

The second section, Bison declarations, provides information to Bison about the token
types (see Section 3.1.3 [The Bison Declarations Section], page 52). Each terminal sym-
bol that is not a single-character literal must be declared here. (Single-character literals
normally don’t need to be declared.) In this example, all the arithmetic operators are des-
ignated by single-character literals, so the only terminal symbol that needs to be declared
is NUM, the token type for numeric constants.

2.1.2 Grammar Rules for rpcalc
Here are the grammar rules for the reverse polish notation calculator.

input: /* empty */
| input line

line: ’\n’
| exp ’\n’ { printf ("\t%.10g\n", $1); }
exp: NUM { 8% = 81
exp exp '+’ { $$ = $1 + $2;
exp exp =2 { $$ = $1 - $2;

W

|

|

| exp exp ’*° { $$ = $1 * $2;
| exp exp °/> { $$ = $1 / $2;
/* Exponentiation */

| exp exp ’7> { $$ = pow ($1, $2); }
/* Unary minus */

| exp ’n’ { $8 = -3$1; X

hlo
The groupings of the rpcalc “language” defined here are the expression (given the name
exp), the line of input (1ine), and the complete input transcript (input). Each of these
nonterminal symbols has several alternate rules, joined by the vertical bar ‘|’ which is read
as “or”. The following sections explain what these rules mean.

The semantics of the language is determined by the actions taken when a grouping
is recognized. The actions are the C code that appears inside braces. See Section 3.5.3
[Actions]|, page 57.

You must specify these actions in C, but Bison provides the means for passing semantic
values between the rules. In each action, the pseudo-variable $$ stands for the semantic
value for the grouping that the rule is going to construct. Assigning a value to $$ is the
main job of most actions. The semantic values of the components of the rule are referred
to as $1, $2, and so on.

2.1.2.1 Explanation of input

Consider the definition of input:

input: /* empty */
| input line

Chapter 2: Examples 31

This definition reads as follows: “A complete input is either an empty string, or a
complete input followed by an input line”. Notice that “complete input” is defined in terms
of itself. This definition is said to be left recursive since input appears always as the
leftmost symbol in the sequence. See Section 3.4 [Recursive Rules], page 55.

The first alternative is empty because there are no symbols between the colon and the
first ‘|’; this means that input can match an empty string of input (no tokens). We write
the rules this way because it is legitimate to type Ctrl-d right after you start the calculator.
It’s conventional to put an empty alternative first and write the comment ‘/* empty */’ in
it.

The second alternate rule (input line) handles all nontrivial input. It means, “After
reading any number of lines, read one more line if possible.” The left recursion makes this
rule into a loop. Since the first alternative matches empty input, the loop can be executed
7ero or more times.

The parser function yyparse continues to process input until a grammatical error is seen
or the lexical analyzer says there are no more input tokens; we will arrange for the latter
to happen at end-of-input.

2.1.2.2 Explanation of line
Now consider the definition of 1ine:

line: ’\n’
| exp ’\n’ { printf ("\t%.10g\n", $1); }

The first alternative is a token which is a newline character; this means that rpcalc
accepts a blank line (and ignores it, since there is no action). The second alternative is
an expression followed by a newline. This is the alternative that makes rpcalc useful. The
semantic value of the exp grouping is the value of $1 because the exp in question is the
first symbol in the alternative. The action prints this value, which is the result of the
computation the user asked for.

This action is unusual because it does not assign a value to $$. As a consequence, the
semantic value associated with the line is uninitialized (its value will be unpredictable).
This would be a bug if that value were ever used, but we don’t use it: once rpcalc has
printed the value of the user’s input line, that value is no longer needed.

2.1.2.3 Explanation of expr

The exp grouping has several rules, one for each kind of expression. The first rule handles
the simplest expressions: those that are just numbers. The second handles an addition-
expression, which looks like two expressions followed by a plus-sign. The third handles
subtraction, and so on.

exp: NUM
| exp exp ’+’ {88 = 81 + $2; }
| exp exp ’-’ { $8 = $1 - $2; }

32 Bison 2.4.1

We have used ‘|’ to join all the rules for exp, but we could equally well have written
them separately:

exp: NUM ;
exp: exp exp ’+’ { 8% = 81 + $2; s
exp: exp exp -’ { 8% = 81 - 825 }

Most of the rules have actions that compute the value of the expression in terms of the
value of its parts. For example, in the rule for addition, $1 refers to the first component exp
and $2 refers to the second one. The third component, ’+’, has no meaningful associated
semantic value, but if it had one you could refer to it as $3. When yyparse recognizes a
sum expression using this rule, the sum of the two subexpressions’ values is produced as
the value of the entire expression. See Section 3.5.3 [Actions|, page 57.

You don’t have to give an action for every rule. When a rule has no action, Bison by
default copies the value of $1 into $$. This is what happens in the first rule (the one that
uses NUM).

The formatting shown here is the recommended convention, but Bison does not require
it. You can add or change white space as much as you wish. For example, this:

exp : NUM | exp exp ’+’ {$$ =81+ $2; } | ... ;
means the same thing as this:
exp: NUM
| exp exp ’+’ {$$ =$1 + $2; }

3

The latter, however, is much more readable.

2.1.3 The rpcalc Lexical Analyzer

The lexical analyzer’s job is low-level parsing: converting characters or sequences of char-
acters into tokens. The Bison parser gets its tokens by calling the lexical analyzer. See
Section 4.6 [The Lexical Analyzer Function yylex|, page 81.

Only a simple lexical analyzer is needed for the RPN calculator. This lexical analyzer
skips blanks and tabs, then reads in numbers as double and returns them as NUM tokens.
Any other character that isn’t part of a number is a separate token. Note that the token-
code for such a single-character token is the character itself.

The return value of the lexical analyzer function is a numeric code which represents
a token type. The same text used in Bison rules to stand for this token type is also a
C expression for the numeric code for the type. This works in two ways. If the token
type is a character literal, then its numeric code is that of the character; you can use the
same character literal in the lexical analyzer to express the number. If the token type is an
identifier, that identifier is defined by Bison as a C macro whose definition is the appropriate
number. In this example, therefore, NUM becomes a macro for yylex to use.

The semantic value of the token (if it has one) is stored into the global variable yylval,
which is where the Bison parser will look for it. (The C data type of yylval is YYSTYPE,
which was defined at the beginning of the grammar; see Section 2.1.1 [Declarations for
rpcalc], page 29.)

Chapter 2: Examples 33

A token type code of zero is returned if the end-of-input is encountered. (Bison recognizes
any nonpositive value as indicating end-of-input.)

Here is the code for the lexical analyzer:

/* The lexical analyzer returns a double floating point
number on the stack and the token NUM, or the numeric code
of the character read if not a number. It skips all blanks
and tabs, and returns O for end-of-input. */

#include <ctype.h>

int
yylex (void)
{

int c;

/* Skip white space. */
while ((c = getchar ()) == 7 || ¢c == ’\t’)
/* Process numbers. */
if (c == 7.7 || isdigit (c))
{
ungetc (c, stdin);
scanf ("}1f", &yylval);
return NUM;
}
/* Return end-of-input. */
if (¢ == EOF)
return O;
/* Return a single char. */
return c;

}

2.1.4 The Controlling Function

In keeping with the spirit of this example, the controlling function is kept to the bare
minimum. The only requirement is that it call yyparse to start the process of parsing.
int
main (void)
{

return yyparse ();

}
2.1.5 The Error Reporting Routine

When yyparse detects a syntax error, it calls the error reporting function yyerror to print
an error message (usually but not always "syntax error"). It is up to the programmer
to supply yyerror (see Chapter 4 [Parser C-Language Interface], page 79), so here is the
definition we will use:

34 Bison 2.4.1

#include <stdio.h>

/* Called by yyparse on error. x*/
void
yyerror (char const *s)
{
fprintf (stderr, "%s\n", s);
¥

After yyerror returns, the Bison parser may recover from the error and continue parsing
if the grammar contains a suitable error rule (see Chapter 6 [Error Recovery], page 101).
Otherwise, yyparse returns nonzero. We have not written any error rules in this example,
so any invalid input will cause the calculator program to exit. This is not clean behavior
for a real calculator, but it is adequate for the first example.

2.1.6 Running Bison to Make the Parser

Before running Bison to produce a parser, we need to decide how to arrange all the source
code in one or more source files. For such a simple example, the easiest thing is to put
everything in one file. The definitions of yylex, yyerror and main go at the end, in the
epilogue of the file (see Section 1.9 [The Overall Layout of a Bison Grammar]|, page 28).

For a large project, you would probably have several source files, and use make to arrange
to recompile them.

With all the source in a single file, you use the following command to convert it into a
parser file:

bison file.y

In this example the file was called ‘rpcalc.y’ (for “Rev