
Project 4: Heaps

Background:
Pin numbers, much like every other human generated value, are not in the least bit random.
Typically speaking, it is much easier to “hack” a person than it is to hack a system or its
hardware. In cyber security, this is referred to as targeting the “wetware” as opposed to
targeting the software or hardware. Rather than guessing or brute forcing through pins
randomly, we can seed our algorithm with popular pins.

In 2013, a blogger posted an analysis of credit card pins showing that approximately ​50% of
user pins are covered within ​400 unique numbers (4% of available pins). Conversely, the last
10% of passwords are spread amongst 4,000 unique numbers. This would imply that you could
easily guess more than half user pins with 96% less effort than a standard brute force attack.

As it turns out, this problem isn’t just limited to pins, but to all facets of cyber security and human
(patterns of) life. Given any large dataset of ‘human generated’ data, you should expect to be
able to pick apart habits and casual relationships.

For this project, you will design min and max heaps that will make sorting and accessing high
priority data efficient. In our case, we want to try to guess the most commonly used
pins/passwords in order to get the most likely candidate as soon as possible by using a max
heap. Statistically speaking, the most common pins will be the most likely to be encountered,
and should show during your calls to ‘hack’. Conversely, you will also try your hand using the
least popular pins by implementing a min heap and trying them in order. For reference, in this
assignment, there is a ~10% chance of randomly succeeding with a marble bag full of all pins,
removing them without replacement.

Goal
Assuming that Instructor Almes is a real human being, and behaves and acts normally (see:
Normality), determine how many of his fictitious pin numbers you can hack before his bank
blocks you! His fictional bank with fictional cards and “normal pins” will allow you to incorrectly
attempt to access his card 3 times per hour. You have from the start of the assignment to the
end to hack as many accounts as possible (14 days * 24 hr/day * 3 attempts/hr = 1008 attempts
per card).

You will accomplish this by implementing min and max heaps. You will store pins that you have
read from a file into a vector, and increment a hit counter associated to each pin. This vector will
then generate the min/max heap. The provided hack method will then generate ‘normal’ pins,
test them against a faux bank using your generated heaps and attempt to compromise as many
pins as possible before returning a total count of successful hacks. The count is for your
prosperity and will only be used for bragging rights. Since your max heap will be prioritizing the
most commonly used pins, you should expect better odds than brute force (1:10).

Implementation of a min a heap is required in order to a) demonstrate your understanding of
heaps and b) show that ‘secure pins’ are not inherently secure, but more simply, used less in a
normal population.

There is nothing inherently secure about a number like 8068 other than the fact that a large
majority of people do not use that pin. If you knew someone read this blog, and is a securiphile,
you may be inclined to start from the bottom of the list during your brute force attack against
them.

UML

* Red: Instructor Supplied

Operations:
The following sections describe how your program should be implemented.

Heap
Implement a heap using templates that take in a class ‘Type’ and an int HeapSize. The heap
should be a single dynamically allocated array of ‘types’. Creating a heap could look like:
‘Heap<SomeClass, 32>();’

Heap()
The default constructor for a Heap. Initialize it however you see fit.

Heap(const Heap<T, int>& origHeap)
This constructor copies all the data members from the original heap and saves them in a
new heap.

bool Contains(const T& needle)
The contains method returns true if the needle is found in the Heap.

const T* Find(const T& needle) const
The contains method returns an object pointer of type T if the needle is in the Heap. This
function may take up to O(n). (Hint: this uses PinHits operator==)

T& Remove()
Removes and returns a T (by reference) from the heap. In the process of removal, the
heap is updated to maintain heap order. This function should run in O(n).

void Insert(T& insertable)
Given a T, insert will insert the new object into the heap. If the object already existed in
the heap, increment its number of hits by one. If needed, the object will percolate up.
This function should run in O(n).

void PercolateUp(int index)
This method is used internally on insert. This function should run in O(log n)

void PercolateDown(int index)
This method is used internally on insert. This function should run in O(log n)

MinValueHeap
A min count heap is a heap that uses the smallest values of a comparable (< == >) to prioritize
items. For example, the root node will always have the smallest value. In this case, it will be the
PinHit with the least hits. This class inherits from Heap. The implementation for this class is up
to you.

MaxValueHeap
A max count heap is a heap that uses the largest values of a comparable (< == >) to prioritize
items. For example, the root node will always have the largest value. In this case, it will be the
PinHit with the most hits. This class inherits from Heap.The implementation for this class is up to
you.

PinHit
Pin hits are simply Key Value pairs where the Key is the pin number and the Value is the
number of times that pin number was seen in the dataset. It’s constructor will take an integer pin
and optional number of hits with a default of 0 hits. Be sure to check that pins are between 0000
and 9999.

PinHit()
Initializes a PinHit with default values for PIN and frequency. By default the pin number
and number of hits should be -1,0.

PinHit(int key, int value)
Initializes a PinHit with the PIN and the number of hits (occurrences) it has.

void SetKey(int pin)
Sets the value of the pin.

int GetKey() const
Returns the pin number, used as a key in this key-value pair.

int GetValue() const
Returns the number of hits, used as a value in this key-value pair.

void IncrementHits()
Increments number of hits this pin has encountered.

int CompareTo(const PinHit& other)
Compares the Value (hits) of this PinHit. Returns 0 if they are the same, negative if this
is less than other or positive if this is greater than other. Note, this does not compare the
pin numbers in any way.

bool operator==(const PinHit& other)
Compare the Key (pins) against other for equality. If this pin is equivalent to other’s pin,
return true. Otherwise, return false.

Driver:
This cpp file is provided. However some methods need to be implemented.

vector<PinHit> ReadPins(char* fileName, int* totalHits)
Read the pin data dump into a vector of Pin Hits. Total hits is an out variable that you will
set in the method, tallying the total number of lines (pins) in the file. While “totalHits” is
originally passed in as zero, this function will return the final count of totalHits that the
vector contains.

After this function runs, the vector could look like:

[0] [1] ... [1001] ... [2343] ... [8783] ...

PinNumber 000
0

0001 ... 1001 ... 2343 ... 8783 ...

PinFreq 234 344 ... 1287 ... 2763 ... 6523 ...

Heap<T, int>* BuildHeap(vector<PinHit> PinHits, int slots)
This function takes the vector full of PinHits and the total size of the heap. and the type
of heap (--min or --max). (Hint: Pins range from 0 to 9999). It returns a pointer to the
heap you dynamically created.

int Hack(Heap<T, int>* heap, vector<PinHit> PinHits, int totalHits)
This function is ​provided to you​. It will take in a min or max heap and the vector of pins
that you read from the file. It will then randomly pick a pin from that vector and use your
heap to try to guess what the pin is. You have 1008 attempts (see above). Upon
success, a count of successful ‘hacks’ is returned. Try calling this function and
comparing the results of using a min heap vs a max heap.

Input File Example

SomeMadeUpInput.txt

0000
1021
0000
9284
0000
2954
1234
3656
4444
3333
0000
5454
9854
1093
2789
3421
8734
8732
1111
0000
3434
0000
6789
6968
9898
1254
1234
0000
…
1114

Running and Compiling Requirements
Running the driver, given a list of pins Input1.txt’ and the flag for min heaps:
 ./driver.out Input1.txt --min

Please compile and complete your work on your own directory on GL. I have had several
students that are compiling on mine (or slupoli/pub/cs341...). This takes up a lot of space and
my disk quota. My directory is only to be used a repository for your completed files. If this is
abused, your directory will be closed automatically by GL

An Example
Below is an example of a max heap that prioritizes popular phone numbers. This heap node is a
key value pair of <Phone Numbers, hits> much like your pin hit class:

Fun fact​: Cpp 14 allows you to use apostrophes to separate digits in numbers, making it easier
to read large numbers at a glance:

● 1234567890
● 1’234’567’890

One day in the distant future, when GL is updated, students will be able to use this feature. You
don’t have to wait forever though, try it at home or work.

What to Submit
Read the ​course project submission procedures​. ​Submission closes by script immediately after
9pm​ . Submit well before the 8:59pm deadline, because 9:00:01 might already be late (the script
takes only a few seconds to run). You should copy over all of your code under the src directory.
You must also supply a Makefile. Do NOT submit your own test data files. ​Any unnecessary
files submitted will be considered for a deduction​.

Make sure that your code is in the ~/cs341proj/proj4/src directory and not in any other
subdirectory of ~/cs341proj/proj4/. In particular, the following Unix commands should work.

cd ~/cs341proj/proj4/src

make

make run <name of file> --<max/min>
ie. make run Input1.txt --max

make clean

The command “make run” should simply run the project that compiled successfully. Don't forget
the Project Submission requirements shown online!! One hint, after you submit, if you type: ls
~/cs341proj/proj4/ and you see a bunch of .cpp and .h files, this is WRONG. You should see:
src instead. The C++ programs must be in directories under the src directory. Your submissions
will be compiled by a script. The script will go to your proj4 directory and run your makefile. This
is required. You will be severely penalized if you do not follow the submission instructions.

Testing Your Code
Not sure if your heap works? Simply create a test method that removes from your heap and
compare them to these pin lists using Input1.txt:

Common Pins (MaxValueHeap) Secure Pins (MinValueHeap)

1234
1111
0000
1212
7777
1004
2000
4444
2222
6969
9999
3333
5555
6666
1122
1313
8888
4321
2001
1010
909
2580
0007
1818
1230
1984
1986
0070
1985
1231
1987
1999
2468

8068
8093
6835
7637
9629
0738
8398
6793
8957
9480
0859
6827
7394
6093
7063
8196
0439
8438
9047
9539
6806
7993
8146
8343
8557
3794
6082
7065
8397
8539
8646
9695
9805
0675

Notes
You may have noticed that using a min heap with the BuildHeap method is terribly inefficient
(compared to max heaps), as the most common inserts/updates are statistically happening at
the bottom of the heap, whereas the max heap was much more frequently updating near the top
of the heap. Data structures can be pretty powerful, especially when used correctly.

Also, please note: this project is not going to help you hack bank accounts, or anything for that
matter. Modern systems would easily detect this kind of probing for account information. While
not nearly as inefficient as brute forcing, a lot of data does depend on more information about
the user. IE birthdays, anniversaries, etc. That being said, rainbow tables are a thing.

Please take time to read through the reference material as the article is interesting. And
remember, all passwords are very serious and should be created with little to no personally
identifiable information. When the majority of the population makes it too easy, who do you think
hackers will target first?

References
http://www.datagenetics.com/blog/september32012/
http://kestas.kuliukas.com/RainbowTables/

