CMSC 313

COMPUTER ORGANIZATION
&

ASSEMBLY LANGUAGE
PROGRAMMING

EXTRA MATERIALS 1, SPRING 2013

TOPICS NOT COVERED

 Jump Tables

« Some i386 String Instructions

JUMP TABLES

#include <stdio.h>

int main() {
char choice ;

printf("Make a selection [a, b, ¢, d or f]: ") ;
scanf("%c", &choice) ;

switch (choice) {

case 'a':
printf("Good choice!\n") ;
break ;

case 'b':
printf("b is my favorite\n") ;
break ;

case 'c':
printf("c is a popular selection\n") ;
break ;

case 'd':
printf("Sorry, we are fresh out of d\n") ;
break ;

case 'f':
printf("Not a good day for f. Try something else.\n") ;
break ;

default :
printf("Please pick one of the choices!\n") ;

}

return 0 ;

File: switch.asm

Demonstrate jump tables

Ne Ne Ne weo wo

¢$define STDIN 0

¢$define STDOUT 1
2define SYSCALL_ EXIT 1
2define SYSCALL_READ 3
2define SYSCALL WRITE 4
¢$define BUFLEN 256

SECTION .data ; initialized data section
mesgl: db "Make a selection [a, b, ¢, d or f]: "
lenl: equ $ - mesgl
err_mesg: db "Read Error", 10
err_len: equ $ - err_mesg

mesga: db "Good choice!", 10
lena: equ $ - mesga

mesgb: db "b is my favorite", 10
lenb: equ $ - mesgb

mesgc: db "c is a popular selection", 10
lenc: equ $ - mesgc

mesgd: db "Sorry, we are fresh out of d", 10
lend: equ $ - mesgd

mesgf: db "Not a good day for f. Try something else.", 10
lenf: equ S$-mesgf

dflt mesg: db "Please pick one of the choices!", 10
dflt _len: equ $ - dflt mesg

jump table:
dd do_a ; dd = "define double" = 32-bit data
dd do_b
dd do_c
dd do_d
dd do_default
dd do_f£f

SECTION .bss ; uninitialized data section
buf: resb BUFLEN ; buffer for read

_start:

read OK:

do_a:

do_b:

SECTION .text
global _start

prompt user for input

.
4
.
4

mov eax, SYSCALL WRITE
mov ebx, STDOUT

mov ecx, mesgl

mov edx, lenl

int 080h

read user input

7
7
mov eax, SYSCALL READ

mov ebx, STDIN
mov ecx, buf
mov edx, BUFLEN
int 080h

error check

.
4
.
4

cmp eax, 0

jg read_OK

mov eax, SYSCALL WRITE
mov ebx, STDOUT

mov ecx, err mesg

mov edx, err_ len

int 080h

jmp exit

mov eax, 0

mov al, [buf]

cmp al, 'a’

jb do _default

cmp al, 'f'

ja do _default

sub eax, 'a'

jmp [4*eax + jump table]
mov eax, SYSCALL WRITE
mov ebx, STDOUT

mov ecx, mesga

mov edx, lena

int 080h

jmp exit

mov eax, SYSCALL WRITE
mov ebx, STDOUT

mov ecx, mesgb

mov edx, lenb

int 080h

jmp exit

Ne Ne Neo weo wo

Ne Ne weo wo

Code section.

let loader see entry point

write function

Argl: file descriptor
Arg2: addr of message
Arg3: length of message
ask kernel to write

read function

Arg 1l: file descriptor
Arg 2: address of buffer
Arg 3: buffer length

check if any chars read
>0 chars read = OK
ow print error mesg

skip over rest

get a character
below 'a'?

above 'f'?

calculate offset

write message for choice a

write message for choice b

do c:
mov
mov
mov
mov
int
Jmp

do d:
mov
mov
mov
mov
int
Jmp

do_f:
mov
mov
mov
mov
int
Jmp

do default:
mov
mov
mov
mov
int
Jmp

; final
7

exit: mov
mov
int

eax,
ebx,
ecx,
edx,
080h
exit

eax,
ebx,
ecx,
edx,
080h
exit

eax,
ebx,
ecx,
edx,
080h
exit

eax,
ebx,
ecx,
edx,
080h
exit

exit
EAX,

EBX,
080h

SYSCALL WRITE
STDOUT

mesgc

lenc

SYSCALL WRITE
STDOUT

mesgd

lend

SYSCALL WRITE
STDOUT

mesgf

lenf

SYSCALL WRITE
STDOUT

dflt mesg
dflt len

SYSCALL_ EXIT
0

write

write

write

write

message

message

message

message

exit function

exit code,

for

for

for

for

choice c

choice d

choice £

default

O=normal

ask kernel to take over

LoJoUd W

bR EREPRPDPWLWWLWWWWWLWWWWWNDNNNNNMOMNNMNNNNNRFRERRRERRRRRRR
cvwooNoULMbWNDROVONOONULBWINRFROOVWONOUIBWNRFROVOVOTIOUIBBWDNDEO

00000000
00000009
00000012
0000001B

00000024
0000002D

0000002F
00000038

0000003C
00000045

0000004D
00000056
0000005F

00000066
0000006F
00000078
00000081

00000083
0000008C
00000095
0000009E

4D616B652061207365-
6C656374696F6E205B-
612C20622C20632C20-
64206F7220665D3A20

52656164204572726F-
720A

476F6F642063686F69—-
6365210A

62206973206D792066-
61766F726974650A

63206973206120706F-
70756C61722073656C-
656374696F6EQOA

536F7272792C207765-
206172652066726573-
68206F7574206F6620-
640A

4E6F74206120676F6F-
642064617920666F72-
20662E205472792073-
6F6D657468696E6720-

File:

Ne Neo Neo we o

gdefine
¢define
%define
¢define
%define
¢define

mesgl:

lenl:

err_mesg:

err len:

mesga:
lena:
mesgb:
lenb:

mesgc:
lenc:

mesgd:

lend:

mesgf:

switch.asm

Demonstrate jump tables

STDIN O

STDOUT 1

SYSCALL EXIT 1

SYSCALL READ 3

SYSCALL WRITE 4

BUFLEN 256

SECTION .data ;
db "Make a selection [a, b, ¢, d or £]: "
equ $ - mesgl

db "Read Error", 10

equ $ - err mesg

db "Good choice!", 10

equ $ - mesga

db "b is my favorite", 10
equ $ - mesgb

db "c is a popular selection", 10

equ $ - mesgc

db "Sorry, we are fresh out of d", 10

equ $ - mesgd

db "Not a good day for f. Try something else.",

initialized data section

51
52
53
54
55
56
57
58
59
60
61
62

64
65
66
67
68

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

89
90
91
92

94
95
96
97
98

100

000000A7

000000AD
000000B6
000000BF
000000C8

000000CD
000000D1
000000D5
000000D9
000000DD
000000E1

00000000

00000000
00000005
0000000A
0000000F
00000014

00000016
0000001B
00000020
00000025
0000002A

0000002C
00000031
00000033
00000038
0000003D

656C73652E0A

506C65617365207069-
636B206F6E65206F66-
207468652063686F69—-

636573210A

[74000000]
[8F000000]
[AA000000]
[C5000000]
[FB000000]
[E0000000]

<res 00000100>

B804000000
BB01000000
B9[00000000]
BA24000000
CD80

B803000000
BB00000000
B9[00000000]
BA00010000
CD80

3D00000000
7F1B
B804000000
BB01000000
B9[24000000]

lenf:

equ $-mesgf

dflt mesg: db "Please pick one of the choices!", 10

dflt len:

equ $ - dflt mesg

jump table:
dd do a ; dd = "define double" = 32-bit data

buf:

_start:

dd do b
dd do_c
dd do_d
dd do_default
dd do_f

SECTION .bss
resb BUFLEN

SECTION .text
global _start

; prompt user for input

.
14

mov eax, SYSCALL WRITE
mov ebx, STDOUT

mov ecx, mesgl

mov edx, lenl

int 080h

; read user input

.
14

mov eax, SYSCALL READ
mov ebx, STDIN

mov ecx, buf

mov edx, BUFLEN

int 080h

; error check

.
14

cmp eax, 0

jg read_ OK

mov eax, SYSCALL WRITE
mov ebx, STDOUT

mov ecx, err_mesg

Ne Ne Neo e wo

~e Neo wo wo

uninitialized data section

buffer for read

Code section.

let loader see entry point

write function

Argl: file descriptor
Arg2: addr of message
Arg3: length of message
ask kernel to write

read function

Arg 1l: file descriptor
Arg 2: address of buffer
Arg 3: buffer length

check if any chars read
>0 chars read = OK
ow print error mesg

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

00000042
00000047
00000049

0000004E
00000053
00000058
0000005A
00000060
00000062

00000068
0000006D

00000074
00000079
0000007E
00000083
00000088
0oooo008A

0000008F
00000094
00000099
0000009E
000000A3
000000A5

000000AA
000000AF
000000B4
000000B9
000000BE
000000CO

000000C5
ooooooca
000000CF
000000D4
000000D9
000000DB

000000EO

BAOB00000O
CD80
E9C8000000

B800000000
A0[00000000]
3c61
0F829B000000
3C66
0F8793000000

2D61000000

FF2485[CD000000]

B804000000
BB01000000
BY[2F000000]
BAOD000000
CD80
E987000000

B804000000
BB01000000
B9[3C000000]
BA11000000
CD80
E96C000000

B804000000
BB01000000
B9[4D000000]
BA19000000
CD80
E951000000

B804000000
BB01000000
B9[66000000]
BA1D000000O
CD80
E936000000

B804000000

read OK:

do a:

do _b:

do c:

do d:

do f:

mov
int
Jmp

mov
mov
cmp

cmp
ja

sub
jmp

mov
mov
mov
mov
int
Jmp

mov
mov
mov
mov
int
Jmp

mov
mov
mov
mov
int
Jmp

mov
mov
mov
mov
int
Jmp

mov

edx, err_ len
080h
exit

eax, 0

al, [buf]
al, 'a'
do_default
al, 'f'
do_default

eax, 'a

[4*eax + jump table]

eax, SYSCALL WRITE

ebx, STDOUT
ecx, mesga
edx, lena
080h

exit

eax, SYSCALL WRITE

ebx, STDOUT
ecx, mesgb
edx, lenb
080h

exit

eax, SYSCALL WRITE

ebx, STDOUT
ecx, mesgc
edx, lenc
080h

exit

eax, SYSCALL WRITE

ebx, STDOUT
ecx, mesgd
edx, lend
080h

exit

eax, SYSCALL WRITE

skip over rest

get a character

below

above

lal?

lflf)

calculate offset

s write

s write

s write

s write

s write

message

message

message

message

message

for

for

for

for

for

choice

choice

choice

choice

choice

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

000000ES5
000000EA
000000EF
000000F4
000000F6

000000FB
00000100
00000105
0000010A
0000010F
00000111

00000116
0000011B
00000120

BB01000000
B9[83000000]
BA2A000000
CD80
E91B000000

B804000000
BB01000000
B9 [AD000000]
BA20000000
CD80
E900000000

B801000000
BB0000000O
CD80

mov
mov
mov
int
Jmp

do_default:
mov
mov
mov
mov
int
Jmp

; final

14
exit: mov

mov

int

ebx,
ecx,
edx,
080h
exit

eax,
ebx,
ecx,
edx,
080h
exit

exit
EAX,

EBX,
080h

STDOUT
mesgf
lenf

SYSCALL WRITE
STDOUT

dflt mesg
dflt len

SYSCALL EXIT
0

; write message for default

exit function

exit code,

O=normal

ask kernel to take over

SOME
1386
STRING INSTRUCTIONS

1386 String Instructions

e Special instructions for searching & copying strings
e Assumes that AL holds the data

e Assumes that ECX holds the “count”

e Assumes that ESI and/or EDI point to the string(s)

e Some examples (there are many others):
- LODS: loads AL with [ESI], then increments or decrements ESI
- STOS: stores AL in [EDI], then increments or decrements EDI
- CLD/STD: clears/sets direction flag DF. Makes LODS & STOS auto-inc/dec.
- LOOP: decrements ECX. Jumps to label if ECX != 0 after decrement.
- SCAS: compares AL with [EDI], sets status flags, auto-inc/dec EDI.
< REP: Repeats a string instruction

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Intel ® INSTRUCTION SET REFERENCE

LODS/LODSB/LODSW/LODSD—Load String

Opcode Instruction Description

AC LODS m8 Load byte at address DS:(E)SI into AL

AD LODS m16 Load word at address DS:(E)SI into AX

AD LODS m32 Load doubleword at address DS:(E)SI into EAX
AC LODSB Load byte at address DS:(E)SI into AL

AD LODSW Load word at address DS:(E)SI into AX

AD LODSD Load doubleword at address DS:(E)SI into EAX

Description

Loads a byte, word, or doubleword from the source operand into the AL, AX, or EAX register,
respectively. The source operand is a memory location, the address of which is read from the
DS:EDI or the DS:SI registers (depending on the address-size attribute of the instruction, 32 or
16, respectively). The DS segment may be overridden with a segment override prefix.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the LODS
mnemonic) allows the source operand to be specified explicitly. Here, the source operand should
be a symbol that indicates the size and location of the source value. The destination operand is
then automatically selected to match the size of the source operand (the AL register for byte
operands, AX for word operands, and EAX for doubleword operands). This explicit-operands
form is provided to allow documentation; however, note that the documentation provided by this
form can be misleading. That is, the source operand symbol must specify the correct type (size)
of the operand (byte, word, or doubleword), but it does not have to specify the correct location.
The location is always specified by the DS:(E)SI registers, which must be loaded correctly
before the load string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
LODS instructions. Here also DS:(E)SI is assumed to be the source operand and the AL, AX, or
EAX register is assumed to be the destination operand. The size of the source and destination
operands is selected with the mnemonic: LODSB (byte loaded into register AL), LODSW (word
loaded into AX), or LODSD (doubleword loaded into EAX).

After the byte, word, or doubleword is transferred from the memory location into the AL, AX,
or EAX register, the (E)SI register is incremented or decremented automatically according to the
setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)SI register is incre-
mented; if the DF flag is 1, the ESI register is decremented.) The (E)SI register is incremented
or decremented by 1 for byte operations, by 2 for word operations, or by 4 for doubleword oper-
ations.

The LODS, LODSB, LODSW, and LODSD instructions can be preceded by the REP prefix for
block loads of ECX bytes, words, or doublewords. More often, however, these instructions
are used within a LOOP construct because further processing of the data moved into the register
is usually necessary before the next transfer can be made. See “REP/REPE/REPZ/REPNE
/REPNZ—Repeat String Operation Prefix” in this chapter for a description of the REP prefix.

I 3-391

INSTRUCTION SET REFERENCE Intel ®

LODS/LODSB/LODSW/LODSD—Load String (Continued)

Operation

IF (byte load)
THEN
AL SRC; (* byte load *)
THENIFDF O
THEN (E)SI (E)SI + 1;
ELSE (E)SI (E)SI-1;
Fl;
ELSE IF (word load)
THEN
AX SRC; (* word load *)
THENIFDF O
THEN (E)SI (E)SI + 2;
ELSE (E)SI (E)SI-2;
Fl;
ELSE (* doubleword transfer *)
EAX SRC; (* doubleword load *)
THENIFDF O
THEN (E)SI (E)SI + 4;
ELSE (E)SI (E)SI-4;
Fl;
Fl;
Fl;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

3-392 I

INSTRUCTION SET REFERENCE Intel ®

STOS/STOSB/STOSW/STOSD—Store String

Opcode Instruction Description

AA STOS m8 Store AL at address ES:(E)DI
AB STOS m16 Store AX at address ES:(E)DI
AB STOS m32 Store EAX at address ES:(E)DI
AA STOSB Store AL at address ES:(E)DI
AB STOSW Store AX at address ES:(E)DI
AB STOSD Store EAX at address ES:(E)DI

Description

Stores a byte, word, or doubleword from the AL, AX, or EAX register, respectively, into the
destination operand. The destination operand is a memory location, the address of which is read
from either the ES:EDI or the ES:DI registers (depending on the address-size attribute of the
instruction, 32 or 16, respectively). The ES segment cannot be overridden with a segment over-
ride prefix.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the STOS
mnemonic) allows the destination operand to be specified explicitly. Here, the destination
operand should be a symbol that indicates the size and location of the destination value. The
source operand is then automatically selected to match the size of the destination operand (the
AL register for byte operands, AX for word operands, and EAX for doubleword operands). This
explicit-operands form is provided to allow documentation; however, note that the documenta-
tion provided by this form can be misleading. That is, the destination operand symbol must
specify the correct type (size) of the operand (byte, word, or doubleword), but it does not have
to specify the correct location. The location is always specified by the ES:(E)DI registers, which
must be loaded correctly before the store string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
STOS instructions. Here also ES:(E)DI is assumed to be the destination operand and the AL,
AX, or EAX register is assumed to be the source operand. The size of the destination and source
operands is selected with the mnemonic: STOSB (byte read from register AL), STOSW (word
from AX), or STOSD (doubleword from EAX).

After the byte, word, or doubleword is transferred from the AL, AX, or EAX register to the
memory location, the (E)DI register is incremented or decremented automatically according to
the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)DI register is incre-
mented; if the DF flag is 1, the (E)DI register is decremented.) The (E)DI register is incremented
or decremented by 1 for byte operations, by 2 for word operations, or by 4 for doubleword oper-
ations.

3-734 I

Intel ® INSTRUCTION SET REFERENCE

STOS/STOSB/STOSW/STOSD—Store String (Continued)

The STOS, STOSB, STOSW, and STOSD instructions can be preceded by the REP prefix for
block loads of ECX bytes, words, or doublewords. More often, however, these instructions are
used within a LOOP construct because data needs to be moved into the AL, AX, or EAX register
before it can be stored. See “REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation
Prefix” in this chapter for a description of the REP prefix.

Operation
IF (byte store)
THEN
DEST AL;
THENIFDF O
THEN (E)DI (E)DI + 1;
ELSE (E)DI (E)DI-1;
Fl;
ELSE IF (word store)
THEN
DEST AX;
THENIFDF 0
THEN (E)DI (E)DI + 2;
ELSE (E)DI (E)DI - 2;
Fl;
ELSE (* doubleword store *)
DEST EAX;
THENIFDF 0
THEN (E)DI (E)DI + 4;
ELSE (E)DI (E)DI - 4;
Fl;
Fl;

Fl;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the limit of the ES
segment.

If the ES register contains a null segment selector.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

I 3-735

INSTRUCTION SET REFERENCE Intel ®

CLD—Clear Direction Flag

Opcode Instruction Description
FC CLD Clear DF flag
Description

Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string operations incre-
ment the index registers (ESI and/or EDI).

Operation
DF 0;

Flags Affected
The DF flag is cleared to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

3-72 I

Intel ® INSTRUCTION SET REFERENCE

STD—Set Direction Flag

Opcode Instruction Description
FD STD Set DF flag
Description

Sets the DF flag in the EFLAGS register. When the DF flag is set to 1, string operations decre-
ment the index registers (ESI and/or EDI).

Operation
DF 1;

Flags Affected
The DF flag is set. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Operation
DF 1;

Exceptions (All Operating Modes)

None.

I 3-729

INSTRUCTION SET REFERENCE Intel ®

LOOP/LOOPcc—Loop According to ECX Counter

Opcode Instruction Description

E2 cb LOORP rel8 Decrement count; jump short if count 0

E1cb LOOPE rel8 Decrement count; jump short if count 0 and ZF=1

E1cb LOOPZ rel8 Decrement count; jump short if count 0 and ZF=1

EO cb LOOPNE rel8 Decrement count; jump short if count 0 and ZF=0

EO cb LOOPNZ rel8 Decrement count; jump short if count 0 and ZF=0
Description

Performs a loop operation using the ECX or CX register as a counter. Each time the LOOP
instruction is executed, the count register is decremented, then checked for 0. If the count is 0,
the loop is terminated and program execution continues with the instruction following the LOOP
instruction. If the count is not zero, a near jump is performed to the destination (target) operand,
which is presumably the instruction at the beginning of the loop. If the address-size attribute is
32 bits, the ECX register is used as the count register; otherwise the CX register is used.

The target instruction is specified with a relative offset (a signed offset relative to the current
value of the instruction pointer in the EIP register). This offset is generally specified as a label
in assembly code, but at the machine code level, it is encoded as a signed, 8-bit immediate value,
which is added to the instruction pointer. Offsets of —128 to +127 are allowed with this
instruction.

Some forms of the loop instruction (LOOPcc) also accept the ZF flag as a condition for termi-
nating the loop before the count reaches zero. With these forms of the instruction, a condition
code (cc) is associated with each instruction to indicate the condition being tested for. Here, the
LOOPcc instruction itself does not affect the state of the ZF flag; the ZF flag is changed by other
instructions in the loop.

Operation

IF AddressSize 32
THEN
Count is ECX;
ELSE (* AddressSize 16 *)
Count is CX;
Fl;
Count Count-1;

IF instruction is not LOOP
THEN
IF (instruction ~ LOOPE) OR (instruction = LOOPZ)
THEN
IF (ZF =1) AND (Count 0)
THEN BranchCond 1;
ELSE BranchCond O0;

3-394 I

Intel ® INSTRUCTION SET REFERENCE

LOOP/LOOPcc—Loop According to ECX Counter (Continued)

Fl;
Fl;
IF (instruction ~ LOOPNE) OR (instruction = LOOPNZ)
THEN
IF (ZF =0) AND (Count 0)
THEN BranchCond 1;
ELSE BranchCond 0;
Fl;
Fl;
ELSE (* instruction LOOP *)
IF (Count 0)
THEN BranchCond 1;
ELSE BranchCond 0;
Fl;
Fl;
IF BranchCond 1
THEN
EIP EIP + SignExtend(DEST);
IF OperandSize 16
THEN
EIP EIP AND 0000FFFFH;
ELSE (* OperandSize = 32 *)
IF EIP < CS.Base OR EIP > CS.Limit
#GP
Fl;
ELSE
Terminate loop and continue program execution at EIP;
Fl;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the offset being jumped to is beyond the limits of the CS segment.

Real-Address Mode Exceptions

#GP If the offset being jumped to is beyond the limits of the CS segment or is
outside of the effective address space from 0 to FFFFH. This condition can
occur if a 32-bit address size override prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

I 3-395

; File: toupper2.asm last updated 09/26/2001

; Convert user input to upper case.

; This version uses some special looping instructions.

; Assemble using NASM:
; Link with 1d:

; [... same old,

; Loop for upper case conversion

same old

; assuming rlen > 0

Ll init:
mov
mov
mov
cld

L1 top:
lodsb
cmp

cmp
ja
and

L1l cont:
stosb
loop

L1l end:

ecx, [rlen]
esi, buf
edi, newstr

al, 'a'
L1 cont
al, 'z'
L1l cont
al, 11011111b

L1 top

nasm -f elf toupper2.asm
1d toupper2.o

initialize count

; point to start of buffer
; point to start of new str

clear dir. flag, inc ptrs

load al w char in [esi++]
less than 'a'?

; more than 'z'?

convert to uppercase

store al in [edi++]
loop if --ecx > 0

INSTRUCTION SET REFERENCE Intel ®

SCAS/SCASB/SCASW/SCASD—Scan String

Opcode Instruction Description

AE SCAS m8 Compare AL with byte at ES:(E)DI and set status flags

AF SCAS m16 Compare AX with word at ES:(E)DI and set status flags

AF SCAS m32 Compare EAX with doubleword at ES(E)DI and set status flags
AE SCASB Compare AL with byte at ES:(E)DI and set status flags

AF SCASW Compare AX with word at ES:(E)DI and set status flags

AF SCASD Compare EAX with doubleword at ES:(E)DI and set status flags

Description

Compares the byte, word, or double word specified with the memory operand with the value in
the AL, AX, or EAX register, and sets the status flags in the EFLAGS register according to the
results. The memory operand address is read from either the ES:EDI or the ES:DI registers
(depending on the address-size attribute of the instruction, 32 or 16, respectively). The ES
segment cannot be overridden with a segment override prefix.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operand form (specified with the SCAS
mnemonic) allows the memory operand to be specified explicitly. Here, the memory operand
should be a symbol that indicates the size and location of the operand value. The register
operand is then automatically selected to match the size of the memory operand (the AL register
for byte comparisons, AX for word comparisons, and EAX for doubleword comparisons). This
explicit-operand form is provided to allow documentation; however, note that the documenta-
tion provided by this form can be misleading. That is, the memory operand symbol must specify
the correct type (size) of the operand (byte, word, or doubleword), but it does not have to specify
the correct location. The location is always specified by the ES:(E)DI registers, which must be
loaded correctly before the compare string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
SCAS instructions. Here also ES:(E)DI is assumed to be the memory operand and the AL, AX,
or EAX register is assumed to be the register operand. The size of the two operands is selected
with the mnemonic: SCASB (byte comparison), SCASW (word comparison), or SCASD
(doubleword comparison).

After the comparison, the (E)DI register is incremented or decremented automatically according
to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)DI register is
incremented; if the DF flag is 1, the (E)DI register is decremented.) The (E)DI register is incre-
mented or decremented by 1 for byte operations, by 2 for word operations, or by 4 for double-
word operations.

The SCAS, SCASB, SCASW, and SCASD instructions can be preceded by the REP prefix for
block comparisons of ECX bytes, words, or doublewords. More often, however, these instruc-
tions will be used in a LOOP construct that takes some action based on the setting of the status
flags before the next comparison is made. See “REP/REPE/REPZ/REPNE /REPNZ—Repeat
String Operation Prefix” in this chapter for a description of the REP prefix.

3-696 I

Intel ® INSTRUCTION SET REFERENCE

SCAS/SCASB/SCASW/SCASD—Scan String (Continued)

Operation

IF (byte cmparison)
THEN

temp AL - SRC;

SetStatusFlags(temp);
THENIFDF O

THEN (E)DI (E)DI + 1;
ELSE (E)DI (E)DI-1;
Fl;
ELSE IF (word comparison)

THEN
temp AX-SRC;
SetStatusFlags(temp)

THENIFDF O
THEN (E)DI (E)DI + 2;
ELSE (E)DI (E)DI-2;
Fl;

ELSE (* doubleword comparison *)
temp EAX-SRC;
SetStatusFlags(temp)

THENIFDF O
THEN (E)DI (E)DI + 4;
ELSE (E)DI (E)DI-—4;
Fl;
Fl;
Fl;

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are set according to the temporary result of the comparison.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the limit of the ES
segment.

If the ES register contains a null segment selector.
If an illegal memory operand effective address in the ES segment is given.
#PF (fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

I 3-697

INSTRUCTION SET REFERENCE

intgl.

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

Opcode Instruction Description
F3 6C REP INS r/m8, DX Input (E)CX bytes from port DX into ES:[(E)DI]
F3 6D REP INS r/m16, DX Input (E)CX words from port DX into ES:[(E)DI]
F3 6D REP INS r/m32, DX Input (E)CX doublewords from port DX into ES:[(E)DI]
F3 A4 REP MOVS m8, m8 Move (E)CX bytes from DS:[(E)SI] to ES:[(E)DI]
F3 A5 REP MOVS m16, m16 Move (E)CX words from DS:[(E)SI] to ES:[(E)DI]
F3 A5 REP MOVS m32, m32 Move (E)CX doublewords from DS:[(E)SI] to ES:[(E)DI]
F3 6E REP OUTS DX, r/m8 Output (E)CX bytes from DS:[(E)SI] to port DX
F3 6F REP OUTS DX, /m16 Output (E)CX words from DS:[(E)SI] to port DX
F3 6F REP OUTS DX, r/m32 Output (E)CX doublewords from DS:[(E)SI] to port DX
F3 AC REP LODS AL Load (E)CX bytes from DS:[(E)SI] to AL
F3 AD REP LODS AX Load (E)CX words from DS:[(E)SI] to AX
F3 AD REP LODS EAX Load (E)CX doublewords from DS:[(E)SI] to EAX
F3 AA REP STOS m8 Fill (E)CX bytes at ES:[(E)DI] with AL
F3 AB REP STOS m16 Fill (E)CX words at ES:[(E)DI] with AX
F3 AB REP STOS m32 Fill (E)CX doublewords at ES:[(E)DI] with EAX
F3 A6 REPE CMPS m8, m8 Find nonmatching bytes in ES:[(E)DI] and DS:[(E)SI]
F3 A7 REPE CMPS m16, m16 Find nonmatching words in ES:[(E)DI] and DS:[(E)SI]
F3 A7 REPE CMPS m32, m32 Find nonmatching doublewords in ES:[(E)DI] and DS:[(E)SI]
F3 AE REPE SCAS m8 Find non-AL byte starting at ES:[(E)DI]
F3 AF REPE SCAS m16 Find non-AX word starting at ES:[(E)DI]
F3 AF REPE SCAS m32 Find non-EAX doubleword starting at ES:[(E)DI]
F2 A6 REPNE CMPS m8, m8 Find matching bytes in ES:[(E)DI] and DS:[(E)SI]
F2 A7 REPNE CMPS m16, m16 Find matching words in ES:[(E)DI] and DS:[(E)SI]
F2 A7 REPNE CMPS m32, m32 Find matching doublewords in ES:[(E)DI] and DS:[(E)SI]
F2 AE REPNE SCAS m8 Find AL, starting at ES:[(E)DI]
F2 AF REPNE SCAS m16 Find AX, starting at ES:[(E)DI]
F2 AF REPNE SCAS m32 Find EAX, starting at ES:[(E)DI]
Description

Repeats a string instruction the number of times specified in the count register ((E)CX) or until
the indicated condition of the ZF flag is no longer met. The REP (repeat), REPE (repeat while
equal), REPNE (repeat while not equal), REPZ (repeat while zero), and REPNZ (repeat while
not zero) mnemonics are prefixes that can be added to one of the string instructions. The REP
prefix can be added to the INS, OUTS, MOVS, LODS, and STOS instructions, and the REPE,
REPNE, REPZ, and REPNZ prefixes can be added to the CMPS and SCAS instructions. (The
REPZ and REPNZ prefixes are synonymous forms of the REPE and REPNE prefixes, respec-
tively.) The behavior of the REP prefix is undefined when used with non-string instructions.

The REP prefixes apply only to one string instruction at a time. To repeat a block of instructions,
use the LOOP instruction or another looping construct.

3-674

Intel ® INSTRUCTION SET REFERENCE

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix
(Continued)

All of these repeat prefixes cause the associated instruction to be repeated until the count in
register (E)CX is decremented to 0 (see the following table). (If the current address-size attribute
is 32, register ECX is used as a counter, and if the address-size attribute is 16, the CX register is
used.) The REPE, REPNE, REPZ, and REPNZ prefixes also check the state of the ZF flag after
each iteration and terminate the repeat loop if the ZF flag is not in the specified state. When both
termination conditions are tested, the cause of a repeat termination can be determined either by
testing the (E)CX register with a JECXZ instruction or by testing the ZF flag with a JZ, JNZ,
and JNE instruction.

Repeat Prefix Termination Condition 1 Termination Condition 2
REP ECX=0 None
REPE/REPZ ECX=0 ZF=0
REPNE/REPNZ ECX=0 ZF=1

When the REPE/REPZ and REPNE/REPNZ prefixes are used, the ZF flag does not require
initialization because both the CMPS and SCAS instructions affect the ZF flag according to the
results of the comparisons they make.

A repeating string operation can be suspended by an exception or interrupt. When this happens,
the state of the registers is preserved to allow the string operation to be resumed upon a return
from the exception or interrupt handler. The source and destination registers point to the next
string elements to be operated on, the EIP register points to the string instruction, and the ECX
register has the value it held following the last successful iteration of the instruction. This mech-
anism allows long string operations to proceed without affecting the interrupt response time of
the system.

When a fault occurs during the execution of a CMPS or SCAS instruction that is prefixed with
REPE or REPNE, the EFLAGS value is restored to the state prior to the execution of the instruc-
tion. Since the SCAS and CMPS instructions do not use EFLAGS as an input, the processor can
resume the instruction after the page fault handler.

Use the REP INS and REP OUTS instructions with caution. Not all I/O ports can handle the rate
at which these instructions execute.

A REP STOS instruction is the fastest way to initialize a large block of memory.

I 3-675

INSTRUCTION SET REFERENCE Intel ®

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix
(Continued)

Operation
IF AddressSize 16
THEN
use CX for CountReg;

ELSE (* AddressSize 32 %)
use ECX for CountReg;
Fl;
WHILE CountReg 0
DO
service pending interrupts (if any);
execute associated string instruction;
CountReg CountReg — 1;
IF CountReg 0
THEN exit WHILE loop
Fl;
IF (repeat prefix is REPZ or REPE) AND (ZF=0)
OR (repeat prefix is REPNZ or REPNE) AND (ZF=1)
THEN exit WHILE loop
Fl;
OD;

Flags Affected

None; however, the CMPS and SCAS instructions do set the status flags in the EFLAGS
register.

Exceptions (All Operating Modes)

None; however, exceptions can be generated by the instruction a repeat prefix is associated with.

3-676 I

; File:

rep.asm

; Demonstrates the use of the REP prefix with
; string instructions.

; This program does no I/O. Use gdb to examine its effects.

msqg:
len:

start:

find:

SECTION .data

db "Hello, world",
equ $-msg

SECTION .text
global _start

nop

mov al, 'o!'
mov edi, msg
mov ecx, len
cld

repne scasb

jnz not found
mov bl, [edi-1]

not found.:

erase:

alldone:

mov edi, msg
mov ecx, len
mov al, '?!
cld

rep stosb

mov ebx, 0
mov eax, 1
int 80H

.
14

Data section

The string to print.

Code section.
Entry point.

look for an 'o'
here

limit repetitions
auto inc edi

while (al '= [edi])

what did we find?

where?

how many bytes?
with which char?
auto inc edi

exit code, O=normal
Exit.
Call kernel.

Script started on Fri Sep 19 14:51:13 2003
linux3% nasm -f elf rep.asm

linux3% 1d rep.o

linux3%

linux3% gdb a.out

GNU gdb Red Hat Linux (5.2-2)

(gdb) display/i $eip
(gdb) display/x S$edi
(gdb) display $ecx

(gdb) display/c $ebx
(gdb) display/c $eax

(gdb) break *find

Breakpoint 1 at 0x8048081

(gdb) break *erase

Breakpoint 2 at 0x8048095

(gdb) break *alldone

Breakpoint 3 at 0x80480a4

(gdb) run

Starting program: /afs/umbc.edu/users/c/h/chang/home/asm/a.out

Breakpoint 1, 0x08048081 in find ()

5: /c S$eax = 0 '\0'

4: /c $ebx = 0 '\O0'

3: $ecx =0

2: /x $edi = 0x0

1: x/i $eip 0x8048081 <find>: mov al,O0x6f
(gdb) x/1l4cb &msg

0x80490b0 <msg>: 72 'H' 101 'e' 108 'l' 108 'l' 111 'o' 44
|,v 32 ' 119 'w'

0x80490b8 <msg+8>: 111 'o' 114 'r' 108 '1l' 100 'd' 10 '\mn' O
|\0|

(gdb) si

0x08048083 in find ()
5: /c $eax = 111 'o'
4: /c $ebx = 0 '\0'

3: Secx =0

2: /x $edi = 0x0

1: x/1i $Seip 0x8048083 <find+2>: mov edi, 0x80490b0
(gdb)

0x08048088 in find ()
5: /c $eax = 111 'o'
4: /c $ebx = 0 '\0'

3: $ecx =0

2: /x $edi = 0x80490b0

1: x/i $Seip 0x8048088 <find+7>: mov ecx,0xd
(gdb)

0x0804808d in find ()

5: /c $eax = 111 'o'

4: /c $ebx = 0 '\O0'

3: $Secx = 13

2: /x $edi = 0x80490b0

1l: x/i $eip 0x804808d <find+12>: cld

(gdb)

0x0804808e in find ()
5: /c $eax = 111 'o'
4: /c $ebx = 0 '\0'

3: Secx = 13

2: /x $edi = 0x80490b0
1: x/i $Seip 0x804808e
(gdb)

0x0804808e in find ()
5: /c $eax = 111 'o'
4: /c $Sebx = 0 '\0'

3: Secx = 12

2: /x $edi = 0x80490bl
1: x/i $Seip 0x804808e
(gdb)

0x0804808e in find ()
5: /c $eax = 111 'o'
4: /c $ebx = 0 '"\0'

3: Secx =11

2: /x $Sedi = 0x80490b2
1: x/i $Seip 0x804808e
(gdb)

0x0804808e in find ()
5: /c $eax = 111 'o'
4: /c $ebx = 0 '\0'

3: Secx =10

2: /x $edi = 0x80490b3
1: x/i $eip 0x804808e
(gdb)

0x0804808e in find ()
5: /c $eax = 111 'o'
4: /c $ebx = 0 '\O'

3: $ecx = 9

2: /x $edi = 0x80490b4
1: x/i $eip 0x804808e
(gdb)

0x08048090 in find ()
5: /c $eax = 111 'o'
4: /c $ebx = 0 '\0'

3: Secx = 8

2: /x $edi = 0x80490b5
1: x/i $eip 0x8048090
(gdb)

0x08048092 in find ()
5: /c $eax = 111 'o'

4: /c $ebx = 0 '\O0'

3: $ecx = 8

2: /x $edi = 0x80490b5
1: x/i $eip 0x8048092
(gdb)

2, 0x08048095 in not found ()

Breakpoint

5: /c $Seax = 111 'o'
4: /c Sebx = 111 'o'
3: Secx = 8

2: /x $edi = 0x80490b5
1:

<find+13>:

<find+13>:

<find+13>:

<find+13>:

<find+13>:

<find+15>:

<find+17>:

x/i $eip 0x8048095 <not_ found>:

repnz

repnz

repnz

repnz

repnz

jne

mov

mov

scas

scas

scas

scas

scas

0x8048095

al,es:

al,es:

al,es:

al,es:

al,es:

[edi]

[edi]

[edi]

[edi]

[edi]

<not_found:

bl,BYTE PTR [edi-1]

edi, 0x80490b0

(gdb)
0x0804809a in not_found ()

5: /c $eax = 111 'o'

4: /c $ebx = 111 'o'

3: Secx = 8

2: /x $edi = 0x80490b0

1: x/i Seip 0x804809a <not found+5>:
(gdb)

0x0804809f in not_ found ()

5: /c $eax = 111 'o'

4: /c $ebx = 111 'o'

3: Secx = 13

2: /x $edi = 0x80490b0

1: x/i Seip 0x804809f <not found+10>:
(gdb)

0x080480al in not_found ()

5: /c $eax = 63 '?'

4: /c $ebx = 111 'o'

3: Secx = 13

2: /x $edi = 0x80490b0

1: x/i Seip 0x80480al <not found+12>:
(gdb)

0x080480a2 in not_ found ()

5: /c $eax = 63 '?'

4: /c $ebx = 111 'o'

3: Secx = 13

2: /x $edi = 0x80490b0

1: x/i S$eip 0x80480a2 <not found+13>:
(gdb)

0x080480a2 in not_ found ()

5: /c $eax = 63 '?'

4: /c $ebx = 111 'o'

3: Secx = 12

2: /x $edi = 0x80490bl

1: x/i S$eip 0x80480a2 <not found+13>:
(gdb)

0x080480a2 in not_found ()

5: /c $eax = 63 '?'

4: /c $ebx = 111 'o'

3: Secx =11

2: /x $edi = 0x80490b2

1: x/i S$eip 0x80480a2 <not found+13>:
(gdb) cont

Continuing.

Breakpoint 3, 0x080480a4 in alldone ()
5: /c $eax = 63 '?'

4: /c $ebx = 111 'o'

3: Secx =0

2: /x $edi = 0x80490bd

1: x/i1i $eip 0x80480a4 <alldone>:
(gdb) x/1l4cb &msg

0x80490b0 <msg>: 63 '?' 63 '?'
'?' 63 '?' 63 '?!

0x80490b8 <msg+8>: 63 '?' 63 '?!'
v\ol

(gdb) quit

mov ecx,0xd
mov al,O0x3f
cld

repz stos es:[edi], al

repz stos es:[edi], al

repz stos es:[edi], al

mov ebx, 0x0
63 '?' 63 '?' 63 '?' 63

63 '?' 63 '?' 63 '?' O

