
CMSC 313
COMPUTER ORGANIZATION
&
ASSEMBLY LANGUAGE
PROGRAMMING

LECTURE 27, SPRING 2013

ANNOUNCEMENTS

•  Final Exam will be comprehensive

•  Final exam conflicts?
Tell me by Friday, May 10 (tomorrow).

•  Retroactive late pass? Let me know.

TOPICS TODAY

•  Finish Caching

•  Virtual Memory

RECAP CACHING

CACHING

•  Why: bridge speed difference between CPU and RAM

•  Modern RAM allows blocks of memory to be read quickly

•  Principle of locality: temporal and spatial

During each memory access :

•  CPU checks if memory location is already in cache

•  Found = cache hit:

•  read from or write to cache
•  Not Found = cache miss:

•  Fetch entire memory block of location into cache

CACHE MAPPING SCHEMES
Direct Mapping:
•  Each memory block mapped to 1 cache block
•  Many memory blocks for each cache block
•  Use tag to check if block in cache is the one needed

Fully Associative Mapping:
•  Each memory block can be placed in any cache block
•  Associative memory finds cache block with tag

Set Associative Mapping:
•  Hybrid of direct mapping and fully associative mapping

DIRECT MAPPING

12

6.4 Cache Memory

•  The purpose of cache memory is to speed up
accesses by storing recently used data closer to the
CPU, instead of storing it in main memory.

•  Although cache is much smaller than main memory,
its access time is a fraction of that of main memory.

•  Unlike main memory, which is accessed by address,
cache is typically accessed by content; hence, it is
often called content addressable memory.

•  Because of this, a single large cache memory isn�t
always desirable-- it takes longer to search.

13

•  The �content� that is addressed in content addressable
cache memory is a subset of the bits of a main memory
address called a field.
–  Many blocks of main memory map to a single block of

cache. A tag field in the cache block distinguishes one
cached memory block from another.

–  A valid bit indicates whether the cache block is being used.
–  An offset field points to the desired data in the block.

6.4 Cache Memory

14

•  The simplest cache mapping scheme is
direct mapped cache.

•  In a direct mapped cache consisting of N
blocks of cache, block X of main memory
maps to cache block Y = X mod N.

•  Thus, if we have 10 blocks of cache, block 7
of cache may hold blocks 7, 17, 27, 37, . . .
of main memory.

The next slide illustrates this mapping.

6.4 Cache Memory

15

6.4 Cache Memory

•  With direct
mapped cache
consisting of N
blocks of cache,
block X of main
memory maps to
cache block Y =
X mod N.

16

•  EXAMPLE 6.1 Consider a word-addressable main
memory consisting of four blocks, and a cache with
two blocks, where each block is 4 words.

•  This means Block 0 and 2 of main memory map to
Block 0 of cache, and Blocks 1 and 3 of main
memory map to Block 1 of cache.

•  Using the tag, block, and offset fields, we can see
how main memory maps to cache as follows.

6.4 Cache Memory

17

•  EXAMPLE 6.1 Consider a word-addressable main
memory consisting of four blocks, and a cache with two
blocks, where each block is 4 words.
–  First, we need to determine the address format for mapping.

Each block is 4 words, so the offset field must contain 2 bits;
there are 2 blocks in cache, so the block field must contain 1 bit;
this leaves 1 bit for the tag (as a main memory address has 4 bits
because there are a total of 24=16 words).

6.4 Cache Memory

18

•  EXAMPLE 6.1 Cont'd
–  Suppose we need to access

main memory address 316 (0011
in binary). If we partition 0011
using the address format from
Figure a, we get Figure b.

–  Thus, the main memory address
0011 maps to cache block 0.

–  Figure c shows this mapping,
along with the tag that is also
stored with the data.

6.4 Cache Memory

a

b

The next slide illustrates
another mapping.

c

19

6.4 Cache Memory

20

•  EXAMPLE 6.2 Assume a byte-addressable memory
consists of 214 bytes, cache has 16 blocks, and each
block has 8 bytes.
–  The number of memory blocks are:
–  Each main memory address requires14 bits. Of this 14-bit address

field, the rightmost 3 bits reflect the offset field
–  We need 4 bits to select a specific block in cache, so the block

field consists of the middle 4 bits.
–  The remaining 7 bits make up the tag field.

6.4 Cache Memory

21

•  In summary, direct mapped cache maps main
memory blocks in a modular fashion to cache
blocks. The mapping depends on:

•  The number of bits in the main memory address
(how many addresses exist in main memory)

•  The number of blocks are in cache (which
determines the size of the block field)

•  How many addresses (either bytes or words) are
in a block (which determines the size of the
offset field)

6.4 Cache Memory

FULLY ASSOCIATIVE
MAPPING

22

•  Suppose instead of placing memory blocks in
specific cache locations based on memory
address, we could allow a block to go anywhere
in cache.

•  In this way, cache would have to fill up before
any blocks are evicted.

•  This is how fully associative cache works.

•  A memory address is partitioned into only two
fields: the tag and the word.

6.4 Cache Memory

23

•  Suppose, as before, we have 14-bit memory
addresses and a cache with 16 blocks, each block
of size 8. The field format of a memory reference
is:

•  When the cache is searched, all tags are searched
in parallel to retrieve the data quickly.

•  This requires special, costly hardware.

6.4 Cache Memory

SET ASSOCIATIVE
MAPPING

25

•  Set associative cache combines the ideas of direct
mapped cache and fully associative cache.

•  An N-way set associative cache mapping is like
direct mapped cache in that a memory reference
maps to a particular location in cache.

•  Unlike direct mapped cache, a memory reference
maps to a set of several cache blocks, similar to the
way in which fully associative cache works.

•  Instead of mapping anywhere in the entire cache, a
memory reference can map only to the subset of
cache slots.

6.4 Cache Memory

26

•  The number of cache blocks per set in set associative
cache varies according to overall system design.

6.4 Cache Memory

–  For example, a 2-way set associative
cache can be conceptualized as shown in
the schematic below.

–  Each set contains two different memory
blocks.

Logical view Linear view

27

•  In set associative cache mapping, a memory
reference is divided into three fields: tag, set,
and offset.

•  As with direct-mapped cache, the offset field
chooses the word within the cache block, and
the tag field uniquely identifies the memory
address.

•  The set field determines the set to which the
memory block maps.

6.4 Cache Memory

28

•  EXAMPLE 6.5 Suppose we are using 2-way set
associative mapping with a word-addressable main
memory of 214 words and a cache with 16 blocks,
where each block contains 8 words.
–  Cache has a total of 16 blocks, and each set has 2 blocks,

then there are 8 sets in cache.
–  Thus, the set field is 3 bits, the offset field is 3 bits, and

the tag field is 8 bits.

6.4 Cache Memory

CACHING POLICIES

•  Cache replacement policy

•  For fully associative and set associative mapping
•  Which cache block gets kicked out?
•  Some schemes: first-in first-out, least recently used, ...

•  Cache write policy

•  Write through: always write to main memory
•  Write back: write to main memory when replaced

CACHE PERFORMANCE

32

•  The performance of hierarchical memory is
measured by its effective access time (EAT).

•  EAT is a weighted average that takes into account
the hit ratio and relative access times of successive
levels of memory.

•  The EAT for a two-level memory is given by:
 EAT = H × AccessC + (1-H) × AccessMM.

 where H is the cache hit rate and AccessC and AccessMM are
the access times for cache and main memory, respectively.

6.4 Cache Memory

33

•  For example, consider a system with a main
memory access time of 200ns supported by a
cache having a 10ns access time and a hit rate of
99%.

•  Suppose access to cache and main memory
occurs concurrently. (The accesses overlap.)

•  The EAT is:

 0.99(10ns) + 0.01(200ns) = 9.9ns + 2ns = 11ns.

6.4 Cache Memory

34

•  For example, consider a system with a main memory
access time of 200ns supported by a cache having a
10ns access time and a hit rate of 99%.

•  If the accesses do not overlap, the EAT is:

 0.99(10ns) + 0.01(10ns + 200ns)
 = 9.9ns + 2.01ns = 12ns.

•  This equation for determining the effective access
time can be extended to any number of memory
levels, as we will see in later sections.

6.4 Cache Memory

VIRTUAL MEMORY

MEMORY PROBLEMS

Not enough memory

•  Many processes ran simultaneously

•  Large applications, but most code is unused (MS Word)

Fragmentation

•  Processes need contiguous blocks of memory

•  Total amount of free memory is sufficient, but largest
block of contiguous memory is too small

Unprotected memory

•  Many processes ran simultaneously

•  "Bad" processes can overwrite other processes' memory

43

6.5 Virtual Memory

•  Cache memory enhances performance by providing
faster memory access speed.

•  Virtual memory enhances performance by providing
greater memory capacity, without the expense of
adding main memory.

•  Instead, a portion of a disk drive serves as an
extension of main memory.

•  If a system uses paging, virtual memory is partitioned
into individually managed pages, that are written to (or
paged to) disk when they are not immediately needed.

45

•  Main memory and virtual memory are divided into
equal sized pages.

•  The entire address space required by a process
need not be in memory at once. Some parts can be
on disk, while others are in main memory.

•  Further, the pages allocated to a process do not
need to be stored contiguously-- either on disk or in
memory.

•  In this way, only the needed pages are in memory
at any time, the unnecessary pages are in slower
disk storage.

6.5 Virtual Memory

46

•  Information concerning the location of each page,
whether on disk or in memory, is maintained in a data
structure called a page table (shown below).

•  There is one page table for each active process.

6.5 Virtual Memory

47

•  When a process generates a virtual address, the
operating system translates it into a physical
memory address.

•  To accomplish this, the virtual address is divided
into two fields: A page field, and an offset field.

•  The page field determines the page location of the
address, and the offset indicates the location of the
address within the page.

•  The logical page number is translated into a
physical page frame through a lookup in the page
table.

6.5 Virtual Memory

48

•  If the valid bit is zero in the page table entry for the
logical address, this means that the page is not in
memory and must be fetched from disk.
–  This is a page fault.

–  If necessary, a page is evicted from memory and is replaced
by the page retrieved from disk, and the valid bit is set to 1.

•  If the valid bit is 1, the virtual page number is
replaced by the physical frame number.

•  The data is then accessed by adding the offset to the
physical frame number.

6.5 Virtual Memory

49

•  As an example, suppose a system has a virtual address
space of 8K and a physical address space of 4K, and the
system uses byte addressing.
–  We have 213/210 = 23 virtual pages.

•  A virtual address has 13 bits (8K = 213) with 3 bits for the page
field and 10 for the offset, because the page size is 1024.

•  A physical memory address requires 12 bits, the first two bits
for the page frame and the trailing 10 bits the offset.

6.5 Virtual Memory

50

•  Suppose we have the page table shown below.
•  What happens when CPU generates address 545910

= 10101010100112 = 1553 16?

6.5 Virtual Memory

51

•  What happens when CPU generates address 545910
= 10101010100112 = 1553 16?

6.5 Virtual Memory

The high-order 3 bits of the virtual address, 101
(510), provide the page number in the page table.

52

•  The address 10101010100112 is converted to
physical address 0101010100112 = 136316 because
the page field 101 is replaced by frame number 01
through a lookup in the page table.

6.5 Virtual Memory

53

•  What happens when the CPU generates address
10000000001002?

6.5 Virtual Memory

54

•  We said earlier that effective access time (EAT) takes
all levels of memory into consideration.

•  Thus, virtual memory is also a factor in the
calculation, and we also have to consider page table
access time.

•  Suppose a main memory access takes 200ns, the
page fault rate is 1%, and it takes 10ms to load a
page from disk. We have:

 EAT = 0.99(200ns + 200ns) + 0.01(10ms)

 = 0.99 x 400ns + 0.01 x 10,000ns

 = 396ns + 100ns = 496ns

6.5 Virtual Memory

55

•  Even if we had no page faults, the EAT would be
400ns because memory is always read twice: First to
access the page table, and second to load the page
from memory.

•  Because page tables are read constantly, it makes
sense to keep them in a special cache called a
translation look-aside buffer (TLB).

•  TLBs are a special associative cache that stores the
mapping of virtual pages to physical pages.

The next slide shows address lookup
steps when a TLB is involved.

6.5 Virtual Memory

56

1. Extract the page number from
the virtual address.
2. Extract the offset from the virtual
address.
3. Search for the virtual page number
in the TLB.
4. If the (virtual page #, page frame #)
pair is found in the TLB, add the offset
to the physical frame number and
access the memory location.
5. If there is a TLB miss, go to the
page table to get the necessary frame
number.
If the page is in memory, use the
corresponding frame number and add
the offset to yield the physical address.
6. If the page is not in main memory,
generate a page fault and restart the
access when the page fault is
complete.

TLB lookup process

57

6.5 Virtual Memory Putting it all together:
The TLB, Page Table,
and Main Memory

VIRTUAL MEMORY
IN
LINUX

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 7

Linux
Kernel

3 Gig

4 Gig

Paging
System

Task
#2

0

3 Gig

Task
#3

0

3 Gig

Task
#n

0

3 Gig

RAM

Disk...

Linux Virtual Memory Space
" Linux reserves 1 Gig

memory in the virtual
address space

" The size of the Linux
kernel significantly affects
its performance
(swapping is expensive)

" Linux kernel can be
customized by including
only relevant modules

"Designating kernel space
facilitates protection of

"The portion of disk used
for paging is called the
swap space

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 9

3 2 1 011 10 9 815 14 13 1231 30 29 28 27

Page offsetVirtual page number

Virtual address

3 2 1 011 10 9 815 14 13 1229 28 27

Page offsetPhysical page number

Physical address

Translation

Virtual Addressing

❑ Page faults are costly and take millions of cycles to process (disks are slow)
❑ 80386 Page attributes:

➨ RW: read and write permission
➨ US: User mode or kernel mode only access
➨ PP: present bit to indicate where the page is

Address of Page

31 12 11 0

P
P

W
R

U
S

12

Richard Chang
12 bit offset => 4k pages
20 bits virtual page #
 => 2^20 = 1 M of pages

4 bytes per entry in the page table => 4 MB to store the complete page table.

That's 4MB per process (!!!), since each process has its own page table.

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 10

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not
present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

Page Table

Page table:
★ Resides in main memory
★ One entry per virtual page
★ No tag is requires since it

covers all virtual pages
★ Point directly to physical page
★ Table can be very large
★ Operating sys. may maintain

one page table per process
★ A dirty bit is used to track

modified pages for copy back

Hardware supported

Indicates whether the
virtual page is in
main memory or not

Richard Chang

Richard Chang
12 bit page offset => 4 kbyte page size
20 bit virtual page number
 => 2^20 = 1 MB of pages

4 bytes per entry in the table
 => 4 MB to store the page table

That's 4MB per process (!!!), since each process has its own page table.

This is silly since most processes won't use 4GigB of memory, so do not need 1M page table entries.

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 11

Page Table
Table

1024 Page Tables. . .
. . .

1024
pages

. . .

1024
pages

. . .

1024
pages

Linux 2-Level Page Table

Index into
Page Table Table

Index into
Page Table Index into Page

31 22 21 12 11 0

CR3 register

"The CR3 register is designated for pointing to the first level page table
"The CR3 is part of the task state that needs to be saved at preemption

Richard Chang
The Page Table Table uses 4kbytes of memory. It has 1024 entries, each taking 4 bytes.

The page tables also take 4kbytes.

This is convenient, why??

Ans: unused page tables can be swapped out to disk.

3-20

PROTECTED-MODE MEMORY MANAGEMENT

3.7.1. Linear Address Translation (4-KByte Pages)

Figure 3-12 shows the page directory and page-table hierarchy when mapping linear addresses
to 4-KByte pages. The entries in the page directory point to page tables, and the entries in a page
table point to pages in physical memory. This paging method can be used to address up to 220

pages, which spans a linear address space of 232 bytes (4 GBytes).

To select the various table entries, the linear address is divided into three sections:

• Page-directory entry—Bits 22 through 31 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a page table.

Table 3-3. Page Sizes and Physical Address Sizes

PG Flag,
CR0

PAE Flag,
CR4

PSE Flag,
CR4

PS Flag,
PDE

PSE-36 CPUID
Feature Flag Page Size

Physical
Address Size

0 X X X X — Paging Disabled

1 0 0 X X 4 KBytes 32 Bits

1 0 1 0 X 4 KBytes 32 Bits

1 0 1 1 0 4 MBytes 32 Bits

1 0 1 1 1 4 MBytes 36 Bits

1 1 X 0 X 4 KBytes 36 Bits

1 1 X 1 X 2 MBytes 36 Bits

Figure 3-12. Linear Address Translation (4-KByte Pages)

0

Directory Table Offset

Page Directory

Directory Entry

CR3 (PDBR)

Page Table

Page-Table Entry

4-KByte Page

Physical Address

31 21 111222
Linear Address

1024 PDE * 1024 PTE = 220 Pages32*

10

12

10

*32 bits aligned onto a 4-KByte boundary.

20

3-23

PROTECTED-MODE MEMORY MANAGEMENT

page-directory entries when 4-MByte pages and 32-bit physical addresses are being used. The
functions of the flags and fields in the entries in Figures 3-14 and 3-15 are as follows:

Page base address, bits 12 through 32
(Page-table entries for 4-KByte pages.) Specifies the physical address of the
first byte of a 4-KByte page. The bits in this field are interpreted as the 20 most-
significant bits of the physical address, which forces pages to be aligned on
4-KByte boundaries.

(Page-directory entries for 4-KByte page tables.) Specifies the physical
address of the first byte of a page table. The bits in this field are interpreted as
the 20 most-significant bits of the physical address, which forces page tables to
be aligned on 4-KByte boundaries.

Figure 3-14. Format of Page-Directory and Page-Table Entries for 4-KByte Pages
and 32-Bit Physical Addresses

31

Available for system programmer’s use
Global page (Ignored)
Page size (0 indicates 4 KBytes)
Reserved (set to 0)

12 11 9 8 7 6 5 4 3 2 1 0

P
S

P
CA0

Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

D
P

P
W
T

U
/
S

R
/

W
GAvailPage-Table Base Address

31

Available for system programmer’s use
Global Page
Page Table Attribute Index
Dirty

12 11 9 8 7 6 5 4 3 2 1 0

P
CAD

Accessed
Cache Disabled
Write-Through
User/Supervisor
Read/Write
Present

D
P

P
W
T

U
/
S

R
/

W
AvailPage Base Address

Page-Directory Entry (4-KByte Page Table)

Page-Table Entry (4-KByte Page)

P
A
T

G

Richard Chang

Richard Chang

Richard Chang

Richard Chang

Richard Chang

Richard Chang

Virtual Memory: Problems Solved

• Not enough physical memory
Uses disk space to simulate extra memory

Pages not being used can be swapped out
(how and when you’ll learn in CMSC 421 Operating Systems)

Thrashing: pages constantly written to and retrieved from disk
(time to buy more RAM)

• Fragmentation
Contiguous blocks of virtual memory do not have to map to
contiguous sections of real memory

• Memory protection
Each process has its own page table

Shared pages are read-only

User processes cannot alter the page table (must be supervisor)

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Memory Protection

• Prevents one process from reading from or writing
to memory used by another process

• Privacy in a multiple user environments
• Operating system stability

Prevents user processes (applications) from altering memory used by
the operating system

One application crashing does not cause the entire OS to crash

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Virtual Memory: too slow?

• Address translation is done in hardware
In the middle of the fetch execute cycle for:

MOV EAX, [buffer]

the physical address of buffer is computed in hardware.

• Recently computed page locations are cached in
the translation lookaside buffer (TLB)

• Page faults are very expensive (millions of cycles)

• Operating systems for personal computers have
only recently added memory protection

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Richard Chang

NEXT TIME

•  Review

