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TOPICS TODAY 

•  Example: Sequence Detector 

•  Finite State Machine Simplification 

•  Circuit Minimization 
•  State Reduction 
•  State Assignment 
•  Choice of Flip Flop (not covered) 



EXAMPLE: 
SEQUENCE DETECTOR 
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Example: A Sequence Detector
• Example: Design a machine that outputs a 1 when exactly two of

the last three inputs are 1.
• e.g. input sequence of 011011100 produces an output sequence

of  001111010.
• Assume input is a 1-bit serial line.
• Use D flip-flops and 8-to-1 Multiplexers.
• Start by constructing a state transition diagram (next slide).
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Sequence Detector State Transition
Diagram

• Design a machine that
outputs a 1 when ex-
actly two of the last
three inputs are 1.
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Sequence Detector State Table

X
0 1

A B/0 C/0

Present state

Input

B
C
D
E

D/0 E/0
F/0 G/0
D/0 E/0
F/0 G/1

F D/0 E/1
G F/1 G/0
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Sequence Detector State Assignment

X
0 1

A:  000 001/0 010/0

Present state

Input

B:  001
C:  010
D:  011
E:  100

011/0 100/0
101/0 110/0
011/0 100/0
101/0 110/1

F:  101 011/0 100/1

S2S1S0 S2S1S0Z S2S1S0Z

G:  110 101/1 110/0
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FINITE STATE MACHINE 
SIMPLIFICATION 



CIRCUIT MINIMIZATION 



Sequence Detector
s2 s1 s0 x s2' s1' s0' z

0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 0 1 1 0
7 0 1 1 1 1 0 0 0
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 1 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d                 
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       __ 
s2’= ( s0 + x )(s2 + s1 + s0)
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Sequence Detector
s2 s1 s0 x s2' s1' s0' z

0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 0 1 1 0
7 0 1 1 1 1 0 0 0
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 1 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d                 
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      __        _
s1’=  s0 x + s0 x = s0 xor x
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Sequence Detector
s2 s1 s0 x s2' s1' s0' z

0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 0 1 1 0
7 0 1 1 1 1 0 0 0
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 1 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d                 
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      _ 
s0’ = x
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Sequence Detector
s2 s1 s0 x s2' s1' s0' z

0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 0 1 1 0
7 0 1 1 1 1 0 0 0
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 1 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d                 
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       __           _
z = s2 s1 x + s2 s1 x
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Notes on K-maps

• Also works for POS

• Takes 2n time for formulas with n variables

• Only optimizes two-level logic
Reduces number of terms, then number of literals in each term

• Assumes inverters are free

• Does not consider minimizations across functions
• Circuit minimization is generally a hard problem

• Quine-McCluskey can be used with more variables

• CAD tools are available if you are serious
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Karnaugh Maps

Implicant: rectangle with 1, 2, 4, 8, 16 ... 1’s

Prime Implicant: an implicant that cannot be 
extended into a larger implicant

Essential Prime Implicant: the only prime implicant 
that covers some 1

K-map Algorithm (not from M&H): 

1. Find ALL the prime implicants. Be sure to check 
every 1 and to use don’t cares.

2. Include all essential prime implicants.

3. Try all possibilities to find the minimum cover for 
the remaining 1’s.
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CIRCUIT MINIMIZATION IS HARD 

•  Unix systems store passwords in encrypted form. 

•  User types x, system computes f(x) and looks for f(x) in a file 

•  Suppose we use 64-bit passwords and I want to find the 
password x such that f(x) = y. 

•  Let gi(x) =  0    if f(x) = y and the ith bit of x is 0. 
                   1    otherwise 

•  If the ith bit of x is 1, then gi(x) outputs 1 for every x and 
gi(x) has a very, very simple circuit. 

•  If you can simplify every circuit quickly, then you can 
crack passwords quickly. 



Simplifying Finite State Machines

• State Reduction: equivalent FSM with fewer states

• State Assignment: choose an assignment of bit 
patterns to states (e.g., A is 010) that results in a 
smaller circuit

• Choice of flip-flops: use D flip-flops, J-K flip-flops or 
a T flip-flops? a good choice could lead to simpler 
circuits.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



STATE REDUCTION 
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State Reduction
• Description of state machine M0 to be reduced.

X
0 1

A C/0 E/1

Present state

Input

B
C
D
E

D/0 E/1
C/1 B/0
C/1 A/0
A/0 C/1



UMBC, CMSC 313, Richard Chang <chang@umbc.edu>

A

B

C

E

0/1

0/0

0/0

0/0

1/0

1/0

1/1

1/1

State Reduction Example: original transition diagram

D
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State Reduction Algorithm
1. Use a 2-dimensional table — an entry for each pair of states.
2. Two states are "distinguished" if:

a. States X and Y of a finite state machine M are 
distinguished if there exists an input r such that the output of 
M in state X reading input r is different from the output of M 
in state Y reading input r.
b. States X and Y of a finite state machine are distinguished if 
there exists an input r such that M in state X reading input r 
goes to state X', M in state Y reading input r goes to state Y' 
and we already know that X' and Y' are distinguished states.

3. For each pair (X,Y), check if X and Y are distinguished using 
the definition above.

4. At the end of the algorithm, states that are not found to be 
distinguished are in fact equivalent.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



State Reduction Table

• An x entry indicates that the pair of states are 
known to be distinguished.

• A & B are equivalent, C & D are equivalent

x

x

xxx

xxx

E

D

C

B

A

EDCBA
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AB

CD

E

0/1

0/0

0/0

1/1

1/1

State Reduction Example: reduced transition diagram

1/0



State Reduction Algorithm Performance

• As stated, the algorithm takes O(n4) time for a FSM 
with n states, because each pass takes O(n2) time 
and we make at most O(n2) passes.

• A more clever implementation takes O(n2) time.
• The algorithm produces a FSM with the fewest 

number states possible.

• Performance and correctness can be proven.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



STATE ASSIGNMENT 
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The State Assignment Problem
• Two state assignments for machine M2.

P.S.

Input X
0 1

A B/1 A/1
B C/0 D/1
C C/0 D/0
D B/1 A/0

Machine M2

Input X
0 1

A: 00 01/1 00/1
B: 01 10/0 11/1
C: 10 10/0 11/0
D: 11 01/1 00/0

State assignment SA0

S0S1

Input X
0 1

A: 00 01/1 00/1
B: 01 11/0 10/1
C: 11 11/0 10/0
D: 10 01/1 00/0

State assignment SA1

S0S1
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State Assignment SA0
• Boolean equations for machine M2 using state assignment SA0.
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0
00 1 1

1
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X
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S0 = S0S1 + S0S1 Z = S0S1 + S0X
+ S0S1X

S1 = S0S1X + S0S1X
+ S0S1X + S0S1X
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State Assignment SA1
• Boolean equations for machine M2 using state assignment SA1.
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X
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00
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1 1

11
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11

1

10
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00 1

1

1

1

X
S0S1
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1

10

00

X

1 1

1

1

S0S1
0

S1 = XS0 = S1 Z = S1X + S0X



State Assignment Heuristics

• No known efficient alg. for best state assignment

• Some heuristics (rules of thumb):
The initial state should be simple to reset — all zeroes or all ones.

Minimize the number of state variables that change on each transition.

Maximize the number of state variables that don't change on each transition.

Exploit symmetries in the state diagram.

If there are unused states (when the number of states s is not a power of 2), 
choose the unused state variable combinations carefully.  (Don't just use the 
first s combination of state variables.)

Decompose the set of state variables into bits or fields that have well-defined 
meaning with respect to the input or output behavior.

Consider using more than the minimum number of states to achieve the 
objectives above.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



APPLY  

STATE REDUCTION  

& STATE ASSIGNMENT 

TO SEQUENCE DETECTOR 
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Sequence Detector State Transition
Diagram

A

B
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F
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0/0

1/0

0/0

1/0

0/0

1/0

1/0

1/1

0/01/1

0/0

0/1

Input: 0 1 1 0 1 1 1 0 0
Output: 0 0 1 1 1 1 0 1 0
Time: 0 1 2 3 4 5 6 7 8
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Sequence Detector State Table

X
0 1

A B/0 C/0

Present state

Input

B
C
D
E

D/0 E/0
F/0 G/0
D/0 E/0
F/0 G/1

F D/0 E/1
G F/1 G/0



Sequence Detector State Reduction Table

x

xx

xx

xxx

xx

xxx

F

E

FE

x

x

xx

xxx

G

D

C

B

A

GDCBA
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Sequence Detector Reduced State
Table

X
0 1

B'/0 C'/0

Present state

Input

B'/0 D'/0
E'/0 F'/0
E'/0 F'/1
B'/0 D'/1
E'/1 F'/0

A: A'
BD: B'

C: C'
E: D'
F: E'
G: F'



UMBC, CMSC 313, Richard Chang <chang@umbc.edu>

A

B/D

C

E

F

G

0/1
0/0

0/0
0/0
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0/0
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1/0

1/0
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1/1

6-State Sequence Detector
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Sequence Detector State Assignment

X
0 1

A':  000 001/0 010/0

Present state

Input

B':  001
C':  010
D':  011
E':  100

001/0 011/0
100/0 101/0
100/0 101/1
001/0 011/1

F':  101 100/1 101/0

S2S1S0 S2S1S0Z S2S1S0Z
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Sequence Detector K-Maps

• K-map re-
duction of
next state
and output
functions for
sequence
detector.
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S0 = S2S1X + S0X
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S1 = S2S1X + S2S0X

Z = S2S0X + S1S0X + S2S0X

11

1

S2 = S2S0 + S1



Improved Sequence Detector?

• Formulas from the 7-state FSM:
      __ 
s2’= (s0 + x)(s2 + s1 + s0)
      __        _
s1’=  s0 x + s0 x = s0 xor x
     _ 
s0’= x
        __           _
 z = s2 s1 x + s2 s1 x

• Formulas from the 6-state FSM:
     
s2’=  s2 s0 + s1
      __ __        __ 
s1’=  s2 s1 x + s2 s0 x
     __ __ _             __
s0’= s2 s1 x + s0 x + s2 s0 + s1 x
        __                     _
 z = s2 s0 x + s1 s0 x + s2 s0 x

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



Sequence Detector State Assignment
7-state new 6-state

s2 s1 s0 x s2' s1' s0' z
0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 0 1 1 0
7 0 1 1 1 1 0 0 0
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 1 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d  

s2 s1 s0 x s2' s1' s0' z
0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 0 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 d d d d
7 0 1 1 1 d d d d
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 0 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d

 A  = 000  E  = 100
 B  = 001  F  = 101
 C  = 010  G  = 110
 D  = 011

 A  = 000  E  = 100
B/D = 001  F  = 101
 C  = 010  G  = 110
 D  = 011
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6-State Sequence Detector
7-state new 6-state

0d00

1d11

11

11

10

10

00 01 11 10

00

01

11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x
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x

0dd0

1dd1

11
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11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x

s0

x

      __       __
s2’= (s0 + x)(s2 + s1 + s0) s2’= (s0 + x)(s2 + s1 + s0)
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6-State Sequence Detector
7-state new 6-state

 

1

d

d11

1111

00 01 11 10

00

01

11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x
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d
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1111

00 01 11 10
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11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x

s0

x

      __        _      __
s1’=  s0 x + s0 x s1’= s0 x
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6-State Sequence Detector
7-state new 6-state

1111

1

d

d11

00 01 11 10

00
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11

10
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11
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s1
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d
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s2 s1
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      _       _
s0’ = x s0’ = x
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6-State Sequence Detector
7-state new 6-state

1

1

1

d
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00 01 11 10
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11
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       __           _        __           _
z = s2 s1 x + s2 s1 x z = s2 s1 x + s2 s1 x
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Improved Sequence Detector

• Textbook formulas for the 6-state FSM:
     
s2’=  s2 s0 + s1
      __ __        __ 
s1’=  s2 s1 x + s2 s0 x
     __ __ _             __
s0’= s2 s1 x + s0 x + s2 s0 + s1 x
        __                     _
 z = s2 s0 x + s1 s0 x + s2 s0 x

• New formulas for the 6-state FSM:
      __ 
s2’= (s0 + x)(s2 + s1 + s0)
      __
s1’=  s0 x
     _ 
s0’= x
        __           _
 z = s2 s1 x + s2 s1 x

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



CHOICE OF FLIP FLOP 
(NOT COVERED) 
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Excitation Tables
• Each table

shows the set-
tings that must
be applied at the
inputs at time t
in order to
change the out-
puts at time t+1.
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flip-flop
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Serial Adder

Serial
Adder

0 1 1 0 0
0 1 1 1 0

1 1 0 1 0X
Y

Z

Cin Cout

4 3 2 1 04 3 2 1 0 Time (t)Time (t)

A B00/0

01/1

10/1

11/0

00/1

10/0

01/0

11/1

No carry
state

Carry state

xi yi

zi

Present
state (St)

Input XY
00 01 10 11

A:0 0/0 0/1 0/1 1/0
B:1 0/1 1/0 1/0 1/1

Present state

Input XY
00 01 10 11

A A/0 A/1 A/1 B/0
B A/1 B/0 B/0 B/1

Next state Output

• State transi-
tion diagram,
state table,
and state as-
signment for
a serial adder.
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Serial Adder Next-State Functions
• Truth table showing next-state functions for a serial adder for D,

S-R, T, and J-K flip-flops. Shaded functions are used in the ex-
ample.

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Y St

0
0
0
0
1
1
1
1

X

0
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0
1
0
1
1
1

D

0
0
0
0
0
0
1
0

S

0
1
0
0
0
0
0
0

R

0
d
0
d
0
d
1
d

J

d
1
d
0
d
0
d
0

K

0
1
0
0
0
0
1
0

T

0
1
1
0
1
0
0
1

Z

Present 
State (Set) (Reset)
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J-K Flip-Flop Serial Adder Circuit

CLK
QJ

X

Y

Q

X
Y

Y

X

Z

S
KX

Y



Appendix B: Reduction of Digital LogicB-47

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

D Flip-Flop Serial Adder Circuit
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FLIP FLOP CHOICE 

IN SEQUENCE DETECTOR 
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A

B/D

C

E

F

G

0/1
0/0

0/0
0/0

0/0

0/0

1/0

1/0

1/0

1/1

1/1

6-State Sequence Detector



Sequence Detector State Assignment
7-state new 6-state

s2 s1 s0 x s2' s1' s0' z
0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 0 1 1 0
7 0 1 1 1 1 0 0 0
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 1 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d  

s2 s1 s0 x s2' s1' s0' z
0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 0 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 d d d d
7 0 1 1 1 d d d d
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 0 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d

 A  = 000  E  = 100
 B  = 001  F  = 101
 C  = 010  G  = 110
 D  = 011

 A  = 000  E  = 100
B/D = 001  F  = 101
 C  = 010  G  = 110
 D  = 011
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6-State Sequence Detector

Q Q' J K

0 0 0 d

0 1 1 d

1 0 d 1

1 1 d 0

s2 s1 s0 x s2' s1' s0' z j2 k2 j1 k1 j0 k0

0 0 0 0 0 0 0 1 0 0 d 0 d 1 d

1 0 0 0 1 0 1 0 0 0 d 1 d 0 d

2 0 0 1 0 0 0 1 0 0 d 0 d d 0

3 0 0 1 1 1 0 0 0 1 d 0 d d 1

4 0 1 0 0 1 0 1 0 1 d d 1 1 d

5 0 1 0 1 1 1 0 0 1 d d 0 0 d

6 0 1 1 0 d d d d d d d d d d

7 0 1 1 1 d d d d d d d d d d

8 1 0 0 0 1 0 1 0 d 0 0 d 1 d

9 1 0 0 1 1 1 0 1 d 0 1 d 0 d

10 1 0 1 0 0 0 1 0 d 1 0 d d 0

11 1 0 1 1 1 0 0 1 d 0 0 d d 1

12 1 1 0 0 1 0 1 1 d 0 d 1 1 d

13 1 1 0 1 1 1 0 0 d 0 d 0 0 d

14 1 1 1 0 d d d d d d d d d d

15 1 1 1 1 d d d d d d d d d d
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6-State Sequence Detector
J2 K2

ddd0

ddd1

dd

dd

10

10

00 01 11 10

00

01

11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x

s0

x

1ddd

0ddd

00

00

dd

dd

00 01 11 10

00

01

11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x

s0

x

         _
J2 = s1 + s0 x K2 = s0 x
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6-State Sequence Detector
J1 K1

0dd0

0dd0

1d

0d

d1

d0

00 01 11 10

00

01

11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x

s0

x

dddd

dddd

d0

d1

0d

1d

00 01 11 10

00

01

11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x

s0

x

     __      _
J1 = s0 x K1 = x
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6-State Sequence Detector
J0 K0

dddd

dddd

00

11

00

11

00 01 11 10
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s2 s1
11

s2
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11
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s2 s1
11
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s0 x

s0

x

     _
J0 = x K0 = x
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Improved Sequence Detector

• Formulas for the 6-state FSM with D Flip-flops:
      __ 
s2’= (s0 + x)(s2 + s1 + s0)
      __
s1’=  s0 x
     _ 
s0’= x

• Formulas for the 6-state FSM with J-K Flip-flops: 
                          _
J2 = s1 + s0 x    K2 = s0 x
     __                _
J1 = s0 x         K1 = x
     _
J0 = x            K0 = x
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NEXT TIME 

•  A 2-bit CPU 


