
CMSC 313
COMPUTER ORGANIZATION
&
ASSEMBLY LANGUAGE
PROGRAMMING

LECTURE 16, SPRING 2013

TOPICS TODAY

•  Project 6

•  Perils & Pitfalls of Memory Allocation

•  C Function Call Conventions in Assembly Language

PERILS & PITFALLS

Memory-Related Perils and Pitfalls

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory
Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks
Failing to free blocks

Adapted from Dennis Frey CMSC 313 Spring 2011

Dereferencing Bad Pointers

The classic scanf bug.
Typically reported as an error by the compiler.

Adapted from Dennis Frey CMSC 313 Spring 2011

int val;

...

scanf(“%d”, val);

Reading Uninitialized Memory

Assuming that heap data is initialized to zero

Adapted from Dennis Frey CMSC 313 Spring 2011

/* return y = A times x */
int *matvec(int A[N][N], int x[N]) {
 int *y = malloc(N * sizeof(int));
 int i, j;

 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 y[i] += A[i][j] * x[j];
 return y;
}

Overwriting Memory

Allocating the (possibly) wrong sized object

Adapted from Dennis Frey CMSC 313 Spring 2011

int i, **p;

p = malloc(N * sizeof(int));

for (i = 0; i < N; i++) {
 p[i] = malloc(M * sizeof(int));
}

Overwriting Memory

Not checking the max string size

Basis for classic buffer overflow attacks

1988 Internet worm
Modern attacks on Web servers
AOL/Microsoft IM war

Adapted from Dennis Frey CMSC 313 Spring 2011

char s[8];
int i;

gets(s); /* reads “123456789” from stdin */

Overwriting Memory

Misunderstanding pointer arithmetic

Adapted from Dennis Frey CMSC 313 Spring 2011

int *search(int *p, int val) {

 while (*p != NULL && *p != val)
 p += sizeof(int);

 return p;
}

Referencing Nonexistent Variables

Forgetting that local variables disappear when a function returns

Adapted from Dennis Frey CMSC 313 Spring 2011

int *foo () {
 int val;

 return &val;
}

Freeing Blocks Multiple Times

Nasty!

Adapted from Dennis Frey CMSC 313 Spring 2011

x = malloc(N * sizeof(int));
 <manipulate x>
free(x);

y = malloc(M * sizeof(int));
 <manipulate y>
free(x);

Referencing Freed Blocks

Evil!

Adapted from Dennis Frey CMSC 313 Spring 2011

x = malloc(N * sizeof(int));
 <manipulate x>
free(x);
 ...
y = malloc(M * sizeof(int));
for (i = 0; i < M; i++)
 y[i] = x[i]++;

Failing to Free Blocks
(Memory Leaks)

Slow, long-term killer!

Adapted from Dennis Frey CMSC 313 Spring 2011

foo() {
 int *x = malloc(N * sizeof(int));
 ...
 return;
}

Failing to Free Blocks
(Memory Leaks)

Freeing only part of a data structure

Adapted from Dennis Frey CMSC 313 Spring 2011

struct list {
 int val;
 struct list *next;
};

foo() {
 struct list *head = malloc(sizeof(struct list));
 head->val = 0;
 head->next = NULL;
 <create and manipulate the rest of the list>
 ...
 free(head);
 return;
}

Dealing With Memory Bugs

Conventional debugger (gdb)
Good for finding bad pointer dereferences
Hard to detect the other memory bugs

Some malloc implementations contain checking code
Linux glibc malloc: setenv MALLOC_CHECK_ 2

Adapted from Dennis Frey CMSC 313 Spring 2011

Dealing With Memory Bugs (cont.)

Binary translator: valgrind (Linux)
Powerful debugging and analysis technique
Rewrites text section of executable object file
Can detect all errors as debugging malloc
Can also check each individual reference at runtime

Bad pointers
Overwriting
Referencing outside of allocated block

Garbage collection (Boehm-Weiser Conservative GC)
Let the system free blocks instead of the programmer.

Adapted from Dennis Frey CMSC 313 Spring 2011

C FUNCTION
CALL CONVENTIONS
IN
ASSEMBLY LANGUAGE

Linux/gcc/i386 Function Call Convention

• Parameters pushed right to left on the stack
first parameter on top of the stack

• Caller saves EAX, ECX, EDX if needed
these registers will probably be used by the callee

• Callee saves EBX, ESI, EDI
there is a good chance that the callee does not need these

• EBP used as index register for parameters, local
variables, and temporary storage

• Callee must restore caller’s ESP and EBP

• Return value placed in EAX

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

A typical stack frame for the
function call:

 int foo (int arg1, int arg2, int arg3) ;

ESP ==> .
.
.

Callee saved registers
EBX, ESI & EDI

(as needed)

temporary storage

local variable #2 [EBP - 8]

local variable #1 [EBP - 4]

EBP ==> Caller's EBP

Return Address

Argument #1 [EBP + 8]

Argument #2 [EBP + 12]

Argument #3 [EBP + 16]

Caller saved registers
EAX, ECX & EDX

(as needed)

.

.

.

Fig. 1

 int foo (int arg1, int arg2, int arg3) ;

The caller's actions before the
function call

Save EAX, ECX, EDX registers as
needed

Push arguments, last first

CALL the function

ESP ==> Return Address

Arg #1 = 12

Arg #2 = 15

Arg #3 = 18

Caller saved registers
EAX, ECX & EDX

(as needed)

EBP ==>

.

.

.

Fig. 2

The callee's actions after function call

Save main's EBP, set up own stack
frame

 push ebp
 mov ebp, esp

Allocate space for local variables
and temporary storage

Save EBX, ESI and EDI registers as
needed

ESP ==> Callee saved registers
EBX, ESI & EDI

(as needed)

temporary storage

 [EBP - 20]

local variable #2 [EBP - 8]

local variable #1 [EBP - 4]

EBP==> 's EBPmain

Return Address

Arg #1 = 12 [EBP + 8]

Arg #2 = 15 [EBP + 12]

Arg #3 = 18 [EBP + 16]

Caller saved registers
EAX, ECX & EDX

(as needed)

Fig. 4

The callee's actions before returning

Store return value in EAX

Restore EBX, ESI and EDI registers
as needed

Restore main's stack frame

 mov esp, ebp
 pop ebp

RET to main

ESP ==> Arg #1 = 12

Arg #2 = 15

Arg #3 = 18

Caller saved registers
EAX, ECX & EDX

(as needed)

EBP ==>

.

.

.

Fig. 5

The caller's actions after returning

POP arguments off the stack

Store return value in EAX

Restore EAX, ECX and EDX
registers as needed

Return Address

Arg #1 = 12

Arg #2 = 15

Arg #3 = 18

Caller saved registers
EAX, ECX & EDX

(as needed)

ESP ==>

EBP ==>

.

.

.

Fig. 6

NEXT TIME

•  Finish C Function Call Conventions

•  Function Pointers

