
CMSC 313
COMPUTER ORGANIZATION
&
ASSEMBLY LANGUAGE
PROGRAMMING

LECTURE 15, SPRING 2013

TOPICS TODAY

•  Dynamic memory allocation

DYNAMIC
MEMORY
ALLOCATION

Dynamic Memory

C allows us to allocate memory in which to store data during program
execution.

Like Java, dynamically allocated memory is take from the heap.
Dynamic memory has two primary applications

Dynamically allocating an array
based on some user input or file data
better than guessing and defining the array size in our code since it

can�t be changed
Dynamically allocating structs to hold data in some

predetermined arrangement (a data structure)
Allows an �infinite� amount of data to be stored

Adapted from Dennis Frey CMSC 313 Spring 2011

Dynamic Memory Functions

These functions are used to allocate and free dynamically allocated heap
memory and are part of the standard C library. To use these functions,
include <stdlib.h> .

void *malloc(size_t nrBytes);
Returns a pointer to dynamically allocated memory on the heap of

size nrBytes, or NULL if the request cannot be satisfied. The
memory is uninitialized.

void *calloc(int nrElements, size_t nrBytes);
Same as malloc(), but the memory is initialized to zero
Note that the parameter list is different

void *realloc(void *p, size_t nrBytes);
Changes the size of the memory pointed to by p to nrBytes. The

contents will be unchanged up to the minimum of the old and new
size. If the new size is larger, the new space is uninitialized.
Returns a pointer to the new memory, or NULL if request cannot
be satisfied in which case *p is unchanged.

void free(void *p)
Deallocates the memory pointed to by p which must point to memory

previously allocated by calling one of the functions above.
Does nothing if p is NULL.

Adapted from Dennis Frey CMSC 313 Spring 2011

void* and size_t

The void* type is C�s generic pointer. It may point to any
kind of variable, but may not be dereferenced. Any other
pointer type may be converted to void* and back again
without loss of information. void* is often used as
parameter types to, and return types from, library functions.

size_t is an unsigned integral type that should be used

(rather than int) when expressing �the size of
something� (e.g. an int, array, string, or struct). It too is
often used as a parameter to, or return type from, library
functions. By definition, size_t is the type that is
returned from the sizeof() operator.

Adapted from Dennis Frey CMSC 313 Spring 2011

malloc() for arrays

malloc() returns a void pointer to uninitialized memory.
Good programming practice is to cast the void* to the

appropriate pointer type.
Note the use of sizeof() for portable coding.
As we�ve seen, the pointer can be used as an array name.
 int *p = (int *)malloc(42 * sizeof(int));
 for (k = 0; k < 42; k++)
 p[k] = k;
 for (k = 0; k < 42; k++)
 printf(�%d\n�, p[k];

Exercise: rewrite this code using p as a pointer rather than an
array name

Adapted from Dennis Frey CMSC 313 Spring 2011

calloc() for arrays

calloc() returns a void pointer to memory that is initialized to
zero.

Note that the parameters to calloc() are different than the
parameters for malloc()

 int *p = (int *)calloc(42, sizeof(int));
 for (k = 0; k < 42; k++)
 printf(�%d\n�, p[k]);

Adapted from Dennis Frey CMSC 313 Spring 2011

realloc()

realloc() changes the size of a dynamically allocated memory
previously created by malloc() or calloc() and returns a
void pointer to the new memory.

The contents will be unchanged up to the minimum of the old and
new size. If the new size is larger, the new space is uninitialized.

 int *p = (int *)malloc(42 * sizeof(int));
 for (k = 0; k < 42; k++)
 p[k] = k;

 p = (int *)realloc(p, 99 * sizeof(int));
 for (k = 0; k < 42; k++)
 printf(�p[%d] = %d\n�, k, p[k]);
 for (k = 0; k < 99; k++)
 p[k] = k * 2;
 for (k = 0; k < 99; k++)
 printf(�p[%d] = %d\n�, k, p[k]);

Adapted from Dennis Frey CMSC 313 Spring 2011

Testing the returned pointer

malloc(), calloc() and realloc() all return NULL if unable to
fulfill the requested memory allocation.

Good programming practice dictates that the pointer returned should
be validated

char *cp = malloc(22 * sizeof(char));!
!
if (cp == NULL) {  

fprintf(stderr, �malloc failed\n);!
!exit(-12);!

}!

Adapted from Dennis Frey CMSC 313 Spring 2011

assert()

Since dynamic memory allocation shouldn�t fail unless there is a
serious programming mistake, such failures are often fatal.

Rather than using if statements to check the return values from

malloc(), we can use the assert() macro.

To use assert(), you must #include <assert.h>

!
char *cp = malloc(22 * sizeof(char));!
assert(cp != NULL);!

Adapted from Dennis Frey CMSC 313 Spring 2011

How assert() works

The parameter to assert is any Boolean expression
 assert(expression);
If the Boolean expression is true, nothing happens and execution

continues on the next line
If the Boolean expression is false, a message is output to stderr

and your program terminates
The message includes the name of the .c file and the line number of

the assert() that failed

assert() may be disabled with the preprocessor directive #define

NDEBUG

assert() may be used for any condition including

Opening files
Function parameter checking (preconditions)

Adapted from Dennis Frey CMSC 313 Spring 2011

free()

free() is used to return dynamically allocated memory back
to the heap to be reused by later calls to malloc(),
calloc() or realloc()

The parameter to free() must be a pointer previously
returned by one of malloc(), calloc() or realloc()

Freeing a NULL pointer has no effect
Failure to free memory is known as a �memory leak� and may

lead to program crash when no more heap memory is
available

int *p = (int *) calloc(42, sizeof(int));!
!
/* code that uses p */!
free(p);!
!

Adapted from Dennis Frey CMSC 313 Spring 2011

Dynamic Memory for structs

In JAVA
public class Person
{

 public int age;
 public double gpa;

}

// memory allocation
Person bob = new Person();
bob.age = 42;
bob.gpa = 3.5;

// bob is eventually freed
// by garbage collector

Adapted from Dennis Frey CMSC 313 Spring 2011

In C
typedef struct person
{
 int age;
 double gpa;
} PERSON ;

/* memory allocation */

PERSON *pbob
 = (PERSON *)malloc(sizeof(PERSON));

pbob->age = 42;
pbob->gpa = 3.5;
...

/* explicitly freeing the memory */

free(pbob);

Dynamic Teammates

typedef struct player
{
 char name[20];
 struct player *teammate;

} PLAYER;

PLAYER *getPlayer()
{
 char *name = askUserForPlayerName();
 PLAYER *p = (PLAYER *)malloc(sizeof(PLAYER));
 strncpy(p->name, name, 20);
 p->teammate = NULL;
 return p;

}

Adapted from Dennis Frey CMSC 313 Spring 2011

Dynamic Teammates (2)

int main () {
 int nrPlayers, count = 0;
 PLAYER *pPlayer, *pTeam = NULL;
 nrPlayers = askUserForNumberOfPlayers();
 while (count < nrPlayers) {
 pPlayer = getPlayer();
 pPlayer->teammate = pTeam;
 pTeam = pPlayer;
 ++count;
 }
 /* do other stuff with the PLAYERs */

 return 0;

}

Adapted from Dennis Frey CMSC 313 Spring 2011

Dynamic Arrays

As we noted, arrays cannot be returned from functions.
However, pointers to dynamically allocated arrays may be returned.

 char *getCharArray(int size)  
{!
!! char *cp = (char *)malloc(size * sizeof(char));!
! assert(cp != NULL);!
!! !

 return cp;!
!}!

Adapted from Dennis Frey CMSC 313 Spring 2011

Dynamic 2-D arrays

There are now three ways to define a 2-D array, depending on just
how dynamic you want them to be.

int board[8] [8];
An 8 x 8 2-d array of int... Not dynamic at all

int *board[8];
An array of 8 pointers to int. Each pointer represents a row

whose size is be dynamically allocated.

int **board;
A pointer to a pointer of ints. Both the number of rows and the

size of each row are dynamically allocated.

Adapted from Dennis Frey CMSC 313 Spring 2011

NEXT TIME

•  Perils & Pitfalls in Dynamic Memory Allocation

•  C Function Calls & Assembly Language

