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TOPICS TODAY 

•  Reminder: MIDTERM EXAM on THURSDAY 

•  Pointer Basics 

•  Pointers & Arrays 

•  Pointers & Strings 

•  Pointers & Structs 



POINTER BASICS 



Java Reference 

•  In Java, the name of an object is a reference to that object.  Here 
ford is a reference to a Truck object.  It contains the memory 
address at which the Truck object is stored.  
Truck ford = new Truck( ); 

•  The syntax for using the reference is pretty simple.  Just use the 
“dot” notation. 
ford.start( ); 
ford.drive( 23 ); 
ford.turn (LEFT); 
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What is a pointer ? 

•  pointer = memory address + type 
 
•  C pointers vs Java references 

–  A pointer can contain the memory address of any variable type 
(Java references only refer to objects) 

–  A primitive (int, char, float) 

–  An array 

–  A struct or union 

–  Dynamically allocated memory 

–  Another pointer 

–  A function 

–  There’s a lot of syntax required to create and use pointers 
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Why Pointers? 

•  They allow you to refer to large data structures in a 
compact way 

 
•  They facilitate sharing between different parts of programs 
 
•  They make it possible to get new memory dynamically as 

your program is running 
 
•  They make it easy to represent relationships among data 

items.  
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Pointer Caution 

 
•  Undisciplined use can be confusing and thus the source of subtle, 

hard-to-find bugs.  
–  Program crashes 
–  Memory leaks 
–  Unpredictable results 

•  About as "dangerous" as memory addresses in assembly 
language programming. 
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C Pointer Variables 

•  General declaration of a pointer 
! !type *nameOfPointer ;!
 
•  Example: 

!int *ptr1 ;!
 
•  Notes: 

•  * = dereference 

•  "if I dereference ptr1, I have an int" 

•  name of pointer variable should indicate it is a pointer 
•  here x is pointer, y is NOT: 

  int *x, y; 

!

!
!
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Pointer Operators 

 
* = dereference 
The * operator is used to define pointer variables and to 

dereference a pointer.  “Dereferencing” a pointer means to use 
the value of the pointee. 

 
& = address of!
The & operator gives the address of a variable. 

Recall the use of & in scanf( ) 
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Pointer Examples 

int x = 1, y = 2 ; 
int *ip ;  /* pointer to int */ 
 
ip = &x ;    
y = *ip ;    
*ip = 0 ;   
*ip = *ip + 10 ; 
 
*ip += 1 ; 
(*ip)++ ; 
ip++ ; 
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Pointer and Variable types 

The type of a pointer and its pointee must match 
 
 int a = 42; 
 int *ip; 
 double d = 6.34; 
 double *dp; 

 
 ip = &a;  /* ok -- types match */ 
 dp = &d;  /* ok */ 
 ip = &d;  /* compiler error -- type mismatch */ 
 dp = &a;  /* compiler error */ 
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More Pointer Code 

  
 int a = 1, *ptr1; 

 
 ptr1 = &a ; 
 printf("a = %d, &a = %p, ptr1 = %p, *ptr1 = %d\n", 
   a, &a, ptr1, *ptr1) ; 

 
 *ptr1 = 35 ; 

 
 printf(“a = %d, &a = %p, ptr1 = %p, *ptr1 = %d\n", a, 

  &a, ptr1, *ptr1) ; 
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NULL 

•  NULL is a special value which may be assigned to a pointer 
•  NULL indicates that a pointer points to nothing 
•  Often used when pointers are declared 

 int *pInt = NULL; 
 

•  Used as return value to indicate failure 
int *myPtr; 
myPtr = myFunction( ); 
if (myPtr == NULL){ 

/* something bad happened */ 
} 
 

•  Dereferencing a pointer whose value is NULL will result in 
program termination. 
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Pointers and Function Arguments 

•  Since C passes all primitive function arguments “by value”. 

/* version 1 of swap */!
void swap (int a, int b)!
{!

!int temp;!
!temp = a;!
!a = b;!
!b = temp;!

}!
!
/* calling swap from somewhere in main() */!
int x = 42, y = 17;!
swap( x, y );!
printf(“%d, %d\n”, x, y);   // what does this print?!
!
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A better swap( ) 

 
/* pointer version of swap */!
void swap (int *px, int *py)!
{!

!int temp;!
!temp = *px;!
!*px = *py;!
!*py = temp;!

}!
!
!
/* calling swap from somewhere in main( ) */!
int x = 42, y = 17;!
swap( &x, &y );!
printf(“%d, %d\n”, x, y);  // what does this print?!
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More Pointer Function Parameters 

•  Passing the address of variable(s) to a function can be used to 
have a function “return” multiple values. 

 
•  The pointer arguments point to variables in the calling code which 

are changed (“returned”) by the function. 
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ConvertTime.c 

void convertTime (int time, int *pHours, int *pMins)  
{ 
 *pHours = time / 60; 
 *pMins = time % 60; 

}  
 
int main( ) 
{ 
 int time, hours, minutes; 
 printf("Enter a time duration in minutes: "); 
 scanf ("%d", &time); 
 convertTime (time, &hours, &minutes); 
 printf("HH:MM format: %d:%02d\n", hours, minutes); 
 return 0; 

}  
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An Exercise 
•  What is the output from this code? 

void myFunction (int a, int *b)  
{ 
 a = 7 ; 

  *b = a ; 
  b = &a ;  
 *b = 4 ;  
 printf("%d, %d\n", a, *b) ;  

}  
 
int main() 
{ 
 int m = 3, n  = 5; 
 myFunction(m, &n) ; 
 printf("%d, %d\n", m, n) ; 
 return 0; 

}  
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Pointers to struct 
/* define a struct for related student data */!
typedef struct student { !
!char name[50]; !
!char major [20];!
!double gpa;!

} STUDENT;!
!
!
STUDENT bob = {"Bob Smith", "Math", 3.77};!
STUDENT sally = {"Sally", "CSEE", 4.0};!
!
!
/* pStudent is a "pointer to struct student" */ !
STUDENT *pStudent; ! !!
!
/* make pStudent point to bob */!
pStudent = &bob; !
!
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Pointers to struct (2) 
/* pStudent is a "pointer to struct student" */ !
STUDENT *pStudent; ! !!
!
/* make pStudent point to bob */!
pStudent = &bob; !
!
printf ("Bob's name: %s\n", (*pStudent).name);!
printf ("Bob's gpa : %f\n", (*pStudent).gpa);!
!
/* use -> to access the members */ !
pStudent = &sally;!
printf ("Sally's name: %s\n", pStudent->name);!
printf ("Sally's gpa: %f\n", pStudent->gpa);!
!
!
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Pointer to struct for functions 

void printStudent(STUDENT *studentp) 
{ 
 printf(“Name : %s\n”, studentp->name); 
 printf(“Major: %s\n”, studentp->major); 
 printf(“GPA  : %4.2f”, studentp->gpa); 

} 
 
Passing a pointer to a struct to a function is more efficient than 

passing the struct itself.  Why is this true? 
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POINTERS & ARRAYS 



Pointers and Arrays 

•  In C, there is a strong relationship between pointers and arrays. 
•  The declaration int a[10]; defines an array of 10 integers. 
•  The declaration int *p; defines p as a “pointer to an int”. 
•  The assignment  p = a; makes p an alias for the array and sets p 

to point to the first element of the array. (We could also write p = 
&a[0];) 

•  We can now reference members of the array using either a or p 
 

 a[4] =9; 
 
 p[3] = 7; 
 
 int x = p[6] + a[4] * 2; 
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More Pointers and Arrays 

•  The name of an array is equivalent to a pointer to the first 
element of the array and vice-versa. 

 
•  Therefore, if a is the name of an array, the expression  

a[ i ] is equivalent to *(a + i). 
 
•  It follows then that &a[ i ] and (a + i) are also 

equivalent. Both represent the address of the i-th element 
beyond a. 

 
•  On the other hand, if p is a pointer, then it may be used with 

a subscript as if it were the name of an array. 
   p[ i ] is identical to *(p + i) 

 
In short, an array-and-index expression is equivalent to a pointer-and-

offset expression and vice-versa. 
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So, what’s the difference? 

•  If the name of an array is synonymous with a pointer to the first 
element of the array, then what’s the difference between an array 
name and a pointer? 

 
•  An array name can only “point” to the first element of its array.  It 

can never point to anything else. 
 
•  A pointer may be changed to point to any variable or array of the 

appropriate type 
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Array Name vs Pointer 
 int g, grades[ ] = {10, 20, 30, 40 }, myGrade = 100, yourGrade = 85, *pGrade; 

 
 /* grades can be (and usually is) used as array name */ 
 for (g = 0; g < 4; g++) 
  printf(“%d\n” grades[g]); 

 
 /* grades can be used as a pointer to its array if it doesn’t change*/ 
 for (g = 0; g < 4; g++) 
  printf(“%d\n” *(grades + g); 

 
 /* but grades can’t point anywhere else */ 
 grades = &myGrade;   /* compiler error */ 

 
 /* pGrades can be an alias for grades and used like an array name */ 
 pGrades = grades;   /* or pGrades = &grades[0]; */ 
 for( g = 0; g < 4; g++) 
  printf( “%d\n”, pGrades[g]); 

 
 /* pGrades can be an alias for grades and be used like a pointer that changes */ 
 for (g = 0; g < 4; g++) 
  printf(“%d\n” *pGrades++); 

 
 /* BUT, pGrades can point to something else other than the grades array */ 
 pGrades = &myGrade; 
 printf( “%d\n”, *pGrades); 
 pGrades = &yourGrade; 
 printf( “%d\n”, *pGrades); 
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More Pointers & Arrays 

 
•  If p points to a particular element of an array, then p + 1 points to 

the next element of the array and p + n points n elements after p. 
 

•  The meaning a “adding 1 to a pointer” is that  
 p + 1 points to the next element in the array, REGARDLESS of 

the type of the array. 
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Pointer Arithmetic 

•  If p is an alias for an array of ints, then p[ k ] is the k-th int and 
so is *(p + k). 

•  If p is an alias for an array of doubles, then  
p[ k ] is the k-th double and so is *(p + k). 

•  Adding a constant, k, to a pointer (or array name) actually adds k 
* sizeof(pointer type) to the value of the pointer.   

•  This is one important reason why the type of a pointer must be 
specified when it’s defined. 
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Pointer Gotcha 

•  But what if p isn’t the alias of an array? 
•  Consider this code. 

int a = 42;!
int *p = &a;!
!
printf( “%d\n”, *p); !// prints 42!
++p; ! ! !// to what does p point now?!
printf( “%d\n”, *p); !// what gets printed?!
!
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Printing an Array 

•  The code below shows how to use a parameter array name 
as a pointer.  

void printGrades( int grades[ ], int size ) 
{ 
 int i; 
 for (i = 0; i < size; i++) 
  printf( “%d\n”, *grades ); 
  ++grades; 
} 
 

•  What about this prototype? 

 void printGrades( int *grades, int size ); 
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Passing Arrays 

•  Arrays are passed “by reference” (its address is passed by 
value): 

 
!int sumArray( int A[], int size) ;!

!
   is equivalent to 
!

!int sumArray( int *A, int size) ;!

•  Use A as an array name or as a pointer. 

•  The compiler always sees A as a pointer.  In fact, any error 
messages produced will refer to A as an int * 
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sumArray  

int sumArray( int A[ ], int size) 
{ 
 int k, sum = 0; 
 for (k = 0; k < size; k++) 
  sum += A[ k ]; 
 return sum; 

} 
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sumArray (2) 
int sumArray( int A[ ], int size) 
{ 
 int k, sum = 0; 
 for (k = 0; k < size; k++) 
  sum += *(A + k); 
 return sum; 

} 
 
int sumArray( int A[ ], int size) 
{ 
 int k, sum = 0; 
 for (k = 0; k < size; k++) 
 } 
  sum += *A; 
  ++A; 
 } 
 return sum; 

} 
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NEXT TIME 

•  Midterm Exam !!! 

After Midterm Exam: 

•  More on pointers 

•  Memory allocation 


