
CMSC 313
COMPUTER ORGANIZATION
&
ASSEMBLY LANGUAGE
PROGRAMMING

LECTURE 13, SPRING 2013

TOPICS TODAY

•  Reminder: MIDTERM EXAM on THURSDAY

•  Pointer Basics

•  Pointers & Arrays

•  Pointers & Strings

•  Pointers & Structs

POINTER BASICS

Java Reference

•  In Java, the name of an object is a reference to that object. Here
ford is a reference to a Truck object. It contains the memory
address at which the Truck object is stored.
Truck ford = new Truck();

•  The syntax for using the reference is pretty simple. Just use the
“dot” notation.
ford.start();
ford.drive(23);
ford.turn (LEFT);

Adapted from Dennis Frey CMSC 313 Spring 2011

What is a pointer ?

•  pointer = memory address + type

•  C pointers vs Java references

–  A pointer can contain the memory address of any variable type
(Java references only refer to objects)

–  A primitive (int, char, float)

–  An array

–  A struct or union

–  Dynamically allocated memory

–  Another pointer

–  A function

–  There’s a lot of syntax required to create and use pointers

Adapted from Dennis Frey CMSC 313 Spring 2011

Why Pointers?

•  They allow you to refer to large data structures in a
compact way

•  They facilitate sharing between different parts of programs

•  They make it possible to get new memory dynamically as

your program is running

•  They make it easy to represent relationships among data

items.

Adapted from Dennis Frey CMSC 313 Spring 2011

Pointer Caution

•  Undisciplined use can be confusing and thus the source of subtle,

hard-to-find bugs.
–  Program crashes
–  Memory leaks
–  Unpredictable results

•  About as "dangerous" as memory addresses in assembly
language programming.

Adapted from Dennis Frey CMSC 313 Spring 2011

C Pointer Variables

•  General declaration of a pointer
! !type *nameOfPointer ;!

•  Example:

!int *ptr1 ;!

•  Notes:

•  * = dereference

•  "if I dereference ptr1, I have an int"

•  name of pointer variable should indicate it is a pointer
•  here x is pointer, y is NOT:

 int *x, y;

!

!
!

Adapted from Dennis Frey CMSC 313 Spring 2011

Pointer Operators

* = dereference
The * operator is used to define pointer variables and to

dereference a pointer. “Dereferencing” a pointer means to use
the value of the pointee.

& = address of!
The & operator gives the address of a variable.

Recall the use of & in scanf()

Adapted from Dennis Frey CMSC 313 Spring 2011

Pointer Examples

int x = 1, y = 2 ;
int *ip ; /* pointer to int */

ip = &x ;
y = *ip ;
*ip = 0 ;
*ip = *ip + 10 ;

*ip += 1 ;
(*ip)++ ;
ip++ ;

Adapted from Dennis Frey CMSC 313 Spring 2011

Pointer and Variable types

The type of a pointer and its pointee must match

 int a = 42;
 int *ip;
 double d = 6.34;
 double *dp;

 ip = &a; /* ok -- types match */
 dp = &d; /* ok */
 ip = &d; /* compiler error -- type mismatch */
 dp = &a; /* compiler error */

Adapted from Dennis Frey CMSC 313 Spring 2011

More Pointer Code

 int a = 1, *ptr1;

 ptr1 = &a ;
 printf("a = %d, &a = %p, ptr1 = %p, *ptr1 = %d\n",
 a, &a, ptr1, *ptr1) ;

 *ptr1 = 35 ;

 printf(“a = %d, &a = %p, ptr1 = %p, *ptr1 = %d\n", a,

 &a, ptr1, *ptr1) ;

Adapted from Dennis Frey CMSC 313 Spring 2011

NULL

•  NULL is a special value which may be assigned to a pointer
•  NULL indicates that a pointer points to nothing
•  Often used when pointers are declared

 int *pInt = NULL;

•  Used as return value to indicate failure
int *myPtr;
myPtr = myFunction();
if (myPtr == NULL){

/* something bad happened */
}

•  Dereferencing a pointer whose value is NULL will result in
program termination.

Adapted from Dennis Frey CMSC 313 Spring 2011

Pointers and Function Arguments

•  Since C passes all primitive function arguments “by value”.

/* version 1 of swap */!
void swap (int a, int b)!
{!

!int temp;!
!temp = a;!
!a = b;!
!b = temp;!

}!
!
/* calling swap from somewhere in main() */!
int x = 42, y = 17;!
swap(x, y);!
printf(“%d, %d\n”, x, y); // what does this print?!
!

Adapted from Dennis Frey CMSC 313 Spring 2011

A better swap()

/* pointer version of swap */!
void swap (int *px, int *py)!
{!

!int temp;!
!temp = *px;!
!*px = *py;!
!*py = temp;!

}!
!
!
/* calling swap from somewhere in main() */!
int x = 42, y = 17;!
swap(&x, &y);!
printf(“%d, %d\n”, x, y); // what does this print?!

Adapted from Dennis Frey CMSC 313 Spring 2011

More Pointer Function Parameters

•  Passing the address of variable(s) to a function can be used to
have a function “return” multiple values.

•  The pointer arguments point to variables in the calling code which

are changed (“returned”) by the function.

Adapted from Dennis Frey CMSC 313 Spring 2011

ConvertTime.c

void convertTime (int time, int *pHours, int *pMins)
{
 *pHours = time / 60;
 *pMins = time % 60;

}

int main()
{
 int time, hours, minutes;
 printf("Enter a time duration in minutes: ");
 scanf ("%d", &time);
 convertTime (time, &hours, &minutes);
 printf("HH:MM format: %d:%02d\n", hours, minutes);
 return 0;

}

Adapted from Dennis Frey CMSC 313 Spring 2011

An Exercise
•  What is the output from this code?

void myFunction (int a, int *b)
{
 a = 7 ;

 *b = a ;
 b = &a ;
 *b = 4 ;
 printf("%d, %d\n", a, *b) ;

}

int main()
{
 int m = 3, n = 5;
 myFunction(m, &n) ;
 printf("%d, %d\n", m, n) ;
 return 0;

}

Adapted from Dennis Frey CMSC 313 Spring 2011

Pointers to struct
/* define a struct for related student data */!
typedef struct student { !
!char name[50]; !
!char major [20];!
!double gpa;!

} STUDENT;!
!
!
STUDENT bob = {"Bob Smith", "Math", 3.77};!
STUDENT sally = {"Sally", "CSEE", 4.0};!
!
!
/* pStudent is a "pointer to struct student" */ !
STUDENT *pStudent; ! !!
!
/* make pStudent point to bob */!
pStudent = &bob; !
!

Adapted from Dennis Frey CMSC 313 Spring 2011

Pointers to struct (2)
/* pStudent is a "pointer to struct student" */ !
STUDENT *pStudent; ! !!
!
/* make pStudent point to bob */!
pStudent = &bob; !
!
printf ("Bob's name: %s\n", (*pStudent).name);!
printf ("Bob's gpa : %f\n", (*pStudent).gpa);!
!
/* use -> to access the members */ !
pStudent = &sally;!
printf ("Sally's name: %s\n", pStudent->name);!
printf ("Sally's gpa: %f\n", pStudent->gpa);!
!
!

Adapted from Dennis Frey CMSC 313 Spring 2011

Pointer to struct for functions

void printStudent(STUDENT *studentp)
{
 printf(“Name : %s\n”, studentp->name);
 printf(“Major: %s\n”, studentp->major);
 printf(“GPA : %4.2f”, studentp->gpa);

}

Passing a pointer to a struct to a function is more efficient than

passing the struct itself. Why is this true?

Adapted from Dennis Frey CMSC 313 Spring 2011

POINTERS & ARRAYS

Pointers and Arrays

•  In C, there is a strong relationship between pointers and arrays.
•  The declaration int a[10]; defines an array of 10 integers.
•  The declaration int *p; defines p as a “pointer to an int”.
•  The assignment p = a; makes p an alias for the array and sets p

to point to the first element of the array. (We could also write p =
&a[0];)

•  We can now reference members of the array using either a or p

 a[4] =9;

 p[3] = 7;

 int x = p[6] + a[4] * 2;

Adapted from Dennis Frey CMSC 313 Spring 2011

More Pointers and Arrays

•  The name of an array is equivalent to a pointer to the first
element of the array and vice-versa.

•  Therefore, if a is the name of an array, the expression

a[i] is equivalent to *(a + i).

•  It follows then that &a[i] and (a + i) are also

equivalent. Both represent the address of the i-th element
beyond a.

•  On the other hand, if p is a pointer, then it may be used with

a subscript as if it were the name of an array.
 p[i] is identical to *(p + i)

In short, an array-and-index expression is equivalent to a pointer-and-

offset expression and vice-versa.

Adapted from Dennis Frey CMSC 313 Spring 2011

So, what’s the difference?

•  If the name of an array is synonymous with a pointer to the first
element of the array, then what’s the difference between an array
name and a pointer?

•  An array name can only “point” to the first element of its array. It

can never point to anything else.

•  A pointer may be changed to point to any variable or array of the

appropriate type

Adapted from Dennis Frey CMSC 313 Spring 2011

Array Name vs Pointer
 int g, grades[] = {10, 20, 30, 40 }, myGrade = 100, yourGrade = 85, *pGrade;

 /* grades can be (and usually is) used as array name */
 for (g = 0; g < 4; g++)
 printf(“%d\n” grades[g]);

 /* grades can be used as a pointer to its array if it doesn’t change*/
 for (g = 0; g < 4; g++)
 printf(“%d\n” *(grades + g);

 /* but grades can’t point anywhere else */
 grades = &myGrade; /* compiler error */

 /* pGrades can be an alias for grades and used like an array name */
 pGrades = grades; /* or pGrades = &grades[0]; */
 for(g = 0; g < 4; g++)
 printf(“%d\n”, pGrades[g]);

 /* pGrades can be an alias for grades and be used like a pointer that changes */
 for (g = 0; g < 4; g++)
 printf(“%d\n” *pGrades++);

 /* BUT, pGrades can point to something else other than the grades array */
 pGrades = &myGrade;
 printf(“%d\n”, *pGrades);
 pGrades = &yourGrade;
 printf(“%d\n”, *pGrades);

Adapted from Dennis Frey CMSC 313 Spring 2011

More Pointers & Arrays

•  If p points to a particular element of an array, then p + 1 points to

the next element of the array and p + n points n elements after p.

•  The meaning a “adding 1 to a pointer” is that
 p + 1 points to the next element in the array, REGARDLESS of

the type of the array.

Adapted from Dennis Frey CMSC 313 Spring 2011

Pointer Arithmetic

•  If p is an alias for an array of ints, then p[k] is the k-th int and
so is *(p + k).

•  If p is an alias for an array of doubles, then
p[k] is the k-th double and so is *(p + k).

•  Adding a constant, k, to a pointer (or array name) actually adds k
* sizeof(pointer type) to the value of the pointer.

•  This is one important reason why the type of a pointer must be
specified when it’s defined.

Adapted from Dennis Frey CMSC 313 Spring 2011

Pointer Gotcha

•  But what if p isn’t the alias of an array?
•  Consider this code.

int a = 42;!
int *p = &a;!
!
printf(“%d\n”, *p); !// prints 42!
++p; ! ! !// to what does p point now?!
printf(“%d\n”, *p); !// what gets printed?!
!

Adapted from Dennis Frey CMSC 313 Spring 2011

Printing an Array

•  The code below shows how to use a parameter array name
as a pointer.

void printGrades(int grades[], int size)
{
 int i;
 for (i = 0; i < size; i++)
 printf(“%d\n”, *grades);
 ++grades;
}

•  What about this prototype?

 void printGrades(int *grades, int size);

Adapted from Dennis Frey CMSC 313 Spring 2011

Passing Arrays

•  Arrays are passed “by reference” (its address is passed by
value):

!int sumArray(int A[], int size) ;!

!
 is equivalent to
!

!int sumArray(int *A, int size) ;!

•  Use A as an array name or as a pointer.

•  The compiler always sees A as a pointer. In fact, any error
messages produced will refer to A as an int *

Adapted from Dennis Frey CMSC 313 Spring 2011

sumArray

int sumArray(int A[], int size)
{
 int k, sum = 0;
 for (k = 0; k < size; k++)
 sum += A[k];
 return sum;

}

Adapted from Dennis Frey CMSC 313 Spring 2011

sumArray (2)
int sumArray(int A[], int size)
{
 int k, sum = 0;
 for (k = 0; k < size; k++)
 sum += *(A + k);
 return sum;

}

int sumArray(int A[], int size)
{
 int k, sum = 0;
 for (k = 0; k < size; k++)
 }
 sum += *A;
 ++A;
 }
 return sum;

}

Adapted from Dennis Frey CMSC 313 Spring 2011

NEXT TIME

•  Midterm Exam !!!

After Midterm Exam:

•  More on pointers

•  Memory allocation

