
CMSC 313
COMPUTER ORGANIZATION
&
ASSEMBLY LANGUAGE
PROGRAMMING

LECTURE 09, SPRING 2013

TOPICS TODAY

•  I/O Architectures

•  Interrupts
•  Exceptions

FETCH EXECUTE CYCLE

48

•  This is a general
depiction of a von
Neumann system:

•  These computers
employ a fetch-
decode-execute
cycle to run
programs as
follows . . .

1.7 The von Neumann Model

I/O ARCHITECTURES

8

7.4 I/O Architectures

•  We define input/output as a subsystem of
components that moves coded data between
external devices and a host system.

•  I/O subsystems include:
–  Blocks of main memory that are devoted to I/O functions.
–  Buses that move data into and out of the system.
–  Control modules in the host and in peripheral devices
–  Interfaces to external components such as keyboards and

disks.
–  Cabling or communications links between the host system

and its peripherals.

9

This is a
model I/O
configuration.

7.4 I/O Architectures

10

•  I/O can be controlled in five general ways.
–  Programmed I/O reserves a register for each I/O

device. Each register is continually polled to detect
data arrival.

–  Interrupt-Driven I/O allows the CPU to do other things
until I/O is requested.

–  Memory-Mapped I/O shares memory address space
between I/O devices and program memory.

–  Direct Memory Access (DMA) offloads I/O processing to
a special-purpose chip that takes care of the details.

–  Channel I/O uses dedicated I/O processors.

7.4 I/O Architectures

11

This is an idealized I/O subsystem that uses interrupts.
Each device connects its interrupt line to the interrupt controller.

The controller
signals the CPU
when any of the
interrupt lines
are asserted.

7.4 I/O Architectures

14

•  In memory-mapped I/O devices and main memory
share the same address space.
–  Each I/O device has its own reserved block of memory.
–  Memory-mapped I/O therefore looks just like a memory

access from the point of view of the CPU.
–  Thus the same instructions to move data to and from both

I/O and memory, greatly simplifying system design.
•  In small systems the low-level details of the data

transfers are offloaded to the I/O controllers built
into the I/O devices.

7.4 I/O Architectures

15

This is a DMA
configuration.

Notice that the DMA
and the CPU share the
bus.

The DMA runs at a
higher priority and
steals memory cycles
from the CPU.

7.4 I/O Architectures

16

•  Very large systems employ channel I/O.
•  Channel I/O consists of one or more I/O

processors (IOPs) that control various channel
paths.

•  Slower devices such as terminals and printers are
combined (multiplexed) into a single faster
channel.

•  On IBM mainframes, multiplexed channels are
called multiplexor channels, the faster ones are
called selector channels.

7.4 I/O Architectures

17

•  Channel I/O is distinguished from DMA by the
intelligence of the IOPs.

•  The IOP negotiates protocols, issues device
commands, translates storage coding to memory
coding, and can transfer entire files or groups of
files independent of the host CPU.

•  The host has only to create the program
instructions for the I/O operation and tell the IOP
where to find them.

7.4 I/O Architectures

18

•  This is a channel I/O configuration.

7.4 I/O Architectures

INTERRUPTS

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 3

Motivating Example
; An Assembly language program for printing data

MOV EDX, 378H ;Printer Data Port
MOV ECX, 0 ;Use ECX as the loop counter

XYZ: MOV AL, [ABC + ECX] ;ABC is the beginning of the memory area
; that characters are being printed from

OUT [DX], AL ;Send a character to the printer
INC ECX
CMP ECX, 100000 ; print this many characters
JL XYZ

Issues:
! What about difference in speed between the processor and printer?

! What about the buffer size of the printer?
" Small buffer can lead to some lost data that will not get printed

Communication with input/output devices needs handshaking protocolsCommunication with input/output devices needs handshaking protocols

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 4

Communicating with I/O Devices
! The OS needs to know when:

➨ The I/O device has completed an operation
➨ The I/O operation has encountered an error

! This can be accomplished in two different ways:
➨ Polling:

" The I/O device put information in a status register
" The OS periodically check the status register

➨ I/O Interrupt:
" An I/O interrupt is an externally stimulated event, asynchronous to

instruction execution but does NOT prevent instruction completion
" Whenever an I/O device needs attention from the processor, it

interrupts the processor from what it is currently doing
" Some processors deals with interrupts as special exceptions

* Slide is partially a courtesy of Dave Patterson

These schemes requires heavy processor’s involvement and
suitable only for low bandwidth devices such as the keyboard
These schemes requires heavy processor’s involvement and
suitable only for low bandwidth devices such as the keyboard

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 5

Polling: Programmed I/O

! Advantage:
" Simple: the processor is totally in control and does all the work

! Disadvantage:
" Polling overhead can consume a lot of CPU time

CPU

IOC

device

Memory

Is the
data

ready?

read
data

store
data

yes no

done? no
yes

busy wait loop
not an efficient

way to use the CPU
unless the device

is very fast!

but checks for I/O
completion can be
dispersed among

computation
intensive code

* Slide is courtesy of Dave Patterson

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 6

Polling in 80386
MOV EDX, 379H ;Printer status port
MOV ECX, 0

XYZ: IN AL, [DX] ;Ask the printer if it is ready
CMP AL, 1 ;1 means it's ready
JNE XYZ ;If not try again
MOV AL, [ABC + ECX]
DEC EDX ;Data port is 378H
OUT [DX], AL ;Send one byte
INC ECX
INC EDX ;Put back the status port
CMP ECX, 100000
JL XYZ

Issues:
! Status registers (ports) allows handshaking between CPU and I/O devices

! Device status ports are accessible through the use of typical I/O instructions

! CPU is running at the speed of the printer (what a waste!!)

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 7

" The fetch-execute cycle is a program-driven model of computation
" Computers are not totally program driven as they are also hardware driven
" An I/O interrupt is an externally stimulated event, asynchronous to instruction

execution but does NOT prevent instruction completion
" Whenever an I/O device needs attention from the processor, it interrupts the

processor from what it is currently doing
" Processors typically have one or multiple interrupt pins for device interface

External Interrupt

CPU Memory I/O
(Printer)

Address Bus

Data Bus

Interrupt Line

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 8

Interrupt Driven Data Transfer

! Advantage:
" User program progress is only halted during actual transfer

! Disadvantage: special hardware is needed to:
" Cause an interrupt (I/O device)
" Detect an interrupt (processor)
" Save the proper states to resume after the interrupt (processor)

add
sub
and
or
nop

read
store
...
rti
memory

user
program(1) I/O

interrupt

(2) save PC

(3) interrupt
service addr

interrupt
service
routine(4)

CPU

IOC

device

Memory

:

* Slide is courtesy of Dave Patterson

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 9

"The 80386 has only one interrupt pin and relies on an interrupt controller to
interface and prioritize the different I/O devices

" Interrupt handling follows the following steps:
➊ Complete current instruction
➋ Save current program counter and flags into the stack
➌ Get interrupt number responsible for the signal from interrupt controller
➍ Find the address of the appropriate interrupt service routine
➎ Transfer control to interrupt service routine

" A special interrupt acknowledge bus cycle is used to read interrupt number
" Interrupt controller has ports that are accessible through IN and OUT

80386 Interrupt Handling

CPU Memory I/O

Address Bus

Data Bus

Interrupt Line

Interrupt
Controller

IRQ Bus

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 10

Gate #255

. . .

Gate #1

Gate #4

Gate #3

Gate #2

Gate #0

Gate #5

b + 2040

b + 8

b + 32

b + 24

b + 16

b

b + 40

Address

Interrupt Descriptor Table

ISR Address
Upper 2 Bytes Type ISR Address

Lower 2 Bytes

63 4847 16 15 04443 4039

" The address of an ISR is fetched from an
interrupt descriptor table

" IDT register is loaded by operating system
and points to the interrupt descriptor table

" Each entry is 8 bytes indicating address of
ISR and type of interrupt (trap, fault etc.)

" RESET and non-maskable (NMI)
interrupts use distinct processor pins

" NMI is used to for parity error or power
supply problems and thus cannot be
disables

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 11

! Since the 80386 has one interrupt pin, an interrupt controller is
needed to handle multiple input and output devices

! The Intel 8259 is a programmable interrupt controller that can be
used either singly or in a two-tier configuration

The 8259 Interrupt Controller

Slave
8259
#1

Master
8259

Slave
8259
#2

Slave
8259
#8

...

! When used as a master, the 8259
can interface with up to 8 slaves

! Since the 8259 controller can be a
master or a slave, the interrupt
request lines must be programmable

! Programming the 8259 chips takes
place at boot time using the OUT
commands

! The order of the interrupt lines reflects
the priority assigned to them

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 12

The ISA Architecture

Master
8259

IRQ 0
IRQ 1

IRQ 3
IRQ 4
IRQ 5
IRQ 6
IRQ 7

Slave
8259

IRQ 8
IRQ 9

IRQ 11
IRQ 12
IRQ 13
IRQ 14
IRQ 15

IRQ 10

! The ISA architecture is set by IBM competitors and standardizes:
" The interrupt controller circuitry
" Many IRQ assignments
" Many I/O port assignments
" The signals and connections made available to expansion cards

! A one-master-one-slave configuration is the norm for ISA architecture

! Priority is assigned in the following order:
IRQ 0, IRQ 1, IRQ 8, …, IRQ 15, IRQ 3, …, IRQ 7

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 13

IRQ ALLOCATION INTRRUPT NUM BER
IRQ 0 System Tim er 08H
IRQ 1 Keyboard 09H
IRQ 3 Seria l Port #2 OBH
IRQ 4 Seria l Port # 1 O CH
IRQ 5 Paralle l Port #2 O DH
IRQ 6 Floppy Controller OEH
IRQ 7 Paralle l Port # 1 O FH
IRQ 8 Real tim e clock 70H
IRQ 9 available 71 H
IRQ 10 available 72H
IRQ 11 available 73H
IRQ 12 M ouse 74H
IRQ 13 87 ERRO R line 75H
IRQ 14 Hard drive contro ller 76H
IRQ 15 available 77H

ISA Interrupt Routings

linux1$ cat /proc/interrupts

EXCEPTIONS

Built-in Hardware Exceptions

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Allocation Int #
Division Overflow 00H
Single Step 01H
NMI 02H
Breakpoint 03H
Interrupt on Overflow 04H
BOUND out of range 05H
Invalid Machine Code 06H
87 not available 07H
Double Fault 08H
87 Segment Overrun 09H
Invalid Task State Segment 0AH
Segment Not Present 0BH
Stack Overflow 0CH
General Protection Error 0DH
Page Fault 0EH
(reserved) 0FH
87 Error 10H

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 14

I/O Interrupt vs. Exception
! An I/O interrupt is just like the exceptions except:

" An I/O interrupt is asynchronous
" Further information needs to be conveyed
" Typically exceptions are more urgent than interrupts

! An I/O interrupt is asynchronous with respect to instruction execution:
" I/O interrupt is not associated with any instruction
" I/O interrupt does not prevent any instruction from completion

• You can pick your own convenient point to take an interrupt

! I/O interrupt is more complicated than exception:
" Needs to convey the identity of the device generating the interrupt
" Interrupt requests can have different urgencies:

• Interrupt request needs to be prioritized
• Priority indicates urgency of dealing with the interrupt
• High speed devices usually receive highest priority

* Slide is courtesy of Dave Patterson

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 15

Internal and Software Interrupt
! Exceptions:

" Exceptions do not use the interrupt acknowledge bus cycle but are still
handled by a numbered ISR

" Examples: divide by zero, unknown instruction code, access violation, …

! Software Interrupts:
" The INT instruction makes interrupt service routines accessible to

programmers
" Syntax: “INT imm” with imm

indicating interrupt number
" Returning from an ISR is like

RET, except it enables interrupts

! Fault and Traps:
" When an instruction causes an exception and is retried after handling it,

the exception is called faults (e.g. page fault)
" When control is passed to the next instruction after handling an exception

or interrupt, such exception is called a trap (e.g. division overflow)

 Ordinary
subroutine

Interrupt
service routine

Invoke CALL INT
Terminate RET IRET

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 17

Privileged Mode
Privilege Levels
! The difference between kernel mode and user mode is in the privilege level

! The 80386 has 4 privilege levels, two of them are used in Linux
" Level 0: system level (Linux kernel)
" Level 3: user level (user processes)

! The CPL register stores the current privilege level and is reset during the
execution of system calls

! Privileged instructions, such as LIDT that set interrupt tables can execute
only when CPL = 0

Stack Issues
! System calls have to use different stack since the user processes will have

write access to them (imagine a process passing the stack pointer as a
parameter forcing the system call to overwrite its own stack

! There is a different stack pointer for every privilege level stored in the task
state segment

Summary: Types of Interrupts

• Hardware vs Software
Hardware: I/O, clock tick, power failure, exceptions

Software: INT instruction

• External vs Internal Hardware Interrupts
External interrupts are generated by CPU’s interrupt pin

Internal interrupts (exceptions): div by zero, single step, page fault,
bad opcode, stack overflow, protection, ...

• Synchronous vs Asynchronous Hardware Int.
Synchronous interrupts occur at exactly the same place every time
the program is executed. E.g., bad opcode, div by zero, illegal
memory address.

Asynchronous interrupts occur at unpredictable times relative to the
program. E.g., I/O, clock ticks.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Summary: Interrupt Sequence
Device sends signal to interrupt controller.

Controller uses IRQ# for interrupt # and priority.

Controller sends signal to CPU if the CPU is not already processing
an interrupt with higher priority.

CPU finishes executing the current instruction

CPU saves EFLAGS & return address on the stack.

CPU gets interrupt # from controller using I/O ops.

CPU finds “gate” in Interrupt Description Table.

CPU switches to Interrupt Service Routine (ISR). This may include a
change in privilege level. IF cleared.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Interrupt Sequence (cont.)
ISR saves registers if necessary.

ISR, after initial processing, sets IF to allow interrupts.

ISR processes the interrupt.

ISR restores registers if necessary.

ISR sends End of Interrupt (EOI) to controller.

ISR returns from interrupt using IRET. EFLAGS (inlcuding IF) & return
address restored.

CPU executes the next instruction.

Interrupt controller waits for next interrupt and manages pending
interrupts.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

NEXT TIME

•  C Programming

