
CMSC 313
COMPUTER ORGANIZATION
&
ASSEMBLY LANGUAGE
PROGRAMMING

LECTURE 08, SPRING 2013

TOPICS TODAY

•  Stack Instructions: PUSH, POP

•  Subroutines (a.k.a. Functions)
•  Recursive Subroutines

STACK INSTRUCTIONS

Stack Instructions

• PUSH op
the stack pointer ESP is decremented by the size of the operand

the operand is copied to [ESP]

• POP op
the reverse of PUSH

[ESP] is copied to the destination operand

ESP is incremented by the size of the operand

• Where is the stack?
The stack has its own section

Linux processes wake up with ESP initialized properly

The stack grows “upward” – toward smaller addresses

Memory available to the stack set using ‘limit’

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

3-650

INSTRUCTION SET REFERENCE

PUSH—Push Word or Doubleword Onto the Stack

Description

Decrements the stack pointer and then stores the source operand on the top of the stack. The
address-size attribute of the stack segment determines the stack pointer size (16 bits or 32 bits),
and the operand-size attribute of the current code segment determines the amount the stack
pointer is decremented (2 bytes or 4 bytes). For example, if these address- and operand-size
attributes are 32, the 32-bit ESP register (stack pointer) is decremented by 4 and, if they are 16,
the 16-bit SP register is decremented by 2. (The B flag in the stack segment’s segment descriptor
determines the stack’s address-size attribute, and the D flag in the current code segment’s
segment descriptor, along with prefixes, determines the operand-size attribute and also the
address-size attribute of the source operand.) Pushing a 16-bit operand when the stack address-
size attribute is 32 can result in a misaligned the stack pointer (that is, the stack pointer is not
aligned on a doubleword boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before the instruc-
tion was executed. Thus, if a PUSH instruction uses a memory operand in which the ESP
register is used as a base register for computing the operand address, the effective address of the
operand is computed before the ESP register is decremented.

In the real-address mode, if the ESP or SP register is 1 when the PUSH instruction is executed,
the processor shuts down due to a lack of stack space. No exception is generated to indicate this
condition.

IA-32 Architecture Compatibility

For IA-32 processors from the Intel 286 on, the PUSH ESP instruction pushes the value of the
ESP register as it existed before the instruction was executed. (This is also true in the real-
address and virtual-8086 modes.) For the Intel 8086 processor, the PUSH SP instruction pushes
the new value of the SP register (that is the value after it has been decremented by 2).

Opcode Instruction Description

FF /6 PUSH r/m16 Push r/m16

FF /6 PUSH r/m32 Push r/m32

50+rw PUSH r16 Push r16

50+rd PUSH r32 Push r32

6A PUSH imm8 Push imm8

68 PUSH imm16 Push imm16

68 PUSH imm32 Push imm32

0E PUSH CS Push CS

16 PUSH SS Push SS

1E PUSH DS Push DS

06 PUSH ES Push ES

0F A0 PUSH FS Push FS

0F A8 PUSH GS Push GS

3-651

INSTRUCTION SET REFERENCE

PUSH—Push Word or Doubleword Onto the Stack (Continued)

Operation

IF StackAddrSize ‹ 32
THEN

IF OperandSize ‹ 32
THEN

ESP ‹ ESP - 4;
SS:ESP ‹ SRC; (* push doubleword *)

ELSE (* OperandSize ‹ 16*)
ESP ‹ ESP - 2;
SS:ESP ‹ SRC; (* push word *)

FI;
ELSE (* StackAddrSize ‹ 16*)

IF OperandSize ‹ 16
THEN

SP ‹ SP - 2;
 SS:SP ‹ SRC; (* push word *)

ELSE (* OperandSize ‹ 32*)
SP ‹ SP - 4;
SS:SP ‹ SRC; (* push doubleword *)

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

3-589

INSTRUCTION SET REFERENCE

POP—Pop a Value from the Stack

Description

Loads the value from the top of the stack to the location specified with the destination operand
and then increments the stack pointer. The destination operand can be a general-purpose register,
memory location, or segment register.

The address-size attribute of the stack segment determines the stack pointer size (16 bits or 32
bits—the source address size), and the operand-size attribute of the current code segment deter-
mines the amount the stack pointer is incremented (2 bytes or 4 bytes). For example, if these
address- and operand-size attributes are 32, the 32-bit ESP register (stack pointer) is incre-
mented by 4 and, if they are 16, the 16-bit SP register is incremented by 2. (The B flag in the
stack segment’s segment descriptor determines the stack’s address-size attribute, and the D flag
in the current code segment’s segment descriptor, along with prefixes, determines the operand-
size attribute and also the address-size attribute of the destination operand.)

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the value loaded
into the register must be a valid segment selector. In protected mode, popping a segment selector
into a segment register automatically causes the descriptor information associated with that
segment selector to be loaded into the hidden (shadow) part of the segment register and causes
the selector and the descriptor information to be validated (see the “Operation” section below).

A null value (0000-0003) may be popped into the DS, ES, FS, or GS register without causing a
general protection fault. However, any subsequent attempt to reference a segment whose corre-
sponding segment register is loaded with a null value causes a general protection exception
(#GP). In this situation, no memory reference occurs and the saved value of the segment register
is null.

The POP instruction cannot pop a value into the CS register. To load the CS register from the
stack, use the RET instruction.

If the ESP register is used as a base register for addressing a destination operand in memory, the
POP instruction computes the effective address of the operand after it increments the ESP
register. For the case of a 16-bit stack where ESP wraps to 0h as a result of the POP instruction,
the resulting location of the memory write is processor-family-specific.

Opcode Instruction Description

8F /0 POP m16 Pop top of stack into m16; increment stack pointer

8F /0 POP m32 Pop top of stack into m32; increment stack pointer

58+ rw POP r16 Pop top of stack into r16; increment stack pointer

58+ rd POP r32 Pop top of stack into r32; increment stack pointer

1F POP DS Pop top of stack into DS; increment stack pointer

07 POP ES Pop top of stack into ES; increment stack pointer

17 POP SS Pop top of stack into SS; increment stack pointer

0F A1 POP FS Pop top of stack into FS; increment stack pointer

0F A9 POP GS Pop top of stack into GS; increment stack pointer

3-590

INSTRUCTION SET REFERENCE

POP—Pop a Value from the Stack (Continued)

The POP ESP instruction increments the stack pointer (ESP) before data at the old top of stack
is written into the destination.

A POP SS instruction inhibits all interrupts, including the NMI interrupt, until after execution
of the next instruction. This action allows sequential execution of POP SS and MOV ESP, EBP
instructions without the danger of having an invalid stack during an interrupt1. However, use of
the LSS instruction is the preferred method of loading the SS and ESP registers.

Operation

IF StackAddrSize ‹ 32
THEN

IF OperandSize ‹ 32
THEN

DEST ‹ SS:ESP; (* copy a doubleword *)
ESP ‹ ESP + 4;

ELSE (* OperandSize ‹ 16*)
DEST ‹ SS:ESP; (* copy a word *)

ESP ‹ ESP + 2;
FI;

ELSE (* StackAddrSize ‹ 16*)
IF OperandSize ‹ 16

THEN
DEST ‹ SS:SP; (* copy a word *)
SP ‹ SP + 2;

ELSE (* OperandSize ‹ 32 *)
DEST ‹ SS:SP; (* copy a doubleword *)
SP ‹ SP + 4;

FI;
FI;

Loading a segment register while in protected mode results in special checks and actions, as
described in the following listing. These checks are performed on the segment selector and the
segment descriptor it points to.

IF SS is loaded;
THEN

IF segment selector is null
THEN #GP(0);

1. Note that in a sequence of instructions that individually delay interrupts past the following instruction, only
the first instruction in the sequence is guaranteed to delay the interrupt, but subsequent interrupt-delaying
instructions may not delay the interrupt. Thus, in the following instruction sequence:

STI
POP SS
POP ESP

interrupts may be recognized before the POP ESP executes, because STI also delays interrupts for one
instruction.

3-591

INSTRUCTION SET REFERENCE

POP—Pop a Value from the Stack (Continued)
FI;
IF segment selector index is outside descriptor table limits

OR segment selector's RPL „ CPL
OR segment is not a writable data segment
OR DPL „ CPL

THEN #GP(selector);
FI;
IF segment not marked present

THEN #SS(selector);
ELSE

SS ‹ segment selector;
SS ‹ segment descriptor;

FI;
FI;
IF DS, ES, FS, or GS is loaded with non-null selector;
THEN

IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)

AND (both RPL and CPL > DPL))
THEN #GP(selector);

IF segment not marked present
THEN #NP(selector);

ELSE
SegmentRegister ‹ segment selector;
SegmentRegister ‹ segment descriptor;

FI;
FI;
IF DS, ES, FS, or GS is loaded with a null selector;

THEN
SegmentRegister ‹ segment selector;
SegmentRegister ‹ segment descriptor;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If attempt is made to load SS register with null segment selector.

If the destination operand is in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

SUBROUTINE
INSTRUCTIONS

Subroutine Instructions

• CALL label
Used to call a subroutine

PUSHes the instruction pointer (EIP) on the stack

jump to the label

does NOTHING else

• RET
reverse of CALL

POPs the instruction pointer (EIP) off the stack

execution proceeds from the instruction after the CALL instruction

• Parameters?

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

3-58

INSTRUCTION SET REFERENCE

CALL—Call Procedure

Description

Saves procedure linking information on the stack and branches to the procedure (called proce-
dure) specified with the destination (target) operand. The target operand specifies the address of
the first instruction in the called procedure. This operand can be an immediate value, a general-
purpose register, or a memory location.

This instruction can be used to execute four different types of calls:

• Near call—A call to a procedure within the current code segment (the segment currently
pointed to by the CS register), sometimes referred to as an intrasegment call.

• Far call—A call to a procedure located in a different segment than the current code
segment, sometimes referred to as an intersegment call.

• Inter-privilege-level far call—A far call to a procedure in a segment at a different privilege
level than that of the currently executing program or procedure.

• Task switch—A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be executed in
protected mode. See the section titled “Calling Procedures Using Call and RET” in Chapter 6 of
the IA-32 Intel Architecture Software Developer’s Manual, Volume 1, for additional information
on near, far, and inter-privilege-level calls. See Chapter 6, Task Management, in the IA-32 Intel
Architecture Software Developer’s Manual, Volume 3, for information on performing task
switches with the CALL instruction.

Near Call. When executing a near call, the processor pushes the value of the EIP register
(which contains the offset of the instruction following the CALL instruction) onto the stack (for
use later as a return-instruction pointer). The processor then branches to the address in the
current code segment specified with the target operand. The target operand specifies either an
absolute offset in the code segment (that is an offset from the base of the code segment) or a
relative offset (a signed displacement relative to the current value of the instruction pointer in
the EIP register, which points to the instruction following the CALL instruction). The CS
register is not changed on near calls.

Opcode Instruction Description

E8 cw CALL rel16 Call near, relative, displacement relative to next instruction

E8 cd CALL rel32 Call near, relative, displacement relative to next instruction

FF /2 CALL r/m16 Call near, absolute indirect, address given in r/m16

FF /2 CALL r/m32 Call near, absolute indirect, address given in r/m32

9A cd CALL ptr16:16 Call far, absolute, address given in operand

9A cp CALL ptr16:32 Call far, absolute, address given in operand

FF /3 CALL m16:16 Call far, absolute indirect, address given in m16:16

FF /3 CALL m16:32 Call far, absolute indirect, address given in m16:32

3-59

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)

For a near call, an absolute offset is specified indirectly in a general-purpose register or a
memory location (r/m16 or r/m32). The operand-size attribute determines the size of the target
operand (16 or 32 bits). Absolute offsets are loaded directly into the EIP register. If the operand-
size attribute is 16, the upper two bytes of the EIP register are cleared to 0s, resulting in a
maximum instruction pointer size of 16 bits. (When accessing an absolute offset indirectly using
the stack pointer [ESP] as a base register, the base value used is the value of the ESP before the
instruction executes.)

A relative offset (rel16 or rel32) is generally specified as a label in assembly code, but at the
machine code level, it is encoded as a signed, 16- or 32-bit immediate value. This value is added
to the value in the EIP register. As with absolute offsets, the operand-size attribute determines
the size of the target operand (16 or 32 bits).

Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in real-
address or virtual-8086 mode, the processor pushes the current value of both the CS and EIP
registers onto the stack for use as a return-instruction pointer. The processor then performs a “far
branch” to the code segment and offset specified with the target operand for the called proce-
dure. Here the target operand specifies an absolute far address either directly with a pointer
(ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). With the
pointer method, the segment and offset of the called procedure is encoded in the instruction,
using a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address immediate. With
the indirect method, the target operand specifies a memory location that contains a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address. The operand-size attribute determines
the size of the offset (16 or 32 bits) in the far address. The far address is loaded directly into the
CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of the EIP register
are cleared to 0s.

Far Calls in Protected Mode. When the processor is operating in protected mode, the CALL
instruction can be used to perform the following three types of far calls:

• Far call to the same privilege level.
• Far call to a different privilege level (inter-privilege level call).
• Task switch (far call to another task).

In protected mode, the processor always uses the segment selector part of the far address to
access the corresponding descriptor in the GDT or LDT. The descriptor type (code segment, call
gate, task gate, or TSS) and access rights determine the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege
level is performed. (If the selected code segment is at a different privilege level and the code
segment is non-conforming, a general-protection exception is generated.) A far call to the same
privilege level in protected mode is very similar to one carried out in real-address or virtual-8086
mode. The target operand specifies an absolute far address either directly with a pointer
(ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The operand-
size attribute determines the size of the offset (16 or 32 bits) in the far address. The new code
segment selector and its descriptor are loaded into CS register, and the offset from the instruction
is loaded into the EIP register.

3-66

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)
TASK-GATE:

IF task gate DPL < CPL or RPL
THEN #GP(task gate selector);

FI;
IF task gate not present

THEN #NP(task gate selector);
FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local

OR index not within GDT limits
THEN #GP(TSS selector);

FI;
Access TSS descriptor in GDT;

IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector);

FI;
IF TSS not present

THEN #NP(TSS selector);
FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit

THEN #GP(0);
FI;

END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
OR TSS descriptor indicates TSS not available

THEN #GP(TSS selector);
FI;
IF TSS is not present

THEN #NP(TSS selector);
FI;
SWITCH-TASKS (with nesting) to TSS
IF EIP not within code segment limit

THEN #GP(0);
FI;

END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

3-677

INSTRUCTION SET REFERENCE

RET—Return from Procedure

Description

Transfers program control to a return address located on the top of the stack. The address is
usually placed on the stack by a CALL instruction, and the return is made to the instruction that
follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after the return
address is popped; the default is none. This operand can be used to release parameters from the
stack that were passed to the called procedure and are no longer needed. It must be used when
the CALL instruction used to switch to a new procedure uses a call gate with a non-zero word
count to access the new procedure. Here, the source operand for the RET instruction must
specify the same number of bytes as is specified in the word count field of the call gate.

The RET instruction can be used to execute three different types of returns:

• Near return—A return to a calling procedure within the current code segment (the segment
currently pointed to by the CS register), sometimes referred to as an intrasegment return.

• Far return—A return to a calling procedure located in a different segment than the current
code segment, sometimes referred to as an intersegment return.

• Inter-privilege-level far return—A far return to a different privilege level than that of the
currently executing program or procedure.

The inter-privilege-level return type can only be executed in protected mode. See the section
titled “Calling Procedures Using Call and RET” in Chapter 6 of the IA-32 Intel Architecture
Software Developer’s Manual, Volume 1, for detailed information on near, far, and inter-privi-
lege-level returns.

When executing a near return, the processor pops the return instruction pointer (offset) from the
top of the stack into the EIP register and begins program execution at the new instruction pointer.
The CS register is unchanged.

When executing a far return, the processor pops the return instruction pointer from the top of the
stack into the EIP register, then pops the segment selector from the top of the stack into the CS
register. The processor then begins program execution in the new code segment at the new
instruction pointer.

Opcode Instruction Description

C3 RET Near return to calling procedure

CB RET Far return to calling procedure

C2 iw RET imm16 Near return to calling procedure and pop imm16 bytes
from stack

CA iw RET imm16 Far return to calling procedure and pop imm16 bytes from
stack

3-678

INSTRUCTION SET REFERENCE

RET—Return from Procedure (Continued)

The mechanics of an inter-privilege-level far return are similar to an intersegment return, except
that the processor examines the privilege levels and access rights of the code and stack segments
being returned to determine if the control transfer is allowed to be made. The DS, ES, FS, and
GS segment registers are cleared by the RET instruction during an inter-privilege-level return if
they refer to segments that are not allowed to be accessed at the new privilege level. Since a
stack switch also occurs on an inter-privilege level return, the ESP and SS registers are loaded
from the stack.

If parameters are passed to the called procedure during an inter-privilege level call, the optional
source operand must be used with the RET instruction to release the parameters on the return.
Here, the parameters are released both from the called procedure’s stack and the calling proce-
dure’s stack (that is, the stack being returned to).

Operation

(* Near return *)
IF instruction ‹ near return

THEN;
IF OperandSize ‹ 32

THEN
IF top 12 bytes of stack not within stack limits THEN #SS(0); FI;
EIP ‹ Pop();

ELSE (* OperandSize ‹ 16 *)
IF top 6 bytes of stack not within stack limits

THEN #SS(0)
FI;
tempEIP ‹ Pop();
tempEIP ‹ tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits THEN #GP(0); FI;
EIP ‹ tempEIP;

FI;
IF instruction has immediate operand

THEN IF StackAddressSize=32
THEN

ESP ‹ ESP + SRC; (* release parameters from stack *)
ELSE (* StackAddressSize=16 *)

SP ‹ SP + SRC; (* release parameters from stack *)
FI;

FI;

(* Real-address mode or virtual-8086 mode *)
IF ((PE ‹ 0) OR (PE ‹ 1 AND VM ‹ 1)) AND instruction ‹ far return

THEN;

3-681

INSTRUCTION SET REFERENCE

RET—Return from Procedure (Continued)
ELSE (* OperandSize=16 *)

EIP ‹ Pop();
EIP ‹ EIP AND 0000FFFFH;
CS ‹ Pop(); (* 16-bit pop; segment descriptor information also loaded *)
CS(RPL) ‹ CPL;
ESP ‹ ESP + SRC; (* release parameters from called procedure’s stack *)
tempESP ‹ Pop();
tempSS ‹ Pop(); (* 16-bit pop; segment descriptor information also loaded *)
 (* segment descriptor information also loaded *)
ESP ‹ tempESP;
SS ‹ tempSS;

FI;
FOR each of segment register (ES, FS, GS, and DS)

DO;
IF segment register points to data or non-conforming code segment
AND CPL > segment descriptor DPL; (* DPL in hidden part of segment register *)

THEN (* segment register invalid *)
SegmentSelector ‹ 0; (* null segment selector *)

FI;
OD;

For each of ES, FS, GS, and DS
DO

IF segment selector index is not within descriptor table limits
OR segment descriptor indicates the segment is not a data or

readable code segment
OR if the segment is a data or non-conforming code segment and the segment

descriptor’s DPL < CPL or RPL of code segment’s segment selector
THEN

segment selector register ‹ null selector;
OD;
ESP ‹ ESP + SRC; (* release parameters from calling procedure’s stack *)

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the return code or stack segment selector null.

If the return instruction pointer is not within the return code segment limit

#GP(selector) If the RPL of the return code segment selector is less then the CPL.

If the return code or stack segment selector index is not within its
descriptor table limits.

If the return code segment descriptor does not indicate a code segment.

; File: subroutine.asm
;
; example of subroutines in assembly language.

%define STDOUT 1
%define SYSCALL_EXIT 1
%define SYSCALL_WRITE 4

 SECTION .data ; initialized data section

msg1: db "Hello World", 10, 0 ; C-style \0 term. string

msg2: db "Good-bye, blue sky", 10, 0

 SECTION .text ; Code section.
 global _start ; let loader see entry point

_start: nop ; Entry point.
pstart: ; address for gdb

 mov eax, msg1 ; print first string
 call print

 mov eax, msg2 ; print second string
 call print

 ; final exit
 ;
pexit: mov eax, SYSCALL_EXIT ; exit function
 mov ebx, 0 ; exit code, 0=normal
 int 080h ; ask kernel to take over

; Subroutine print
; writes null-terminated string with address in eax
;
print:
 ; find \0 character and count length of string
 ;
 mov edi, eax ; use edi as index
 mov edx, 0 ; initialize count

count: cmp [edi], byte 0 ; null char?
 je end_count
 inc edx ; update index & count
 inc edi
 jmp short count
end_count:

 ; make syscall to write
 ; edx already has length of string
 ;
 mov ecx, eax ; Arg3: addr of message
 mov eax, SYSCALL_WRITE ; write function
 mov ebx, STDOUT ; Arg1: file descriptor
 int 080h ; ask kernel to write
 ret

; end of subroutine

linux3% gdb a.out
GNU gdb 19991004
Copyright 1998 Free Software Foundation, Inc.

(gdb) disas *pstart
Dump of assembler code for function pstart:
0x8048081 <pstart>: mov %eax,0x80490c0
0x8048086 <pstart+5>: call 0x80480a1 <print>
0x804808b <pstart+10>: mov %eax,0x80490cd
0x8048090 <pstart+15>: call 0x80480a1 <print>
0x8048095 <pexit>: mov %eax,0x1
0x804809a <pexit+5>: mov %ebx,0x0
0x804809f <pexit+10>: int 0x80
End of assembler dump.

(gdb) break *pstart
Breakpoint 1 at 0x8048081
(gdb) break *print
Breakpoint 2 at 0x80480a1

(gdb) run
Starting program: /afs/umbc.edu/users/c/h/chang/home/asm/sub/a.out

Breakpoint 1, 0x8048081 in pstart ()
(gdb) print/x $esp
$1 = 0x7ffffb90
(gdb) cont
Continuing.

Breakpoint 2, 0x80480a1 in print ()
(gdb) print/x $esp
$2 = 0x7ffffb8c
(gdb) x/1wx $esp
0x7ffffb8c: 0x0804808b

(gdb) cont
Continuing.
Hello World

Breakpoint 2, 0x80480a1 in print ()
(gdb) print/x $eax
$3 = 0x80490cd
(gdb) x/20cb &msg2
0x80490cd <msg2>: 71 'G' 111 'o' 111 'o' 100 'd' 45 '-' 98
'b' 121 'y' 101 'e'
0x80490d5 <msg2+8>: 44 ',' 32 ' ' 98 'b' 108 'l' 117 'u' 101
'e' 32 ' ' 115 's'
0x80490dd <msg2+16>: 107 'k' 121 'y' 10 '\n' 0 '\000'
(gdb) x/1wx $esp
0x7ffffb8c: 0x08048095

(gdb) cont
Continuing.
Good-bye, blue sky

Program exited normally.
(gdb) quit
linux3% exit

; File: recursive.asm
;
; example of subroutines in assembly language.

%define STDOUT 1
%define SYSCALL_EXIT 1
%define SYSCALL_WRITE 4

 SECTION .data ; initialized data section

msg1: db "Hello World", 10, 0 ; C-style \0 terminated
string

msg2: db 10, "Good-bye, blue sky", 10, 0

char: db 0, 0 ; single char followed by \0

 SECTION .text ; Code section.
 global _start ; let loader see entry point

_start: nop ; Entry point.
pstart: ; address for gdb

 mov eax, msg1 ; print first string
 call print

 mov al, '5'
 call recurse

 mov eax, msg2 ; print second string
 call print

 ; final exit
 ;
pexit: mov eax, SYSCALL_EXIT ; exit function
 mov ebx, 0 ; exit code, 0=normal
 int 080h ; ask kernel to take over

; A recursive subroutine
; counts down to '0'
; parameter stored in register al

recurse:
 cmp al, '0' ; don't go below '0'
 jae rcont
 ret ; go back

rcont: push ax ; save al
 dec al ; param for recursive call
 call recurse ; recursively count down
 pop ax ; restore count
 mov [char], al ; prepare string for printing
 mov eax, char ; param for print subrout.
 call print
 ret

; Subroutine print
; writes null-terminated string with address in eax
;
print:
 ; find \0 character and count length of string
 ;
 mov edi, eax ; use edi as index
 mov edx, 0 ; initialize count

count: cmp [edi], byte 0 ; null char?
 je end_count
 inc edx ; update index & count
 inc edi
 jmp short count
end_count:

 ; make syscall to write
 ; edx already has length of string
 ;
 mov ecx, eax ; Arg3: addr of message
 mov eax, SYSCALL_WRITE ; write function
 mov ebx, STDOUT ; Arg1: file descriptor
 int 080h ; ask kernel to write
 ret

; end of subroutine
linux3% nasm -f elf recurse.asm

linux3% nasm -f elf recurse.asm
linux3% ld recurse.o
linux3%

linux3% a.out
Hello World
012345
Good-bye, blue sky
linux3%

NEXT TIME

•  I/O Architectures

•  Interrupts & Exceptions

