CMSC 313

COMPUTER ORGANIZATION
&

ASSEMBLY LANGUAGE
PROGRAMMING

LECTURE 04, SPRING 2013

TOPICS TODAY

Recap 1386 Basic Architecture
toupper.asm

gdb debugger demo

Recap i386 Basic Architecture

e Registers are storage units inside the CPU.
e Registers are much faster than memory.

e 8 General purpose registers in i386:
o EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP
- subparts of EAX, EBX, ECX and EDX have special names

* The instruction pointer (EIP) points to machine code
to be executed.

e Typically, data moves from memory to registers,
processed, moves from registers back to memory.

e Different addressing modes used.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

intel.

BASIC EXECUTION ENVIRONMENT

Basic Program Execution Registers Address Space*
2%2 1
Eight 32-bit General-Purpose Registers
Registers
Six 16-bit :
Registers Segment Registers
| 32-bits | EFLAGS Register
| 32-bits | EIP (Instruction Pointer Register)
FPU Registers
Eight 80-bit Floating-Point
Registers Data Registers 0
*The address space can be
16-bits Control Register ?ﬁé grhf:%ge:ézfésl‘fmg
16-bits Status Register extension mechanism, a
- . physical address space of
16-bits Tag Register 36
2°° -1 can be addressed.
[] Opcode Register (11-bits)
| 48-bits | FPU Instruction Pointer Register
| 48-bits | FPU Data (Operand) Pointer Register

MMX Registers

Eight 64-bit

Registers MMX Registers

SSE and SSE2 Registers

Eight 128-bit
Registers

[32-bits |

XMM Registers

MXCSR Register

Figure 3-1. 1A-32 Basic Execution Environment

General-Purpose Registers

31 1615 87 0 16-bit 32-bit
AH AL AX EAX
BH BL BX EBX
CH CL CX ECX
DH DL DX EDX
BP EBP
SI ESI
DI EDI
SP ESP

Figure 3-4. Alternate General-Purpose Register Names

toupper.asm

e Prompt for user input.
e Use Linux system call to get user input.

e Scan each character of user input and convert all
lower case characters to upper case.

e Use gdb to trace the program.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

THE GDB DEBUGGER

Debugging Assembly Language Programs

e Cannot just put print statements everywhere.
e Use gdb to:

- examine contents of registers
- exmaine contents of memory
 set breakpoints

o single-step through program

o READ THE GDB SUMMARY ONLINE!

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Summary of gdb commands

Command Example Description

run start program

quit quit out of gdb

cont continue execution after a break

break [addr] break *_start+5 || sets a breakpoint

delete [n] delete 4 removes nth breakpoint

delete removes all breakpoints

info break lists all breakpoints

list _start list a few lines of the source code around _start

list 7 list 10 lines of the source code starting on line 7

list 7, 20 list lines 7 thru 20 of the source code

stepi execute next instruction

stepi [n] stepi 4 execute next n instructions

nexti execute next instruction, stepping over function calls
nexti [n] nexti 4 execute next n instructions, stepping over function calls
where show where execution halted

disas [addr] disas _start disassemble instructions at given address

info registers dump contents of all registers

print/d [expr] || print/d $ecx print expression in decimal

print/x [expr]

print/x $ecx

print expression in hex

print/t [expr]

print/t $ecx

print expression in binary

x/NFU [addr]

x/12xw &msg

Examine contents of memory in given format

display [expr]

display $eax

automatically print the expression each time the program is halted

info display

show list of automatically displays

undisplay [n]

undisplay 1

remove an automatic display

NEXT TIME

* i386 Instruction Set Overview
* i386 Basic Instructions

* Arithmetic Instructions

« EFLAGS Register

« Conditional Jump Instructions

* Using Jump Instructions

