
CMSC 313
COMPUTER ORGANIZATION
&
ASSEMBLY LANGUAGE
PROGRAMMING

LECTURE 02, SPRING 2013

TOPICS TODAY

•  Bits of Memory

•  Data formats for negative numbers

•  Modulo arithmetic & two’s complement

•  Floating point formats (briefly)

•  Characters & strings

BITS OF MEMORY

Random Access Memory (RAM)

• A single byte of memory holds 8 binary digits (bits).

• Each byte of memory has its own address.
• A 32-bit CPU can address 4 gigabytes of memory,

but a machine may have much less (e.g., 256MB).

• For now, think of RAM as one big array of bytes.

• The data stored in a byte of memory is not typed.
• The assembly language programmer must

remember whether the data stored in a byte is a
character, an unsigned number, a signed number,
part of a multi-byte number, ...

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Chapter 4: The Instruction Set Architecture4-5

© 1999 M. Murdocca and V. HeuringPrinciples of Computer Architecture by M. Murdocca and V. Heuring

Common Sizes for Data Types
• A byte is composed of 8 bits. Two nibbles make up a byte.
• Halfwords, words, doublewords, and quadwords are composed of

bytes as shown below:

Bit
Nibble
Byte
16-bit word (halfword)
32-bit word
64-bit word (double)

0
0110
10110000
11001001 01000110
10110100 00110101 10011001 01011000
01011000 01010101 10110000 11110011
11001110 11101110 01111000 00110101

128-bit word (quad) 01011000 01010101 10110000 11110011
11001110 11101110 01111000 00110101
00001011 10100110 11110010 11100110
10100100 01000100 10100101 01010001

Richard Chang
The term "word" is not standardized! Some people use it to mean 16-bit words, others 32-bit words

chang

chang

7

•  Byte ordering, or endianness, is another major
architectural consideration.

•  If we have a two-byte integer, the integer may be
stored so that the least significant byte is followed
by the most significant byte or vice versa.
–  In little endian machines, the least significant byte is

followed by the most significant byte.

–  Big endian machines store the most significant byte first
(at the lower address).

5.2 Instruction Formats

8

•  As an example, suppose we have the
hexadecimal number 12345678.

•  The big endian and small endian arrangements of
the bytes are shown below.

5.2 Instruction Formats

9

5.2 Instruction Formats

•  Big endian:
–  Is more natural.
–  The sign of the number can be determined by looking at

the byte at address offset 0.
–  Strings and integers are stored in the same order.

•  Little endian:
–  Makes it easier to place values on non-word boundaries.
–  Conversion from a 16-bit integer address to a 32-bit

integer address does not require any arithmetic.

NEGATIVE NUMBERS

SIGNED INTEGER FORMATS

•  Signed magnitude
•  One’s complement
•  Two’s complement
•  Excess (biased)

SIGNED MAGNITUDE

•  Store sign in leftmost bit, 1 = negative

•  Example (8-bits):

! 37 = 0010 0101  
!-37 = 1010 0101  

ONE’S COMPLEMENT

•  Negate by flipping each bit

•  Example (8-bits):

! 37 = 0010 0101  
!-37 = 1101 1010

TWO’S COMPLEMENT

•  Negate by flipping each bit and adding 1

•  Example (8-bits):

 37 = 0010 0101  
 
 1101 1010  
 + 1  
 1101 1011 = -37!

EXCESS (BIASED)

•  Add bias to two’s complement

•  Example (8-bit excess 128):

 37 = 0010 0101  
 1101 1010  
 + 1  
 1101 1011  
 +1000 0000  
 0101 1011 = -37!

Example: Convert -123

• Signed Magnitude
12310 = 64 + 32 + 16 + 8 + 2 + 1 = 0111 10112
-12310 => 1111 10112

• One’s Complement (flip the bits)
-12310 => 1000 01002

• Two’s Complement (add 1 to one’s complement)
-12310 => 1000 01012

• Excess 128 (add 128 to two’s complement)
-12310 => 0000 01012

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

PICKING A FORMAT

How do you

•  check for negative numbers?

•  test if a number is zero?

•  add & subtract positive & negative numbers?

•  determine if an overflow has occurred?

•  check if one number is larger than another?

Implemented in hardware: simpler = better

3-bit Signed Integer Representations

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

000

001

010

011

100

101

110

111

100

101

110

111

000

001

010

011

100

101

110

000/111

001

010

011

111

110

101

000/100

001

010

011

000

001

010

011

100

101

110

111

-3

-4

-2

-1

0

1

2

3

4

5

6

7

Excess 42’s Comp1’s CompSign MagUnsignedDecimal

31

•  Binary addition is as easy as it gets. You need
to know only four rules:
 0 + 0 = 0 0 + 1 = 1
 1 + 0 = 1 1 + 1 = 10

•  The simplicity of this system makes it possible
for digital circuits to carry out arithmetic
operations.
–  We will describe these circuits in Chapter 3.

Let�s see how the addition rules work with signed
magnitude numbers . . .

2.4 Signed Integer Representation

32

•  Example:
–  Using signed magnitude

binary arithmetic, find the
sum of 75 and 46.

•  First, convert 75 and 46 to
binary, and arrange as a sum,
but separate the (positive)
sign bits from the magnitude
bits.

2.4 Signed Integer Representation

36

•  Example:
–  Using signed magnitude binary

arithmetic, find the sum of 75
and 46.

•  Once we have worked our way
through all eight bits, we are
done.

 In this example, we were careful to pick two values whose
sum would fit into seven bits. If that is not the case, we
have a problem.

2.4 Signed Integer Representation

37

•  Example:
–  Using signed magnitude binary

arithmetic, find the sum of 107
and 46.

•  We see that the carry from the
seventh bit overflows and is
discarded, giving us the
erroneous result: 107 + 46 = 25.

2.4 Signed Integer Representation

38

•  The signs in signed
magnitude representation
work just like the signs in
pencil and paper arithmetic.
–  Example: Using signed

magnitude binary arithmetic,
find the sum of - 46 and - 25.

•  Because the signs are the same, all we do is
add the numbers and supply the negative sign
when we are done.

2.4 Signed Integer Representation

39

•  Mixed sign addition (or
subtraction) is done the
same way.
–  Example: Using signed

magnitude binary arithmetic,
find the sum of 46 and - 25.

•  The sign of the result gets the sign of the number
that is larger.
–  Note the �borrows� from the second and sixth bits.

2.4 Signed Integer Representation

40

•  Signed magnitude representation is easy for
people to understand, but it requires
complicated computer hardware.

•  Another disadvantage of signed magnitude is
that it allows two different representations for
zero: positive zero and negative zero.

•  For these reasons (among others) computers
systems employ complement systems for
numeric value representation.

2.4 Signed Integer Representation

8-bit Two’s Complement Addition

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

 4410 = 0010 1100
+ -4810 = 1101 0000
 -410 = 1111 1100

 5410 = 0011 0110
+ -4810 = 1101 0000
 610 = 0000 0110

 -4410 = 1101 0100
+ -4810 = 1101 0000
 -9210 = 1010 0100

Two’s Complement Overflow

• An overflow occurs if adding two positive numbers
yields a negative result or if adding two negative
numbers yields a positive result.

• Adding a positive and a negative number never
causes an overflow.

• Carry out of the most significant bit does not
indicate an overflow.

• An overflow occurs when the carry into the most
significant bit differs from the carry out of the most
significant bit.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Two’s Complement Overflow Examples

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

 -10310 = 1001 1001
+ -4810 = 1101 0000
 -15110 ≠ 0110 1001

 5410 = 0011 0110
+ 10810 = 0110 1100
 16210 ≠ 1010 0010

Two’s Complement Sign Extension
Decimal 8-bit 16-bit

+5 0000 0101 0000 0000 0000 0101
-5 1111 1011 1111 1111 1111 1011

• Why does sign extension work?

-x is represented as 28 - x in 8-bit
-x is represented as 216 - x in 16-bit
28 - x + ??? = 216 - x
??? = 216 - 28

 1 0000 0000 0000 0000 = 65536
- 1 0000 0000 = 256
 1111 1111 0000 0000 = 65280

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

MODULO ARITHMETIC

Is Two’s Complement “Magic”?

• Why does adding positive and negative numbers
work?

• Why do we add 1 to the one’s complement to
negate?

• Answer: Because modulo arithmetic works.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Modulo Arithmetic

• Definition: Let a and b be integers and let m be a positive integer. We

say that a ≡ b (mod m) if the remainder of a divided by m is equal to

the remanider of b divided by m.

• In the C programming language, a ≡ b (mod m) would be written

a % m == b % m

• We use the theorem:

If a ≡ b (mod m) and c ≡ d (mod m)

then a + c ≡ b + d (mod m).

! ! ! ! 1

A Theorem of Modulo Arithmetic

Thm: If a ≡ b (mod m) and c ≡ d (mod m) then a + c ≡ b + d (mod m).

Example: Let m = 8, a = 3, b = 27, c = 2 and d = 18.

3 ≡ 27 (mod 8) and 2 ≡ 18 (mod 8).

5 ≡ 45 (mod 8).

Proof: Write a = qam + ra, b = qbm + rb, c = qcm + rc and d = qdm + rd,

where ra, rb, rc and rd are between 0 and m − 1. Then,

a + c = (qa + qc)m + ra + rc

b + d = (qb + qd)m + rb + rd = (qb + qd)m + ra + rc.

Thus, a + c ≡ ra + rc ≡ b + d (mod m).

! ! ! ! 2

Consider Numbers Modulo 256

0000 00002 = 0 ≡ −256 ≡ 256 ≡ 512

0000 00012 = 1 ≡ −255 ≡ 257 ≡ 513

0000 00102 = 2 ≡ −254 ≡ 258 ≡ 514
...

0000 11112 = 15 ≡ −241 ≡ 271 ≡ 527
...

0111 11112 = 127 ≡ −129 ≡ 383 ≡ 639

1000 00002 = 128 ≡ −128 ≡ 384 ≡ 640
...

1000 11112 = 143 ≡ −113 ≡ 399 ≡ 655
...

1111 00112 = 243 ≡ −13 ≡ 499 ≡ 755
...

1111 11112 = 255 ≡ −1 ≡ 511 ≡ 767

If 0000 00002 thru 0111 11112 represents 0 thru 127 and 1000 00002 thru 1111 11112

represents -128 thru -1, then the most significant bit can be used to determine the sign.

! ! ! ! 3

Some Answers

• In 8-bit two’s complement, we use addition modulo 28 = 256, so adding

256 or subtracting 256 is equivalent to adding 0 or subtracting 0.

• To negate a number x, 0 ≤ x ≤ 128:

−x = 0 − x ≡ 256 − x = (255 − x) + 1 = (1111 11112 − x) + 1

Note that 1111 11112 − x is the one’s complement of x.

• Now we can just add positive and negative numbers. For example:

3 + (−5) ≡ 3 + (256 − 5) = 3 + 251 = 254 ≡ 254 − 256 = −2.

or two negative numbers (as long as there’s no overflow):

(−3) + (−5) ≡ (256 − 3) + (256 − 5) = 504 ≡ 504 − 512 = −8.

! ! ! ! 4

FLOATING POINT
NUMBERS

61

•  Floating-point numbers allow an arbitrary
number of decimal places to the right of the
decimal point.
–  For example: 0.5 × 0.25 = 0.125

•  They are often expressed in scientific notation.
–  For example:

0.125 = 1.25 × 10-1
5,000,000 = 5.0 × 106

2.5 Floating-Point Representation

62

•  Computers use a form of scientific notation for
floating-point representation

•  Numbers written in scientific notation have three
components:

2.5 Floating-Point Representation

63

•  Computer representation of a floating-point
number consists of three fixed-size fields:

•  This is the standard arrangement of these fields.

Note: Although �significand� and �mantissa� do not technically mean the same
thing, many people use these terms interchangeably. We use the term �significand� to
refer to the fractional part of a floating point number.

2.5 Floating-Point Representation

64

•  The one-bit sign field is the sign of the stored value.

•  The size of the exponent field determines the range
of values that can be represented.

•  The size of the significand determines the precision
of the representation.

2.5 Floating-Point Representation

IEEE-754 32-bit Floating Point Format

• sign bit, 8-bit exponent, 23-bit mantissa

• normalized as 1.xxxxx
• leading 1 is hidden

• 8-bit exponent in excess 127 format
NOT excess 128

0000 0000 and 1111 1111 are reserved

• +0 and -0 is zero exponent and zero mantissa
•1111 1111 exponent and zero mantissa is infinity

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

77

•  Example: Express -3.75 as a floating point number
using IEEE single precision.

•  First, let�s normalize according to IEEE rules:
–  3.75 = -11.112 = -1.111 x 21
–  The bias is 127, so we add 127 + 1 = 128 (this is our

exponent)
–  The first 1 in the significand is implied, so we have:

–  Since we have an implied 1 in the significand, this equates
to

-(1).1112 x 2 (128 – 127) = -1.1112 x 21 = -11.112 = -3.75.

(implied)

2.5 Floating-Point Representation

78

•  Using the IEEE-754 single precision floating point
standard:
–  An exponent of 255 indicates a special value.

•  If the significand is zero, the value is ± infinity.
•  If the significand is nonzero, the value is NaN, �not a

number,� often used to flag an error condition.
•  Using the double precision standard:

–  The �special� exponent value for a double precision number
is 2047, instead of the 255 used by the single precision
standard.

2.5 Floating-Point Representation

CHARACTERS & STRINGS

92

•  Calculations aren�t useful until their results can
be displayed in a manner that is meaningful to
people.

•  We also need to store the results of calculations,
and provide a means for data input.

•  Thus, human-understandable characters must be
converted to computer-understandable bit
patterns using some sort of character encoding
scheme.

2.6 Character Codes

93

•  As computers have evolved, character codes
have evolved.

•  Larger computer memories and storage
devices permit richer character codes.

•  The earliest computer coding systems used six
bits.

•  Binary-coded decimal (BCD) was one of these
early codes. It was used by IBM mainframes in
the 1950s and 1960s.

2.6 Character Codes

94

•  In 1964, BCD was extended to an 8-bit code,
Extended Binary-Coded Decimal Interchange
Code (EBCDIC).

•  EBCDIC was one of the first widely-used
computer codes that supported upper and
lowercase alphabetic characters, in addition to
special characters, such as punctuation and
control characters.

•  EBCDIC and BCD are still in use by IBM
mainframes today.

2.6 Character Codes

Chapter 2: Data Representation2-32

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

EBCDIC
Character

Code
• EBCDIC is an 8-bit

code.

STX Start of text RS Reader Stop DC1 Device Control 1 BEL Bell
DLE Data Link Escape PF Punch Off DC2 Device Control 2 SP Space
BS Backspace DS Digit Select DC4 Device Control 4 IL Idle
ACK Acknowledge PN Punch On CU1 Customer Use 1 NUL Null
SOH Start of Heading SM Set Mode CU2 Customer Use 2
ENQ Enquiry LC Lower Case CU3 Customer Use 3
ESC Escape CC Cursor Control SYN Synchronous Idle
BYP Bypass CR Carriage Return IFS Interchange File Separator
CAN Cancel EM End of Medium EOT End of Transmission
RES Restore FF Form Feed ETB End of Transmission Block
SI Shift In TM Tape Mark NAK Negative Acknowledge
SO Shift Out UC Upper Case SMM Start of Manual Message
DEL Delete FS Field Separator SOS Start of Significance
SUB Substitute HT Horizontal Tab IGS Interchange Group Separator
NL New Line VT Vertical Tab IRS Interchange Record Separator
LF Line Feed UC Upper Case IUS Interchange Unit Separator

00 NUL 20 DS 40 SP 60 – 80 A0 C0 { E0 \
01 SOH 21 SOS 41 61 / 81 a A1 ~ C1 A E1
02 STX 22 FS 42 62 82 b A2 s C2 B E2 S
03 ETX 23 43 63 83 c A3 t C3 C E3 T
04 PF 24 BYP 44 64 84 d A4 u C4 D E4 U
05 HT 25 LF 45 65 85 e A5 v C5 E E5 V
06 LC 26 ETB 46 66 86 f A6 w C6 F E6 W
07 DEL 27 ESC 47 67 87 g A7 x C7 G E7 X
08 28 48 68 88 h A8 y C8 H E8 Y
09 29 49 69 89 i A9 z C9 I E9 Z
0A SMM 2A SM 4A ¢ 6A ‘ 8A AA CA EA
0B VT 2B CU2 4B 6B , 8B AB CB EB
0C FF 2C 4C < 6C % 8C AC CC EC
0D CR 2D ENQ 4D (6D _ 8D AD CD ED
0E SO 2E ACK 4E + 6E > 8E AE CE EE
0F SI 2F BEL 4F | 6F ? 8F AF CF EF
10 DLE 30 50 & 70 90 B0 D0 } F0 0
11 DC1 31 51 71 91 j B1 D1 J F1 1
12 DC2 32 SYN 52 72 92 k B2 D2 K F2 2
13 TM 33 53 73 93 l B3 D3 L F3 3
14 RES 34 PN 54 74 94 m B4 D4 M F4 4
15 NL 35 RS 55 75 95 n B5 D5 N F5 5
16 BS 36 UC 56 76 96 o B6 D6 O F6 6
17 IL 37 EOT 57 77 97 p B7 D7 P F7 7
18 CAN 38 58 78 98 q B8 D8 Q F8 8
19 EM 39 59 79 99 r B9 D9 R F9 9
1A CC 3A 5A ! 7A : 9A BA DA FA |
1B CU1 3B CU3 5B $ 7B # 9B BB DB FB
1C IFS 3C DC4 5C . 7C @ 9C BC DC FC
1D IGS 3D NAK 5D) 7D ' 9D BD DD FD
1E IRS 3E 5E ; 7E = 9E BE DE FE
1F IUS 3F SUB 5F ¬ 7F " 9F BF DF FF

95

•  Other computer manufacturers chose the 7-bit
ASCII (American Standard Code for Information
Interchange) as a replacement for 6-bit codes.

•  While BCD and EBCDIC were based upon
punched card codes, ASCII was based upon
telecommunications (Telex) codes.

•  Until recently, ASCII was the dominant
character code outside the IBM mainframe
world.

2.6 Character Codes

Chapter 2: Data Representation2-31

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

ASCII Character Code
• ASCII is a 7-bit code, com-

monly stored in 8-bit
bytes.

• “A” is at 4116. To convert
upper case letters to
lower case letters, add
2016. Thus “a” is at 4116 +
2016 = 6116.

• The character “5” at posi-
tion 3516 is different than
the number 5. To convert
character-numbers into
number-numbers, sub-
tract 3016: 3516 - 3016 = 5.

00 NUL
01 SOH
02 STX
03 ETX
04 EOT
05 ENQ
06 ACK
07 BEL
08 BS
09 HT
0A LF
0B VT
0C FF
0D CR
0E SO
0F SI

10 DLE
11 DC1
12 DC2
13 DC3
14 DC4
15 NAK
16 SYN
17 ETB
18 CAN
19 EM
1A SUB
1B ESC
1C FS
1D GS
1E RS
1F US

20 SP
21 !
22 "
23 #
24 $
25 %
26 &
27 '
28 (
29)
2A *
2B +
2C ´
2D -
2E .
2F /

30 0
31 1
32 2
33 3
34 4
35 5
36 6
37 7
38 8
39 9
3A :
3B ;
3C <
3D =
3E >
3F ?

40 @
41 A
42 B
43 C
44 D
45 E
46 F
47 G
48 H
49 I
4A J
4B K
4C L
4D M
4E N
4F O

50 P
51 Q
52 R
53 S
54 T
55 U
56 V
57 W
58 X
59 Y
5A Z
5B [
5C \
5D]
5E ^
5F _

60 `
61 a
62 b
63 c
64 d
65 e
66 f
67 g
68 h
69 i
6A j
6B k
6C l
6D m
6E n
6F o

70 p
71 q
72 r
73 s
74 t
75 u
76 v
77 w
78 x
79 y
7A z
7B {
7C |
7D }
7E ~
7F DEL

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL

Null
Start of heading
Start of text
End of text
End of transmission
Enquiry
Acknowledge
Bell

BS
HT
LF
VT

Backspace
Horizontal tab
Line feed
Vertical tab

FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB

Form feed
Carriage return
Shift out
Shift in
Data link escape
Device control 1
Device control 2
Device control 3
Device control 4
Negative acknowledge
Synchronous idle
End of transmission block

CAN
EM
SUB
ESC
FS
GS
RS
US
SP
DEL

Cancel
End of medium
Substitute
Escape
File separator
Group separator
Record separator
Unit separator
Space
Delete

96

•  Many of today�s systems embrace Unicode, a 16-
bit system that can encode the characters of
every language in the world.
–  The Java programming language, and some operating

systems now use Unicode as their default character
code.

•  The Unicode codespace is divided into six parts.
The first part is for Western alphabet codes,
including English, Greek, and Russian.

2.6 Character Codes

97

•  The Unicode codes-
pace allocation is
shown at the right.

•  The lowest-numbered
Unicode characters
comprise the ASCII
code.

•  The highest provide for
user-defined codes.

2.6 Character Codes

Chapter 2: Data Representation2-33

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Unicode
Character

Code

• Unicode is a 16-
bit code.

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B
001C
001D
001E
001F
NUL
STX
ETX

Start of text
End of text

ENQ
ACK
BEL

Enquiry
Acknowledge
Bell

BS
HT
LF

Backspace
Horizontal tab
Line feed VT Vertical tab

SOH Start of heading
EOT End of transmission

DLE Data link escape

DC1
DC2
DC3
DC4
NAK
NBS
ETB

Device control 1
Device control 2
Device control 3
Device control 4
Negative acknowledge
Non-breaking space
End of transmission block

EM
SUB
ESC
FS
GS
RS
US

End of medium
Substitute
Escape
File separator
Group separator
Record separator
Unit separator

Null CAN Cancel

NUL 0020
SOH 0021
STX 0022
ETX 0023
EOT 0024
ENQ 0025
ACK 0026
BEL 0027

0028
0029

LF 002A
VT 002B
FF 002C
CR 002D
SO 002E
SI 002F
DLE 0030
DC1 0031
DC2 0032
DC3 0033
DC4 0034
NAK 0035
SYN 0036
ETB 0037
CAN 0038
EM 0039
SUB 003A
ESC 003B
FS 003C
GS 003D
RS 003E
US 003F

BS
HT

0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
004A
004B
004C
004D
004E
004F
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
005A
005B
005C
005D
005E
005F

SP
!
"
#
$
%
&
'
(
)
*
+
´
-
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
006A
006B
006C
006D
006E
006F
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
007A
007B
007C
007D
007E
007F

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_

0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
008A
008B
008C
008D
008E
008F
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
009A
009B
009C
009D
009E
009F

`
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~

DEL

00A0
00A1
00A2
00A3
00A4
00A5
00A6
00A7
00A8
00A9
00AA
00AB
00AC
00AD
00AE
00AF
00B0
00B1
00B2
00B3
00B4
00B5
00B6
00B7
00B8
00B9
00BA
00BB
00BC
00BD
00BE
00BF

Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl

00C0
00C1
00C2
00C3
00C4
00C5
00C6
00C7
00C8
00C9
00CA
00CB
00CC
00CD
00CE
00CF
00D0
00D1
00D2
00D3
00D4
00D5
00D6
00D7
00D8
00D9
00DA
00DB
00DC
00DD
00DE
00DF

NBS
¡
¢
£
¤
¥

§
¨
©
a

«
¬
–
®
–
˚
±
2

3

´
µ
¶
˙

1

o

»
1/4
1/2
3/4
¿

Ç

&

00E0
00E1
00E2
00E3
00E4
00E5
00E6
00E7
00E8
00E9
00EA
00EB
00EC
00ED
00EE
00EF
00F0
00F1
00F2
00F3
00F4
00F5
00F6
00F7
00F8
00F9
00FA
00FB
00FC
00FD
00FE
00FF

À
Á
Â
Ã
Ä
Å
Æ
Ç
È
É
Ê
Ë
Ì
Í
Î
Ï

Ñ
Ò
Ó
Ô
Õ
Ö
×
Ø
Ù
Ú
Û
Ü
Y
y

D

´
´

à
á
â
ã
ä
å
æ
ç
è
é
ê
ë
ì
í
î
ï

ñ
ò
ó
ô
õ
ö
÷
ø
ù
ú
û
ü

ÿ

¶

P
P
pp

CR Carriage return
SO Shift out
SI Shift in

FF Form feed

SP
DEL

Space
Delete

Ctrl Control

SYN Synchronous idle

§

MEMORY HAS NO TYPE!

A single byte in memory might be
•  a character
•  an unsigned number
•  a signed number
•  part of a multi-byte integer in little endian
•  part of a multi-byte integer in big endian
•  part of a multi-byte floating point number
•  ...

NEXT TIME

•  Basic Intel i-386 architecture

•  “Hello World” in Linux assembly

•  Addressing modes

