
CMSC 313
COMPUTER ORGANIZATION
&
ASSEMBLY LANGUAGE
PROGRAMMING

LECTURE 10, SPRING 2013

TOPICS TODAY

•  C Programming Overview

C PROGRAMMING
OVERVIEW

Different Kinds of Languages

•  Java is an object-oriented programming (OOP) language

•  Problem solving centers on defining classes

•  Classes encapsulate data and code

•  C is a procedural language

•  Problem solving centers on functions

•  Functions perform a single service

•  Data is global or passed to functions as parameters

•  No classes

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

Libraries

Java libraries consist of predefined classes:
ArrayList, Scanner, Color, Integer

C libraries consists of predefined functions:
Char/string functions (strcpy, strcmp)
Math functions (floor, ceil, sin)
Input/Output functions (printf, scanf)

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

Documentation

On-line C/Unix manual — the “man” command

Description of many C library functions and Unix commands

Usage:

 man <function name>!
!man <command name>!

Examples:
!man printf!
!man dir!
!man –k malloc!
!man man!

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

The C Standard

The first standard for C was published by the American National
Standards Institute (ANSI) in 1989 and is widely referred to as
“ANSI C” (or sometimes C89)

A slightly modified version of the ANSI C standard was adopted in

1990 and is referred to as “C90”. “C89" and "C90" refer to
essentially the same language.

In March 2000, ANSI adopted the ISO/IEC 9899:1999 standard. This

standard is commonly referred to as C99, and it is the current
standard for the C programming language.

The C99 standard is not fully implemented in all versions of C

compilers.

 7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

C99 on GL

The GNU C compiler on the GL systems (gcc versions 4.1.2 & 4.4.5)
appears to support several useful C99 features.

These notes include those C99 features supported by gcc on GL

since our course use that compiler.

These features will be noted as C99 features when presented.

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

Hello World

This source code is in a file such as hello.c

/*  

file header block comment !
*/!
#include <stdio.h>!
!
int main() {!
!
!// print the greeting (C99)!
!printf(“Hello World\n”);!

!
!return 0;!

}!

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

Compiler Options

We will use gcc to compile C programs on GL.
-c!
Compile only (create a .o file), don’t link (create an executable)
 gcc -c hello.c

-o filename!
Name the executable filename instead of a.out
 gcc -o hello hello.c

-Wall!
Report all warnings
 gcc -Wall hello.c

-ansi!
enforces the original ANSI C standard and disables C99 features.
 gcc –ansi hello.c

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

Compiling and Running a C Program

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

Pre-
processor

(cpp)

hello.i Compiler
(cc1)

hello.s Assembler
(as)

hello.o Linker
(ld)

hello hello.c

Source
program

(text)

Modified
source

program
(text)

Assembly
program

(text)

Relocatable
object

programs
(binary)

Executable
object

program
(binary)

printf.o

unix> gcc -Wall -o hello hello.c!

Execute your program by typing the name of the
executable at the Unix prompt
 
unix> hello!

Language Commonality

•  C and Java syntax have much in common
–  Some Data Types
–  Arithmetic operators
–  Logical Operators
–  Control structures
–  Other Operators

•  We assume that you are proficient in Java

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

Integral Data Types

•  C integer data types:
int (the basic integer data type)
short int (typically abbreviated just as short)
long int (typically abbreviated just as long)
long long int (C99)
char (C does not have “byte”)

•  mostly use int

•  use char for ASCII

•  char uses 1 byte

•  other sizes system dependent

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

Signed vs Unsigned

•  integer types may be signed (default) or unsigned:
signed ! !(positive, negative, or zero)!
unsigned ! !(positive or zero only)!
!

•  Examples:
int age;!
signed int age = -33;!
long area = 123456;!
short int height = 4;!
unsigned char IQ = 102;!
unsigned int length = 8282;!
unsigned long int SATscore = 800;!

 7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

Floating Point Data Types

•  C floating point types:

float (small)
double (normal)
long double (bigger)

•  Examples:

float avg = 10.6 ;!
double median = 88.54 ;!
double homeCost = 10000 ;!

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

sizeof()

•  C does not specify data sizes.

•  sizeof(type) returns # of bytes used by type.

•  Use sizeof() for portability.

•  On GL,
–  sizeof(short) = 2
–  sizeof(int) = sizeof(long) = 4
–  sizeof (long long) = 8
–  sizeof(float) = 4
–  sizeof(double) = 8

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

const

•  Use const qualifier to indicate constants:

const double PI = 3.1415;!
const int myAge = 39;!

•  Compiler complains if code modifies const variables.

•  const variables must be initialized when declared.

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

Variable Declaration

•  ANSI C requires that all variables be declared at the beginning of
the “block” in which they are defined, before any executable line
of code.

•  C99 allows variables to be declared anywhere in the code (like
Java and C++)

•  In any case, variables must be declared before they can be used.

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

Arithmetic Operators

Arithmetic operators are the same as Java

= (assignment)
+ - ! !(plus, minus)
* / % (times, divide, mod)
++ -- (increment, decrement)

Combine with assignment:

+= -= *= /= %=!

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

Boolean Data Type

•  ANSI C has no Boolean type

•  The C99 standard supports the Boolean data type

•  To use bool, true, and false, include <stdbool.h>

#include <stdbool.h>!
!
bool isRaining = false;!
if (isRaining)!
!printf(“Bring your umbrella\n”);  
!

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

Type casting

•  C provides both implicit and explicit type casting

•  Type casting creates value with new type (assuming conversion is
possible):

int age = 42;!
long longAge;!
char charAge;!
!
longAge = (long) age; // explicit type cast to long!
charAge = age; ! ! // implicit type conversion!

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

Logical Operators

•  Logical operators are the same in C and Java and result in
a Boolean value.

&& (and)
|| ! ! (or)
== != (equal, not equal)
< <= (less than, less than or equal)
> >= (greater than, greater than or equal)

•  Integral types may also be treated as Boolean expressions

•  Zero is considered “false”
•  Any non-zero value is considered “true”

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

Control Structures

Both languages support these control structures which function the
same way in C and Java

  for loops

  But NOT: for (int i = 0; i < size; i++)!

  while loops

  do-while loops

  switch statements

  if and if-else statements

  braces ({, }) are used to begin and end blocks

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

Other Operators

These other operators are the same in C and Java

  ?: (tri-nary “hook colon”)
int larger = (x > y ? x : y);

  <<, >>, &, |, ^ (bit operators)

  <<=, >>=, &=, |=,^=

  [] (brackets for arrays)

  () parenthesis for functions and type casting

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

Arrays

•  Array indexing starts with 0.

•  ANSI C requires that the size of the array be a constant

•  Declaring and initializing arrays

int grades[44];!
int areas[10] = {1, 2, 3};!
long widths[12] = {0};!
int IQs[] = {120, 121, 99, 154};!

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

Variable Size Arrays

•  C99 allows the size of an array to be a variable

int nrStudents = 30;!
...!
int grades[nrStudents];!

•  Use carefully!!!
•  Lifetime = enclosing block.
•  Uses lots of stack memory if placed in a loop.
•  Not supported by all C compilers.

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

2D Arrays

•  Subscripting is provided for each dimension

•  For 2D arrays, the first dimension is the number of “rows”, the
second is the number of “columns” in each row

int board[4][5]; ! // 4 rows, 5 columns!
int x = board[0][0]; // 1st row, 1st column!
int y = board[3][4]; // row 4 (last), col 5 (last)!

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

#define

•  #define used for macros.

•  Preprocessor replaces every instance of the macro with the text
that it represents.

•  Note that there is no terminating semi-colon

#define MIN_AGE 21
 ...
 if (myAge > MIN_AGE)
 ...
#define PI 3.1415
 ...
 double area = PI * radius * radius;
 ...

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

#define vs const

•  #define
–  Pro: no memory is used for the constant
–  Con: cannot be seen when code is compiled since they are

removed by the pre-compiler
–  Con: are not real variables and have no type

•  const variables
–  Pro: are real variables with a type
–  Pro: can be examined by a debugger
–  Con: take up memory

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

typedefs

•  Define new names for existing data types (NOT new data types)

 typedef int Temperature;
 typedef int Row[3];
 ...
 Temperature t ;
 Row R ;

•  Give simple names to complex types.

•  typedefs make future changes easier.

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

Enumeration Constants

•  enum = a list of named constant integer values (starting at 0)

•  Behave like integers

•  Names in enum must be distinct

•  Better alternative to #define

•  Example
enum months { JAN = 1, FEB, MAR, APR, MAY, JUN, JUL,

AUG, SEP, OCT, NOV, DEC };!
!...!

enum months thisMonth;!
thisMonth = SEP;! !// preferred usage!
thisMonth = 42; ! !// unfortunately, also ok!
!

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

Functions vs. Methods

•  Java classes have methods.
•  Accessibility of methods controlled by class definition.

•  C functions do not belong to any class.
•  C functions can have global scope or file scope.

•  global scope = used by anyone
•  file scope = used only by code in same file

•  Java methods & C functions both:

•  have a name
•  have a return type
•  may have parameters

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

More Functions

•  Function declaration = function prototype (aka signature)

! !int add3 (int) ;!

•  Functions must be declared before use.

•  Function definition = implementation (code) of function

!! !int add3 (int n) {!

!! ! return n + 3 ;!
!! !}!

•  Function definition also declares the function.

•  Functions can be declared in one place and defined
(implemented) elsewhere.

•  Cannot overload function name in C.

7/28/09 Adapted from Dennis Frey CMSC 313 Spring 2011

7/28/09

A Simple C Program
#include <stdio.h>
typedef double Radius;
#define PI 3.1415

/* given the radius, calculates the area of a circle */
double calcCircleArea(Radius radius)
{

 return (PI * radius * radius);
}

// given the radius, calcs the circumference of a circle
double calcCircumference(Radius radius)
{

 return (2 * PI * radius);
}

int main()
{

 Radius radius = 4.5;
 double area = circleArea(radius);
 double circumference = calcCircleCircumference(radius);

 // print the results
 return 0;

}

Adapted from Dennis Frey CMSC 313 Spring 2011

7/28/09

Alternate Sample

#include <stdio.h>
typedef double Radius;
#define PI 3.1415

/* function prototypes */
double calcCircleArea(Radius radius);
double calcCircleCircumference(Radius radius);

int main()
{

 Radius radius = 4.5;
 double area = calcCircleArea(radius);
 double circumference = calcCircleCircumference(radius);

 // print the results
 return 0;

}

/* given the radius, calculates the area of a circle */
double calcCircleArea(Radius radius)
{

 return (PI * radius * radius);
}

// given the radius, calcs the circumference of a circle
double calcCircleCircumference(Radius radius)
{

 return (2 * PI * radius);
}

Adapted from Dennis Frey CMSC 313 Spring 2011

7/28/09

Typical C Program

includes #include <stdio.h>

typedef double Radius;
#define PI 3.1415

/* function prototypes */
double calcCircleArea(Radius radius);
double calcCircleCircumference(Radius radius);

int main()
{
 Radius radius = 4.5;
 double area = calcCircleArea(radius);
 double circumference = calcCircleCircumference(radius);

 // print the results
 return 0;
}

/* given the radius, calculates the area of a circle */
double calcCircleArea(Radius radius)
{
 return (PI * radius * radius);
}

// given the radius, calcs the circumference of a circle
double calcCircleCircumference(Radius radius)
{
 return (2 * PI * radius);
}

defines, typedefs, data
type definitions, global
variable declarations
function prototypes

function definitions

main()

Adapted from Dennis Frey CMSC 313 Spring 2011

NEXT TIME

•  C Input/Output

•  Characters & Strings
•  Structs

