CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING

LECTURE 03, SPRING 2013

TOPICS TODAY

- Moore's Law
- Evolution of Intel CPUs
- IA-32 Basic Execution Environment
- IA-32 General Purpose Registers
- "Hello World" in Linux Assembly Language
- Addressing modes

INTEL CPUS

1.5 Historical Development

- Moore's Law (1965)
 - Gordon Moore, Intel founder
 - "The density of transistors in an integrated circuit will double every year."
- Contemporary version:
 - "The density of silicon chips doubles every 18 months."

But this "law" cannot hold forever ...

1.5 Historical Development

- Rock's Law
 - Arthur Rock, Intel financier
 - "The cost of capital equipment to build semiconductors will double every four years."
 - In 1968, a new chip plant cost about \$12,000.

At the time, \$12,000 would buy a nice home in the suburbs.

An executive earning \$12,000 per year was "making a very comfortable living."

1.5 Historical Development

- Rock's Law
 - In 2010, a chip plants under construction cost well over \$4 billion.

\$4 billion is more than the gross domestic product of some small countries, including Barbados, Mauritania, and Rwanda.

 For Moore's Law to hold, Rock's Law must fall, or vice versa. But no one can say which will give out first.

Table 2-3. Key Features of Previous Generations of IA-32 Processors

Intel Processor	Date Intro- duced	Max. Clock Frequency/ Technology at Introduction	Tran- sistors	Register Sizes ¹	Ext. Data Bus Size ²	Max. Extern. Addr. Space	Caches
8086	1978	8 MHz	29 K	16 GP	16	1 MB	None
Intel 286	1982	12.5 MHz	134 K	16 GP	16	16 MB	Note 3
Intel386 DX Processor	1985	20 MHz	275 K	32 GP	32	4 GB	Note 3
Intel486 DX Processor	1989	25 MHz	1.2 M	32 GP 80 FPU	32	4 GB	L1: 8 KB
Pentium Processor	1993	60 MHz	3.1 M	32 GP 80 FPU	64	4 GB	L1:16 KB
Pentium Pro Processor	1995	200 MHz	5.5 M	32 GP 80 FPU	64	64 GB	L1: 16 KB L2: 256 KB or 512 KB
Pentium II Processor	1997	266 MHz	7 M	32 GP 80 FPU 64 MMX	64	64 GB	L1: 32 KB L2: 256 KB or 512 KB
Pentium III Processor	1999	500 MHz	8.2 M	32 GP 80 FPU 64 MMX 128 XMM	64	64 GB	L1: 32 KB L2: 512 KB
Pentium III and Pentium III Xeon Processors	1999	700 MHz	28 M	32 GP 80 FPU 64 MMX 128 XMM	64	64 GB	L1: 32 KB L2: 256 KB
Pentium 4 Processor	2000	1.50 GHz, Intel NetBurst Microarchitecture	42 M	32 GP 80 FPU 64 MMX 128 XMM	64	64 GB	12K µop Execution Trace Cache; L1: 8KB L2: 256 KB
Intel Xeon Processor	2001	1.70 GHz, Intel NetBurst Microarchitecture	42 M	32 GP 80 FPU 64 MMX 128 XMM	64	64 GB	12K µop Execution Trace Cache; L1: 8KB L2: 512KB
Intel Xeon Processor	2002	2.20 GHz, Intel NetBurst Microarchitecture, HyperThreading Technology	55 M	32 GP 80 FPU 64 MMX 128 XMM	64	64 GB	12K µop Execution Trace Cache; L1: 8KB L2: 512KB
Pentium M Processor	2003	1.60 GHz, Intel NetBurst Microarchitecture	77 M	32 GP 80 FPU 64 MMX 128 XMM	64	4 GB	L1: 64KB L2: 1 MB
Intel Pentium 4 Processor Supporting Hyper-Threading Technology at 90 nm process	2004	3.40 GHz, Intel NetBurst Microarchitecture, HyperThreading Technology	125 M	32 GP 80 FPU 64 MMX 128 XMM	64	64 GB	12K µop Execution Trace Cache; L1: 16KB L2: 1 MB

NOTE:

- 1. The register size and external data bus size are given in bits. Note also that each 32-bit general-purpose (GP) registers can be addressed as an 8- or a 16-bit data registers in all of the processors.
- 2. Internal data paths are 2 to 4 times wider than the external data bus for each processor.

Table 2-1. Key Features of Most Recent IA-32 Processors

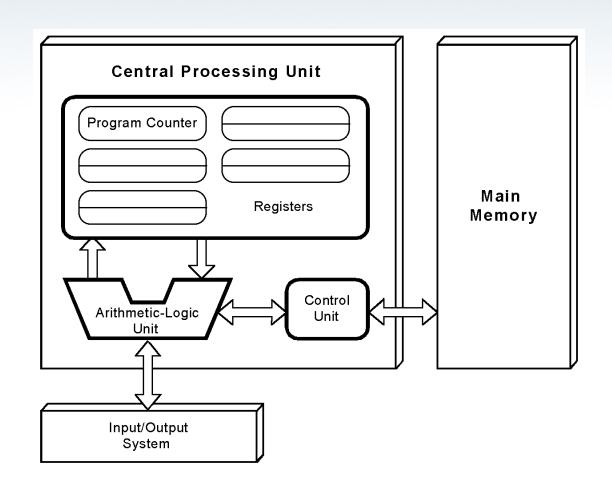

Intel Processor	Date Intro- duced	Micro- architecture	Top-Bin Clock Fre- quency at Intro- duction	Tran- sistors	Register Sizes ¹	Syste m Bus Band- width	Max. Extern. Addr. Space	On-Die Caches ²
Intel Pentium M Processor 755 ³	2004	Intel Pentium M Processor	2.00 GHz	140 M	GP: 32 FPU: 80 MMX: 64 XMM: 128	3.2 GB/s	4 GB	L1: 64 KB L2: 2 MB
Intel Core Duo Processor T2600 ³	2006	Improved Intel Pentium M Processor Microarchitecture; Dual Core; Intel Smart Cache, Advanced Thermal Manager	2.16 GHz	152M	GP: 32 FPU: 80 MMX: 64 XMM: 128	5.3 GB/s	4 GB	L1: 64 KB L2: 2 MB (2MB Total)
Intel Atom Processor Z5xx series	2008	Intel Atom Microarchitecture; Intel Virtualization Technology.	1.86 GHz - 800 MHz	47M	GP: 32 FPU: 80 MMX: 64 XMM: 128	Up to 4.2 GB/s	4 GB	L1: 56 KB ⁴ L2: 512KB

Table 2-2. Key Features of Most Recent Intel 64 Processors (Contd.)

Table 2-2. Rey readiles of Plost Recent lifter 04 Plocessors (Conta.)									
Intel Processor	Date Intro- duced	Micro- architec-ture	Top-Bin Fre- quency at Intro- duction	Tran- sistor s	Register Sizes	System Bus/QP I Link Speed	Max. Extern . Addr. Space	On-Die Caches	
Intel Core i7- 620M Processor	2010	Intel Turbo Boost Technology, Intel microarchitecture code name Westmere; Dualcore; HyperThreading Technology; Intel 64 Architecture; Intel Virtualization Technology, Integrated graphics	2.66 GHz	383 M	GP: 32, 64 FPU: 80 MMX: 64 XMM: 128		64 GB	L1: 64 KB L2: 256KB L3: 4MB	
Intel Xeon- Processor 5680	2010	Intel Turbo Boost Technology, Intel microarchitecture code name Westmere; Six core; HyperThreading Technology; Intel 64 Architecture; Intel Virtualization Technology.	3.33 GHz	1.1B	GP: 32, 64 FPU: 80 MMX: 64 XMM: 128	QPI: 6.4 GT/s; 32 GB/s	1 TB	L1: 64 KB L2: 256KB L3: 12MB	
Intel Xeon- Processor 7560	2010	Intel Turbo Boost Technology, Intel microarchitecture code name Nehalem; Eight core; HyperThreading Technology; Intel 64 Architecture; Intel Virtualization Technology.	2.26 GHz	2.3B	GP: 32, 64 FPU: 80 MMX: 64 XMM: 128	QPI: 6.4 GT/s; Memory: 76 GB/s	16 TB	L1: 64 KB L2: 256KB L3: 24MB	
Intel Core i7- 2600K Processor	2011	Intel Turbo Boost Technology, Intel microarchitecture code name Sandy Bridge; Four core; HyperThreading Technology; Intel 64 Architecture; Intel Virtualization Technology., Processor graphics, Quicksync Video	3.40 GHz	995M	GP: 32, 64 FPU: 80 MMX: 64 XMM: 128 YMM: 256	DMI: 5 GT/s; Memory: 21 GB/s	64 GB	L1: 64 KB L2: 256KB L3: 8MB	
Intel Xeon- Processor E3- 1280	2011	Intel Turbo Boost Technology, Intel microarchitecture code name Sandy Bridge; Four core; HyperThreading Technology; Intel 64 Architecture; Intel Virtualization Technology.	3.50 GHz		GP: 32, 64 FPU: 80 MMX: 64 XMM: 128 YMM: 256	DMI: 5 GT/s; Memory: 21 GB/s	1 TB	L1: 64 KB L2: 256KB L3: 8MB	
Intel Xeon- Processor E7- 8870	2011	Intel Turbo Boost Technology, Intel microarchitecture code name Westmere; Ten core; HyperThreading Technology; Intel 64 Architecture; Intel Virtualization Technology.	2.40 GHz	2.2B	GP: 32, 64 FPU: 80 MMX: 64 XMM: 128	QPI: 6.4 GT/s; Memory: 102 GB/s	16 TB	L1: 64 KB L2: 256KB L3: 30MB	

1.7 The von Neumann Model

- This is a general depiction of a von Neumann system:
- These computers employ a fetchdecode-execute cycle to run programs as follows . . .

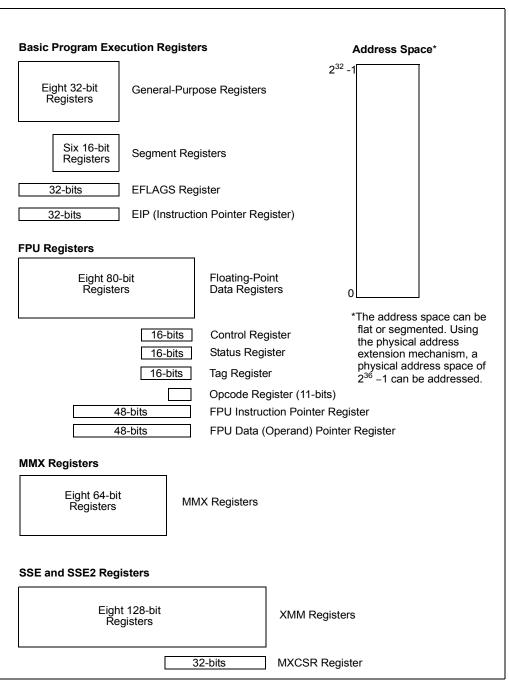


Figure 3-1. IA-32 Basic Execution Environment

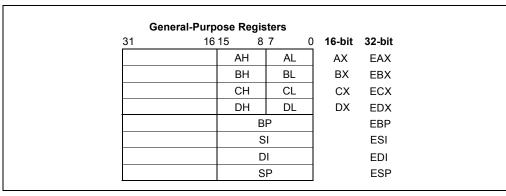


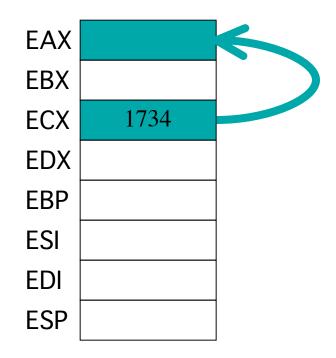
Figure 3-4. Alternate General-Purpose Register Names

- EAX—Accumulator for operands and results data.
 EBX—Pointer to data in the DS segment.
 ECX—Counter for string and loop operations.
 EDX—I/O pointer.
 - ESI—Pointer to data in the segment pointed to by the DS register; source pointer for string operations.9
 - EDI—Pointer to data (or destination) in the segment pointed to by the ES register; destination pointer for string operations.
 - ESP—Stack pointer (in the SS segment).

EBP—Pointer to data on the stack (in the SS segment).

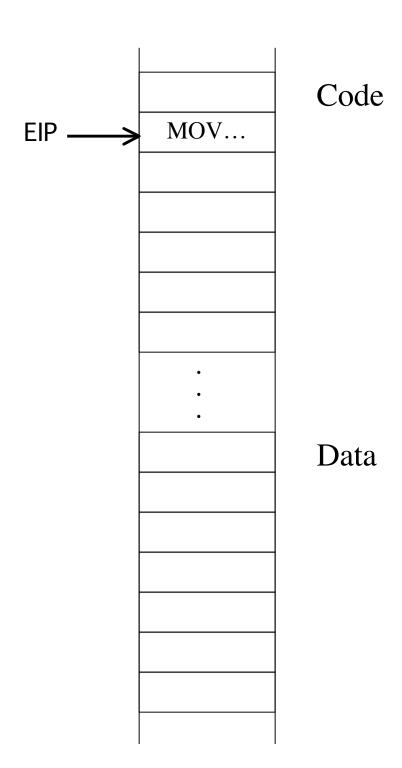
"Hello World" in Linux Assembly

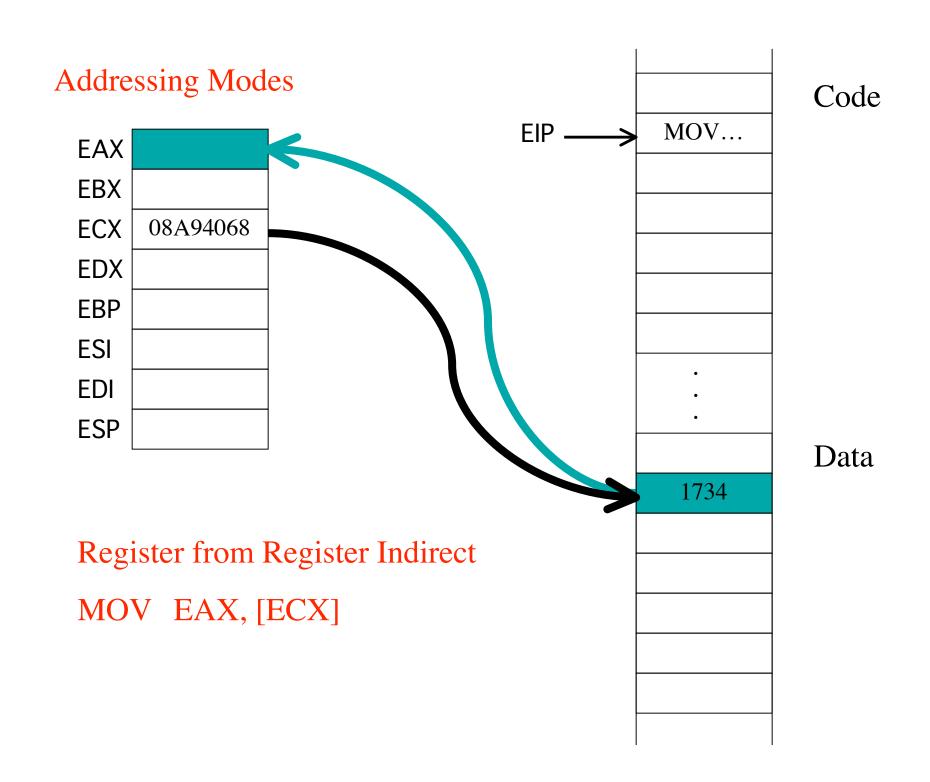
- Use your favorite UNIX editor (vi, emacs, pico, ...)
- Assemble using NASM on gl.umbc.edu
 nasm -f elf hello.asm
- NASM documentation is on-line.
- Need to "load" the object file
 Id hello.o
- Execute a.out
- CMSC 121 Introduction to UNIX

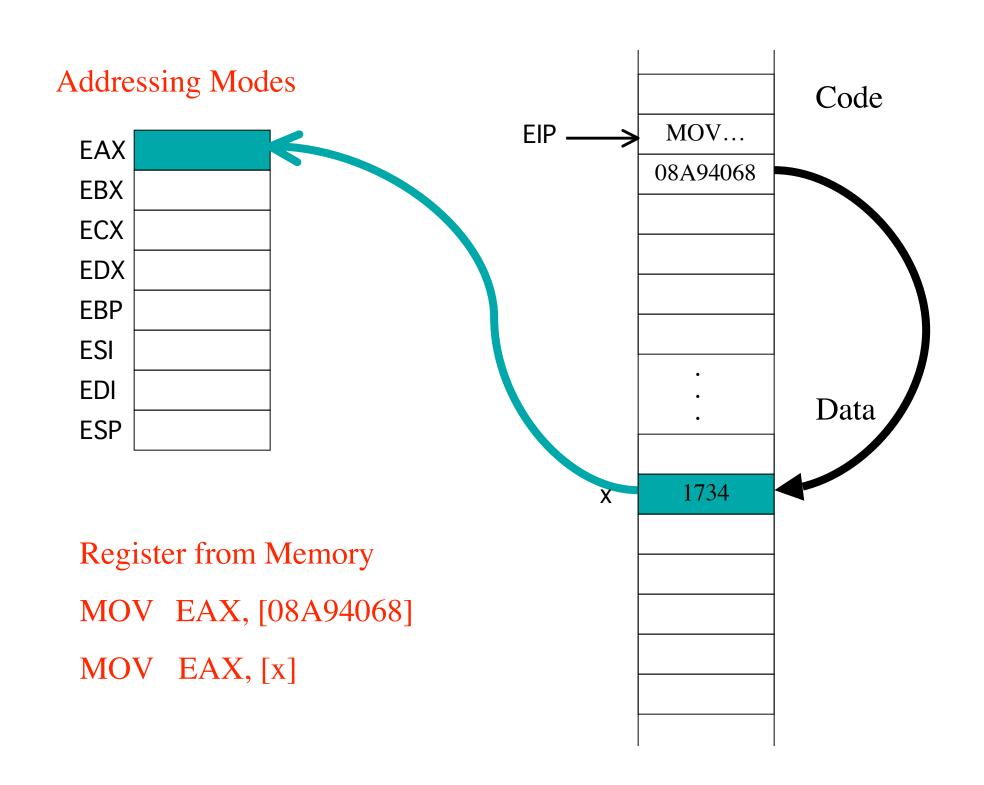

ADDRESSING MODES

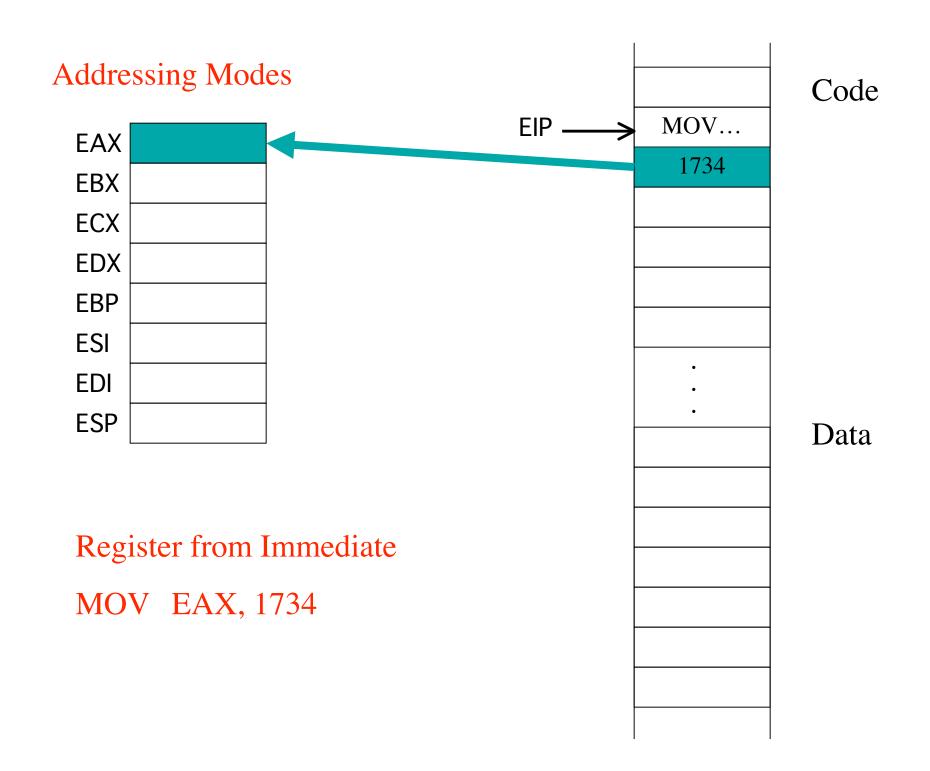
80x86 Addressing Modes

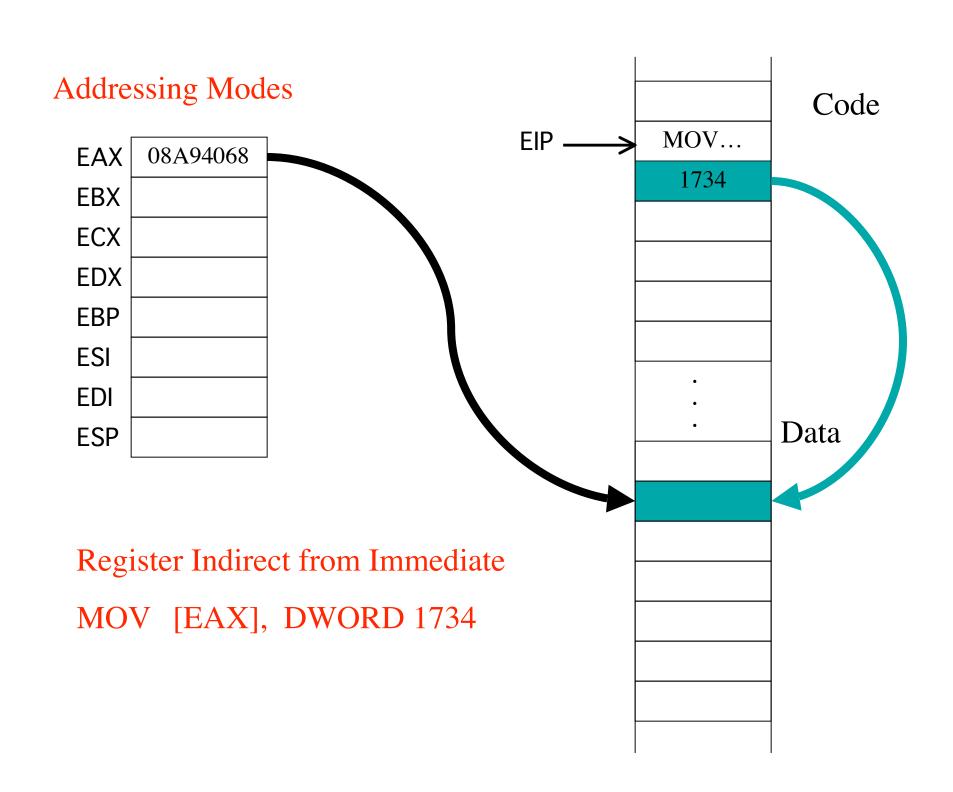
- We want to store the value 1734h.
- The value 1734h may be located in a register or in memory.
- The location in memory might be specified by the code, by a register, ...
- Assembly language syntax for MOV

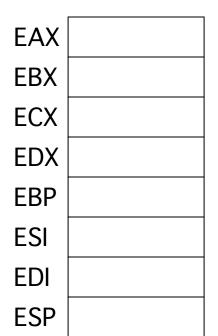

MOV DEST, SOURCE

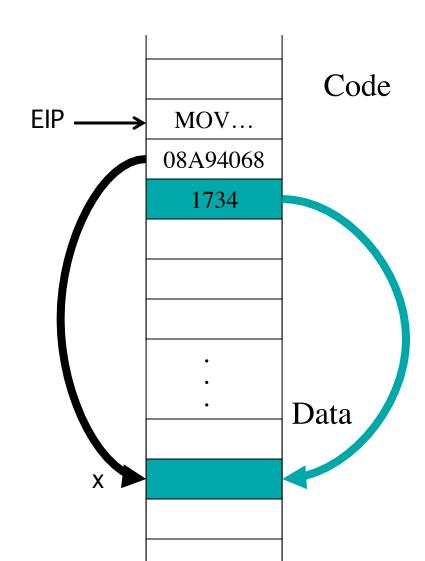

Addressing Modes




Register from Register


MOV EAX, ECX





Addressing Modes

Memory from Immediate

MOV [08A94068], DWORD 1734

MOV [x], DWORD 1734

Notes on Addressing Modes

• More complicated addressing modes later:

MOV EAX, [ESI+4*ECX+12]

- Figures not drawn to scale. Constants 1734h and 08A94068h take 4 bytes (little endian).
- Some addressing modes are not supported by some operations.
- Labels represent addresses not contents of memory.

NEXT TIME

- toupper.asm
- the gdb debugger
- Overview of i386 Instruction Set
- Arithmetic Instructions
- EFLAGS Register