
CMSC 313
COMPUTER ORGANIZATION
&
ASSEMBLY LANGUAGE
PROGRAMMING

LECTURE 01, SPRING 2013

TOPICS TODAY

•  Course overview

•  Levels of machines

•  Machine models: von Neumann & System Bus

•  Fetch-Execute Cycle

•  Base Conversion

COURSE OVERVIEW

CMSC 313 Course Description
Spring 2013

Computer Organization & Assembly Language Programming
Instructor.
 Prof. Richard Chang, chang@umbc.edu, 410-455-3093.

 Office Hours: Tuesday & Thursday 11:30am–12:30pm, ITE 326.

Teaching Assistant.
 Roshan Ghumare, roshang1@umbc.edu
 Office Hours: TBA

Time and Place.
 Section 01: Tu - Th 10:00am – 11:15am, ITE 229.
 Section 02: Tu - Th 1:00pm – 2:15pm, ITE 229.

Textbook.
• Essentials of Computer Organization and Architecture, third edition, by Linda Null & Julia

Lobur. Jones & Bartlett Learning, 2010. ISBN: 1449600069.
• Assembly Language Step-by-Step: Programming with Linux, third edition, by Jeff Duntemann.

Wiley, 2009. ISBN: 0470497025.

Web Page. http://umbc.edu/~chang/cs313/

Catalog Description. This course introduces the student to the low-level abstraction of a computer
system from a programmer's point of view, with an emphasis on low-level programming. Topics include
data representation, assembly language programming, C programming, the process of compiling and
linking, low-level memory management, exceptional control flow, and basic processor architecture.

Prerequisites. You should have mastered the material covered in the following courses: CMSC 202
Computer Science II and CMSC 203 Discrete Structures. You need the programming experience from
CMSC202. Additional experience from CMSC341 Data Structures would also be helpful. You must also
be familiar with and be able to work with truth tables, Boolean algebra and modular arithmetic.

Objectives. The purpose of this course is to introduce computer science majors to computing systems
below that of a high-level programming language. The material covered can be broadly separated into
the categories of assembly language programming, C programming and digital logic. These topics
prepare the students to take CMSC411 Computer Architecture and CMSC421 Operating Systems which
are required courses for the computer science major.
Under the heading of assembly language programming students will be introduced to the i386
instruction set, low-level programming, the Linux memory model, as well as the internal workings of
compilers, assemblers and linkers.
C programming topics will concentrate on dynamic memory allocation.
Topics under computer organization include digital logic design (combinational circuits, sequential
circuits, finite state machines) and basic computer architecture (system bus, memory hierarchy and
input/output devices).

Grading. Your final grade will be based upon 5 homework assignments (15% total) and 8 programming
assignments (40% total). There will also be a midterm exam (20%) and a final exam (25%). However, if
some homework or programming assignments are canceled and not made up, the proportion of your
grade from homework, projects and exams will remain the same. For example, if a programming
assignment is canceled, then each programming assignment would be worth 5.714% (instead of 5%).
That keeps programming assignments at 40% of your final grade.

Your final letter grade is based on the standard formula:
0 ≤ F < 60, 60 ≤ D < 70, 70 ≤ C < 80, 80 ≤ B < 90, 90 ≤ A ≤ 100

Depending upon the final distribution of grades in the class, there may be a curve in your favor, but
under no circumstances will grades be curved downward.
Grades are given for work done during the semester; incomplete grades will only be given for medical
illness or other dire circumstances.

Due Dates. There will be a homework assignment or programming assignment due every week of class
(except the week after Spring Break). Written homework assignments are due at the beginning of
lecture. Programming assignments and logic simulations are submitted online and are due at 11:59pm of
the due date.

Late Assignments. Assignments turned in one day late (either submitted online or in person) will incur
a 5% penalty. Assignments turned in two days late will be penalized 10%. Those three days late, 15%.
For example, for a programming project due on Tuesday at 11:59pm:

 Submitted: Penalty:
 Tuesday 11:59pm 0%
 Wednesday 11:59pm 5%
 Thursday 11:59pm 10%
 Friday 11:59pm 15%
 after Saturday 12:01am 100%

Late assignments will not be accepted after 3 days. However, each student may submit one assignment
(of any kind) up to one week late without penalty using his/her one time late pass.

Academic Integrity. You are allowed to discuss the homework assignments with other students.
However, circuit simulation exercises and programming projects must be completed by individual effort.
(See the Academic Integrity Policy handout.) Furthermore, you must write up your homework
independently. This means you should only have the textbooks and your own notes in front of you when
you write up your homework — not your friend's notes, your friend's homework or other reference
material. You should not have a copy of someone else's homework or project under any circumstance.
For example, you should not let someone turn in your homework.
The UMBC Undergraduate Student Academic Conduct Policy is available at:
 http://www.umbc.edu/undergrad_ed/ai/documents/ACC2011.pdf

Exams. The midterm exam has been scheduled for Thursday, March 14. The final exam is on Tuesday,
May 21. For Section 01 (TuTh 10am), the time of the final exam is 10:30am – 12:30pm. For Section 02
(TuTh 1pm), the final exam is 1pm – 3pm.

CMSC313 Syllabus
Spring 2013

The following schedule outlines the material to be covered during the semester and specifies the corresponding
sections in the textbooks: Essentials of Computer Organization and Architecture (CO&A), by Null & Lobur and
Assembly Language Step-by-Step (ALSbS), by Dunteman.

 Reading Homework
Date Topic CO&A ALSbS Assign Due
Tue 01/29 Data Representation I 1.1–1.8 HW1

Thu 01/31 Data Representation II 2.1-2.4, 2.6

Tue 02/05 i386 Assembly Language I 4.14 Ch 3-4 HW2 HW1

Thu 02/07 i386 Assembly Language II Ch 5-6

Tue 02/12 i386 Assembly Language III Ch 7-8 Proj1 HW2

Thu 02/14 i386 Assembly Language IV Ch 9

Tue 02/19 A Bigger Example Proj2 Proj1

Thu 02/21 Subroutines Ch 10

Tue 02/26 Interrupts 7.4 Proj3 Proj2

Thu 02/28 C Programming I

Tue 03/05 C Programming II Proj4 Proj3

Thu 03/07 C Programming III

Tue 03/12 C Programming IV Proj4

Thu 03/14 Midterm Exam
Tue 03/19 Spring Break
Thu 03/21 Spring Break
Tue 03/26 C Programming V Proj5

Thu 03/28 C Programming VI

Tue 04/02 C & Assembly Language Ch 12 Proj6 Proj5

Thu 04/04 Function Pointers
Tue 04/09 Polymorphism in C Proj7 Proj6

Thu 04/11 Introduction to Digital Logic 3.1–3.3
Tue 04/16 Transistors & Logic Gates Proj8 Proj7

Thu 04/18 Circuits for Addition 3.4-3.5
Tue 04/23 Flip Flops 3.6 HW3 Proj8
Thu 04/25 Finite State Machines

Tue 04/30 Finite State Machine Design HW4 HW3

Thu 05/02 Towards a CPU

Tue 05/07 Cache & Virtual Memory I 6.1– 6.4 HW5 HW4

Thu 05/09 Cache & Virtual Memory II 6.5

Tue 05/14 Review HW5

Tue 05/21 Final Exam (Section 01 10:30am – 12:30pm, Section 02 1pm – 3pm)

CMSC 313 Academic Integrity Policy
Spring 2013

Critical programming skills cannot be learned by attending lecture. You should budget enough time to
work on the programming assignments as well. Please consult the time table given on the syllabus and
plan ahead. Programs are due by midnight (1 minute after 11:59pm) of the due date. Programs will be
submitted using the submit system running on the GL machines. Programs will be graded on five
criteria: correctness, design, style, documentation and efficiency. So, turning in a project that merely
"works" is not sufficient to receive full credit.
For this course, programming projects must be developed using the NASM assembler for the 32-bit
Linux operating system running on an Intel CPU. This arrangement is not compatible with other flavors
of UNIX, 64-bit Linux, Linux running on non-Intel CPUs or with assemblers for Microsoft Windows.
When in doubt the UMBC machine linux.gl.umbc.edu will be the final arbiter of what constitutes a
working program. You may work on your own machines running Linux, but you will have to be your
own system administrator. None of the instructors, TA or support staff at OIT will be available to help
you install or debug Linux.

Academic Integrity.
Read this section carefully! It describes what constitutes cheating for this course. If you have questions,
ask the instructor. Ignorance will not be accepted as an excuse after the fact.
When you submit your homework and programming assignments, you are stating that the work was
created by your own individual effort.
Receiving help from this class's instructor, teaching assistants or from the Computer Science Help
Center does not violate this academic integrity policy.
You may also receive help from other sources. However, this help must be limited to:

• Discussions about the meaning of the assignment.
• Identifying syntax errors in your program.
• Identifying simple logic errors in your program.

The following is a non-exhaustive list of actions that clearly violate this academic integrity policy:
• Someone else is typing code in your program.
• You are cutting and pasting more than a single line of code (from a program that was not

distributed by the instructor).
• You are looking at someone else's program while you are typing in your code.
• You receive someone else's program by email, hard copy, text message, instant message, ...
• You make your program available to another student in CMSC 313 directly or indirectly by

email, hard copy, text message, instant message, ...
This policy recognizes that students can learn productively from many sources including from other
students in the class. Thus, this policy allows small amounts of help but prohibits outright copying.
Although, this leaves a gray area between "small amounts of help" and "outright copying", it is better
that we live with some ambiguity than to have a clear-cut policy that deprives the students of productive
learning opportunities. Students who have doubts about the propriety of an activity should consult the
instructor.
Students who violate this academic integrity policy will receive a grade of 0 for that assignment. A
second violation will also result in a reduction of one full letter grade in the student's final course grade.

In the case where one student copies the program of another student, both students are considered to
have violated this policy. Here, copying includes not just programs that are verbatim copies, but also
programs that are substantially similar and could not have been produced independently. Furthermore,
all parties concerned will have their prior homework and programs checked.
Violations of this policy may be reported to the University's Academic Conduct Committee for further
action. Egregious cases of cheating will be written up as a "more serious" infraction. In this case, you
will not be allowed to drop the course. Also, a "more serious" infraction would appear as a permanent
part of your student record and would be seen by potential employers when they ask for an official copy
of your transcript.
The UMBC Undergraduate Student Academic Conduct Policy is available at:
 http://www.umbc.edu/undergrad_ed/ai/documents/ACC2011.pdf

ATTENDANCE

ATTENDANCE POLICY

ATTENDANCE POLICY (CONT'D)

LEVELS OF MACHINES

Computer Science View of the World

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

User
1

User
2

User
3

User
n

Application Programs

Operating System

Computer Hardware

 compiler assembler text editor database sys

...

39

•  Each virtual machine
layer is an abstraction of
the level below it.

•  The machines at each
level execute their own
particular instructions,
calling upon machines at
lower levels to perform
tasks as required.

•  Computer circuits
ultimately carry out the
work.

1.6 The Computer Level Hierarchy

40

•  Level 6: The User Level

–  Program execution and user interface level.

–  The level with which we are most familiar.

•  Level 5: High-Level Language Level

–  The level with which we interact when we write
programs in languages such as C, Pascal, Lisp, and
Java.

1.6 The Computer Level Hierarchy

41

•  Level 4: Assembly Language Level

–  Acts upon assembly language produced from
Level 5, as well as instructions programmed
directly at this level.

•  Level 3: System Software Level
–  Controls executing processes on the system.
–  Protects system resources.
–  Assembly language instructions often pass

through Level 3 without modification.

1.6 The Computer Level Hierarchy

42

•  Level 2: Machine Level

–  Also known as the Instruction Set Architecture
(ISA) Level.

–  Consists of instructions that are particular to the
architecture of the machine.

–  Programs written in machine language need no
compilers, interpreters, or assemblers.

1.6 The Computer Level Hierarchy

43

•  Level 1: Control Level
–  A control unit decodes and executes instructions

and moves data through the system.
–  Control units can be microprogrammed or

hardwired.
–  A microprogram is a program written in a low-

level language that is implemented by the
hardware.

–  Hardwired control units consist of hardware that
directly executes machine instructions.

1.6 The Computer Level Hierarchy

44

•  Level 0: Digital Logic Level
–  This level is where we find digital circuits (the

chips).
–  Digital circuits consist of gates and wires.
–  These components implement the mathematical

logic of all other levels.

1.6 The Computer Level Hierarchy

MACHINE MODELS

45

•  On the ENIAC, all programming was done at
the digital logic level.

•  Programming the computer involved moving
plugs and wires.

•  A different hardware configuration was needed
to solve every unique problem type.

1.7 The von Neumann Model

Configuring the ENIAC to solve a �simple� problem
required many days labor by skilled technicians.

46

•  Inventors of the ENIAC, John Mauchley and
J. Presper Eckert, conceived of a computer
that could store instructions in memory.

•  The invention of this idea has since been
ascribed to a mathematician, John von
Neumann, who was a contemporary of
Mauchley and Eckert.

•  Stored-program computers have become
known as von Neumann Architecture systems.

1.7 The von Neumann Model

47

•  Today�s stored-program computers have the
following characteristics:
–  Three hardware systems:

•  A central processing unit (CPU)
•  A main memory system
•  An I/O system

–  The capacity to carry out sequential instruction
processing.

–  A single data path between the CPU and main memory.
•  This single path is known as the von Neumann

bottleneck.

1.7 The von Neumann Model

48

•  This is a general
depiction of a von
Neumann system:

•  These computers
employ a fetch-
decode-execute
cycle to run
programs as
follows . . .

1.7 The von Neumann Model

8

4.3 The Bus

9

•  A multipoint bus is shown below.
•  Because a multipoint bus is a shared resource,

access to it is controlled through protocols, which
are built into the hardware.

4.3 The Bus

FETCH EXECUTE CYCLE

49

•  The control unit fetches the next instruction from memory using
the program counter to determine where the instruction is located.

1.7 The von Neumann Model

50

•  The instruction is decoded into a language that the ALU
can understand.

1.7 The von Neumann Model

51

•  Any data operands required to execute the instruction
are fetched from memory and placed into registers within
the CPU.

1.7 The von Neumann Model

52

•  The ALU executes the instruction and places results in
registers or memory.

1.7 The von Neumann Model

BASE CONVERSION

4

2.1 Introduction

•  A bit is the most basic unit of information in a
computer.
–  It is a state of �on� or �off� in a digital circuit.
–  Sometimes these states are �high� or �low� voltage

instead of �on� or �off..�

•  A byte is a group of eight bits.
–  A byte is the smallest possible addressable unit of

computer storage.
–  The term, �addressable,� means that a particular byte can

be retrieved according to its location in memory.

5

•  A word is a contiguous group of bytes.
–  Words can be any number of bits or bytes.

–  Word sizes of 16, 32, or 64 bits are most common.

–  In a word-addressable system, a word is the smallest
addressable unit of storage.

•  A group of four bits is called a nibble.
–  Bytes, therefore, consist of two nibbles: a �high-order

nibble,� and a �low-order� nibble.

2.1 Introduction

6

2.2 Positional Numbering Systems

•  Bytes store numbers using the position of each
bit to represent a power of 2.
–  The binary system is also called the base-2 system.

–  Our decimal system is the base-10 system. It uses
powers of 10 for each position in a number.

–  Any integer quantity can be represented exactly using any
base (or radix).

7

•  The decimal number 947 in powers of 10 is:

•  The decimal number 5836.47 in powers of 10 is:

5 × 10 3 + 8 × 10 2 + 3 × 10 1 + 6 × 10 0
 + 4 × 10 -1 + 7 × 10 -2

9 × 10 2 + 4 × 10 1 + 7 × 10 0

2.2 Positional Numbering Systems

8

•  The binary number 11001 in powers of 2 is:

•  When the radix of a number is something other
than 10, the base is denoted by a subscript.
–  Sometimes, the subscript 10 is added for emphasis:

 110012 = 2510

 1 × 2 4 + 1 × 2 3 + 0 × 2 2 + 0 × 2 1 + 1 × 2 0

= 16 + 8 + 0 + 0 + 1 = 25

2.2 Positional Numbering Systems

15

•  Converting 190 to base 3...

–  First we take the number
that we wish to convert and
divide it by the radix in
which we want to express
our result.

–  In this case, 3 divides 190
63 times, with a remainder
of 1.

–  Record the quotient and the
remainder.

2.3 Converting Between Bases

16

•  Converting 190 to base 3...

–  63 is evenly divisible by 3.

–  Our remainder is zero, and
the quotient is 21.

2.3 Converting Between Bases

17

•  Converting 190 to base 3...

–  Continue in this way until
the quotient is zero.

–  In the final calculation, we
note that 3 divides 2 zero
times with a remainder of 2.

–  Our result, reading from
bottom to top is:

 19010 = 210013

2.3 Converting Between Bases

22

•  Using the multiplication
method to convert the
decimal 0.8125 to binary,
we multiply by the radix 2.
–  The first product carries

into the units place.

2.3 Converting Between Bases

23

•  Converting 0.8125 to binary . . .

–  Ignoring the value in the units
place at each step, continue
multiplying each fractional part by
the radix.

2.3 Converting Between Bases

24

•  Converting 0.8125 to binary . . .
–  You are finished when the

product is zero, or until you
have reached the desired
number of binary places.

–  Our result, reading from top to
bottom is:

 0.812510 = 0.11012

–  This method also works with
any base. Just use the target
radix as the multiplier.

2.3 Converting Between Bases

Converting Base 6 to Base 10

• 123.456 = ???.???10

1236 = 1 x 3610 + 2 x 610 + 3 x 110 = 5110

0.456 = 4 x 1/610 + 5 x 1/3610 = 0.805555...10

123.456 = 51.805555...10

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Converting Base 10 to Base 6

• 754.9410 = 3254.5 35012 35012 35012...6
75410 = 116 x 2446 + 56 x 146 + 46 x 16 = ???6

754 ÷ 6 = 125 remainder 4

125 ÷ 6 = 20 remainder 5

 20 ÷ 6 = 3 remainder 2

 3 ÷ 6 = 0 remainder 3

32546 = 3 x 21610 + 2 x 3610 + 5 x 610 + 4 x 1 = 75410

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Converting Base 10 to Base 6 (cont)

• 0.9410 = ???.???6

0.94 x 6 = 5.64 --> 5

0.64 x 6 = 3.84 --> 3

0.84 x 6 = 5.04 --> 5

0.04 x 6 = 0.24 --> 0

0.24 x 6 = 1.44 --> 1

0.44 x 6 = 2.64 --> 2

0.64 x 6 = 3.84 --> 3

0.9410 = 0.5 35012 35012 35012...6

5/6 + 3/36 + 5/216 + 0 + 1/65 + 2/66 = 0.939986282...10
UMBC, CMSC313, Richard Chang <chang@umbc.edu>

25

•  The binary numbering system is the most
important radix system for digital computers.

•  However, it is difficult to read long strings of binary
numbers -- and even a modestly-sized decimal
number becomes a very long binary number.
–  For example: 110101000110112 = 1359510

•  For compactness and ease of reading, binary
values are usually expressed using the
hexadecimal, or base-16, numbering system.

2.3 Converting Between Bases

BASES

Decimal Binary Octal Hexadecimal
0 0000! 0 0

1 0001! 1 1

2 0010! 2 2

3 0011! 3 3

4 0100! 4 4

5 0101! 5 5

6 0110! 6 6

7 0111! 7 7

8 1000! 10 8

9 1001! 11 9

10 1010! 12 A

11 1011! 13 B

12 1100! 14 C

13 1101! 15 D

14 1110! 16 E
15 1111! 17 F

26

•  The hexadecimal numbering system uses the
numerals 0 through 9 and the letters A through F.
–  The decimal number 12 is C16.
–  The decimal number 26 is 1A16.

•  It is easy to convert between base 16 and base 2,
because 16 = 24.

•  Thus, to convert from binary to hexadecimal, all
we need to do is group the binary digits into
groups of four.

A group of four binary digits is called a hextet

2.3 Converting Between Bases

27

•  Using groups of hextets, the binary number
110101000110112 (= 1359510) in hexadecimal is:

•  Octal (base 8) values are derived from binary by
using groups of three bits (8 = 23):

Octal was very useful when computers used six-bit words.

If the number of bits is not a
multiple of 4, pad on the left
with zeros.

2.3 Converting Between Bases

NEXT TIME

•  Representing numbers

•  Representing negative numbers

•  Floating point numbers (briefly)

•  Characters and strings

