CMSC 313

COMPUTER ORGANIZATION
&

ASSEMBLY LANGUAGE
PROGRAMMING

LECTURE 27, FALL 2012

ANNOUNCEMENTS

Need student input on Lecturer Search

« Max Morawski

* Lecture 2:30pm — 3:15pm, Fri 12/7, ITE 217
* Meet with students 3:15pm — 3:45pm

* Dr. Pedram Sadeghian

* Lecture 9:30am — 10:15am, Tues 12/11, ITE 217
 Meet with students 10:15am — 10:45am

TOPICS TODAY

* Finish Caching
* Virtual Memory

RECAP CACHING

CACHING

 Why: bridge speed difference between CPU and RAM
 Modern RAM allows blocks of memory to be read quickly

* Principle of locality: temporal and spatial

During each memory access :
« CPU checks if memory location is already in cache
 Found = cache hit:

* read from or write to cache
* Not Found = cache miss:

« Fetch entire memory block of location into cache

CACHE MAPPING SCHEMES

Direct Mapping:

« Each memory block mapped to 1 cache block

« Many memory blocks for each cache block

« Use tag to check if block in cache is the one needed

Fully Associative Mapping:
« Each memory block can be placed in any cache block

« Associative memory finds cache block with tag

Set Associative Mapping:
» Hybrid of direct mapping and fully associative mapping

SET ASSOCIATIVE
MAPPING

6.4 Cache Memory

Set associative cache combines the ideas of direct
mapped cache and fully associative cache.

An N-way set associative cache mapping is like
direct mapped cache in that a memory reference
maps to a particular location in cache.

Unlike direct mapped cache, a memory reference
maps to a set of several cache blocks, similar to the
way in which fully associative cache works.

Instead of mapping anywhere in the entire cache, a
memory reference can map only to the subset of
cache slots.

25 © 2012 Jones & Bartlett Learing, LLC

 The number of cache blocks per set in set associative

6.4 Cache Memory

cache varies according to overall system design.

— For example, a 2-way set associative

. . T:
cache can be conceptualized as shown in 26 Block 0
the schematic below.
. : Tag
— Each set contains two different memory Block 1
blocks.
Tag
Block 2
Tag Tag
Set 0 Block 0 Block 1 Tag
Block 3
Tag Tag
Set 1 Block 2 Block 3 Tag
Block 4
Tag
Set 2 Block 4 Block 5 Tag
Block 5

Logical view

26

Linear view

» Set 0

» Set 1

y Set 2

© 2012 Jones & Bartlett Learning, LLC

www.jblearning.com

6.4 Cache Memory

* |n set associative cache mapping, a memory

reference is divided into three fields: tag, set,
and offset.

* As with direct-mapped cache, the offset field

27

chooses the word within the cache block, and
the tag field uniquely identifies the memory
address.

The set field determines the set to which the
memory block maps.

6.4 Cache Memory

EXAMPLE 6.5 Suppose we are using 2-way set
associative mapping with a word-addressable main

memory of 214 words and a cache with 16 blocks,
where each block contains 8 words.

— Cache has a total of 16 blocks, and each set has 2 blocks,

then there are 8 sets in cache.
— Thus, the set field 1s 3 bits, the offset field 1s 3 bits, and

the tag field 1s 8 bits.

8 bits 3 bits 3 bits
Tag Set Offset
< 14 bits

28

© 2012 Jones & Bartlett Learning, LLC

www.jblearning.com

o~

CACHING POLICIES

« Cache replacement policy

- For fully associative and set associative mapping
- Which cache block gets kicked out?

« Some schemes: first-in first-out, least recently used, ...

« Cache write policy

» Write through: always write to main memory
- Write back: write to main memory when replaced

CACHE PERFORMANCE

6.4 Cache Memory

* The performance of hierarchical memory is
measured by its effective access time (EAT).

 EAT is a weighted average that takes into account
the hit ratio and relative access times of successive
levels of memory.

 The EAT for a two-level memory is given by:
EAT = H x Access + (1-H) x Access, .

where H 1s the cache hit rate and Access and Access,,,, are
the access times for cache and main memory, respectively.

32 i

© 2012 Jones & Bartlett Learning, LLC

www.|Dlearning.com

6.4 Cache Memory

* For example, consider a system with a main
memory access time of 200ns supported by a
cache having a 10ns access time and a hit rate of

99%.

* Suppose access to cache and main memory
occurs concurrently. (The accesses overlap.)

 The EAT is:
0.99(10ns) + 0.01(200ns) = 9.9ns + 2ns = 11ns.

33 © 2012 Jones & Bartlett Learning, LLC
WA earning.com

6.4 Cache Memory

* For example, consider a system with a main memory
access time of 200ns supported by a cache having a
10ns access time and a hit rate of 99%.

 |f the accesses do not overlap, the EAT is:

0.99(10ns) + 0.01(10ns + 200ns)
=9.9ns + 2.01ns = 12ns.
* This equation for determining the effective access

time can be extended to any number of memory
levels, as we will see in later sections.

34 © 2012 Jones & Bartlett Learning, LLC
W\ earning.com

VIRTUAL MEMORY

MEMORY PROBLEMS

Not enough memory

« Many processes ran simultaneously

« Large applications, but most code is unused (MS Word)
Fragmentation

 Processes need contiguous blocks of memory

« Total amount of free memory is sufficient, but largest
block of contiguous memory is too smalli

Unprotected memory
 Many processes ran simultaneously

« "Bad" processes can overwrite other processes' memory

6.5 Virtual Memory

Cache memory enhances performance by providing
faster memory access speed.

Virtual memory enhances performance by providing
greater memory capacity, without the expense of
adding main memory.

Instead, a portion of a disk drive serves as an
extension of main memory.

If a system uses paging, virtual memory partitions
main memory into individually managed page frames,
that are written (or paged) to disk when they are not
Immediately needed.

43 © 2012 Jones & Bartlett Learning, LLC
ww 2 ArNIN« T

6.5 Virtual Memory

A physical address is the actual memory address of
physical memory.

Programs create virtual addresses that are mapped
to physical addresses by the memory manager.

Page faults occur when a logical address requires
that a page be brought in from disk.

Memory fragmentation occurs when the paging
process results in the creation of small, unusable
clusters of memory addresses.

44 © 2012 Jones & Bartlett Learning, LLC
AN o) 8 \r

6.5 Virtual Memory

Main memory and virtual memory are divided into
equal sized pages.

The entire address space required by a process
need not be in memory at once. Some parts can be
on disk, while others are in main memory.

Further, the pages allocated to a process do not
need to be stored contiguously-- either on disk or in
memory.

In this way, only the needed pages are in memory
at any time, the unnecessary pages are in slower
disk storage.

45 © 2012 Jones & Bartlett Learning, LLC

6.5 Virtual Memory

» [nformation concerning the location of each page,
whether on disk or in memory, is maintained in a data
structure called a page table (shown below).

* There is one page table for each active process.

Virtual Memory

46

Physical Memory

0

1

2

Page

NOoO Ok~ WN—=-O

Page Table
Frame # Valid Bit
2 1
: 0
. 0
0 1
1 1
. 0
- 0
3 1

© 2012 Jones & Bartlett Learning, LLC
www.jblearning.com

6.5 Virtual Memory

When a process generates a virtual address, the
operating system translates it into a physical
memory address.

To accomplish this, the virtual address is divided
into two fields: A page field, and an offset field.
The page field determines the page location of the
address, and the offset indicates the location of the
address within the page.

The logical page number is translated into a

physical page frame through a lookup in the page
table.

47 © 2012 Jones & Bartlett Learning, LLC
AN o 8 \r

6.5 Virtual Memory

+ If the valid bit is zero in the page table entry for the
logical address, this means that the page is not in
memory and must be fetched from disk.

— This 1s a page fault.

— If necessary, a page 1s evicted from memory and is replaced
by the page retrieved from disk, and the valid bit 1s set to 1.

 If the valid bit is 1, the virtual page number is
replaced by the physical frame number.

 The data is then accessed by adding the offset to the
physical frame number.

—~

© 2012 Jones & Bartlett Learning, LLC

www.|Dlearning.com

6.5 Virtual Memory

* As an example, suppose a system has a virtual address
space of 8K and a physical address space of 4K, and the
system uses byte addressing.

— We have 213/219 = 23 virtual pages.

« A virtual address has 13 bits (8K = 2'3) with 3 bits for the page
field and 10 for the offset, because the page size is 1024.

* A physical memory address requires 12 bits, the first two bits
for the page frame and the trailing 10 bits the offset.

Virtual Address 13
A

(

Page Offset
L JL
Y Y
3 10

49

Physical Address 1o
A
(A
Frame Offset
L L y
Y Y
2 10

© 2012 Jones & Bartlett Learning, LLC

www.jblearning.com

6.5 Virtual Memory

Suppose we have the page table shown below.

What happens when CPU generates address 5459,
=1010101010011,= 1553 ,4?

Page Table
Valid
page Frame Bit Addresses

0 = 0 Page Base 10 Base 16
1 3 1 0 : 0 - 1023 0 - 3FF
5 0 1 1 : 1024 - 2047 400 - 7/FF
3 m 0 2 2048 - 3071 800 - BFF

3 3072 - 4095 c00 - FFF
: - 0 4 : 4096 - 5119 1000 - 13FF
5 i] 5 5120 - 6143 1400 - 17FF
6 2 1 6 6144 - 7167 1800 - 1BFF
7 = 0 7 7168 - 8191 1c00 - 1FFF

50 © 2012 Jones & Bartlett Learning, LLC
www.jblearning.com

6.5 Virtual Memory

» What happens when CPU generates address 5459,
=1010101010011,= 1553 ,4?

Virtual Address 13

(h
Page Offset
L L J
Y Y
3 10

The high-order 3 bits of the virtual address, 101
(510), provide the page number in the page table.

51 © 2012 Jones & Bartlett Learning, LLC

'l'l‘n'l"/'\'.] C’ earni Y‘Lg .com

6.5 Virtual Memory

* The address 1010101010011, is converted to
physical address 010101010011, = 1363, because
the page field 101 is replaced by frame number 01
through a lookup in the page table.

Page Table
Valid
page Frame Bit Addresses
0 = 0 Page Base 10 Base 16
1 3 1 0 : 0 - 1023 0 - 3FF
5 0 1 1 : 1024 - 2047 400 - JFF
3 = 0 2 : 2048 - 3071 800 - BFF
) 3 : 3072 - 4095 c00 - FFF
4 = 0 4 : 4096 - 5119 1000 - 13FF
5 1 1 5 : 5120 - 6143 1400 - 17FF
6 7 1 6 : 6144 - 7167 1800 - 1BFF
7 - 0 7 : 7168 - 8191 1c00 - 1FFF

52 © 2012 Jones & Bartlett Learning, LLC
www.jblearning.com

6.5 Virtual Memory

« What happens when the CPU generates address

1000000000100,
Page Table
Valid
Page Frame Bit
0 - 0
1 3 1
2 0 1
3 - 0
4 —~ 0
5 1 1
6 2 1
7 = 0

53

Page
0

~ Oy Ul s W N

Addresses

Base 10
0 1023 0
1024 2047 400
2048 3071 800
3072 4095 c00
4096 5119 1000
5120 6143 1400
6144 7167 1800
7168 8191 1C00

Base 16

- 3FF
- JFF
- BFF
- FFF
- 13FF
- 17FF
- 1BFF
- 1FFF

© 2012 Jones & Bartlett Learning, LLC

www.jblearning.com

6.5 Virtual Memory

* We said earlier that effective access time (EAT) takes
all levels of memory into consideration.

* Thus, virtual memory is also a factor in the
calculation, and we also have to consider page table
access time.

« Suppose a main memory access takes 200ns, the
page fault rate is 1%, and it takes 10ms to load a
page from disk. We have:

EAT = 0.99(200ns + 200ns) 0.01(10ms) = 100, 396ns.

54 © 2012 Jones & Bartlett Learing, LLC

6.5 Virtual Memory

« Even if we had no page faults, the EAT would be
400ns because memory is always read twice: First to

access the page table, and second to load the page
from memory.

» Because page tables are read constantly, it makes
sense to keep them in a special cache called a
translation look-aside buffer (TLB).

 TLBs are a special associative cache that stores the
mapping of virtual pages to physical pages.

The next slide shows address lookup
steps when a TLB is involved.

55 © 2012 Jones & Bartlett Learning, LLC

TLB lookup process

Virtual Address

1. Extract the page number from
the virtual address.

2. Extract the offset from the virtual
address.

3. Search for the virtual page number
in the TLB.

4. If the (virtual page #, page frame #)
pair is found in the TLB, add the offset
to the physical frame number and
access the memory location.

5. If there is a TLB miss, go to the
page table to get the necessary frame
number.

If the page is in memory, use the
corresponding frame number and add
the offset to yield the physical address.

6. If the page is not in main memory,
generate a page fault and restart the
access when the page fault is
complete.

56

Page Offset
TLB
Frame # Page #
L—> TLB Hit
Main Memory
\\
Update / \) 4 h 4
s, Frame Offset
A
Physical Address
Page Table
s Physical
Memory
>
>
’/v\‘
Update : Update * Load Page in
Page TLB * Physical Memory
Table »
=
> Bl
Page Fault Secondary
(Needs OS Intervention) Memory

© 2012 Jones & Bartlett Learning, LLC
www.jblearning.com

Putting it all together: 6.5 Virtual Memory
The TLB, Page Table,

and Main Memory [CPU generates virtual address
l Page] Offset I

Is page
table entry
for P in

Yes (Now have frame.)

|Frame| Offset |

Use P as index
into page table

Yes (Now have frame)

Is block Yes

in cache?

Update TLB

'

[F r;*.:nel Offset]

[Read page from disk]

[Update Cache}
Transfer P
(Updaf TLB] into memory
Find victim
No Is back to disk
memory
full? l,
Overwrite victim page
—[Update page tableJ({ ittt page?Pg]
57 © 2012 Jones & Bartlett Learning, LLC

www.jblearning.com

VIRTUAL MEMORY
IN
LINUX

Linux Virtual Memory Space

» Linux reserves 1 Gig

memory in the virtual 3Gig
address space Linux |
Kernel
» The size of the Linux 4 Gig - RAM
kernel significantly affects 0
its performance Task ‘
(swapping is expensive) #2 -
> Linux kernel can be 3 CGig " Paging
customized by including 0 - System
only relevant modules ngk 5 -
»Designating kernel space 3 Gig
facilitates protection of 0o """
» The portion of disk used Task _
for paging is called the L
swap space 3 Gig
/N

(oot S B ey

%" Mohamed Younis CMCS 313, Computer Organization and Assembly Language 7

Virtual Addressing

Virtual address

3130292827 ..ttt 15141312 111098 3210

Virtual page number Page offset

292827 ..o eeeenn. 15141312 111098 o R 3210

Physical page number Page offset

Physical address

d Page faults are costly and take millions of cycles to process (disks are slow)

1 80386 Page attributes:

= R\W: read and write permission
= US: User mode or kernel mode only access
= PP: present bit to indicate where the page is
31 12 11 210

Address of Page

%" Mohamed Younis CMCS 313, Computer Organization and Assembly Language 9

Richard Chang
12 bit offset => 4k pages
20 bits virtual page #
 => 2^20 = 1 M of pages

4 bytes per entry in the page table => 4 MB to store the complete page table.

That's 4MB per process (!!!), since each process has its own page table.

Page Table

Hardware Supported ' Page table register
Virtual address
Paqe table. 31 30 29 28 27 cevcccercnnnaeennn 1514131211109 8 «+---- 3210
* ReSideS in main memory Virtual page number Page offset
. 20 12
* One entry per virtual page T T
‘Valid Physical page number

% No tag is requires since it !

covers all virtual pages
% Point directly to physical page |

(] ®
% Table can be very large
Page table

% Operating sys. may maintain

one page table per process E]
% A dirty bit is used to track vl

: v J18

modified pages for copy back If0 then page is not A

present in memory

Indicates whether the .~ 29 28 27 errrireiniininns l-o- 151413 12111098-]--- 3210
virtual page is in
main memory or not

/2

ot e el Dy

%" Mohamed Younis CMCS 313, Computer Organization and Assembly Language 10

Physical page number Page offset

Physical address

Richard Chang

Richard Chang
12 bit page offset => 4 kbyte page size
20 bit virtual page number
 => 2^20 = 1 MB of pages

4 bytes per entry in the table
 => 4 MB to store the page table

That's 4MB per process (!!!), since each process has its own page table.

This is silly since most processes won't use 4GigB of memory, so do not need 1M page table entries.

Linux 2-Level Page Table

Table |

1024 Page Tables

1024 1024 1024
pages pages pages

» The CR3 register is designated for pointing to the first level page table
»The CR3 is part of the task state that needs to be saved at preemption
31 22 21 12 11 0

Index into Index into
Page Table Table Page Table

Index into Page

/2

ot e el Dy

%" Mohamed Younis CMCS 313, Computer Organization and Assembly Language 11

Richard Chang
The Page Table Table uses 4kbytes of memory. It has 1024 entries, each taking 4 bytes.

The page tables also take 4kbytes.

This is convenient, why??

Ans: unused page tables can be swapped out to disk.

3.7.1. Linear Address Translation (4-KByte Pages)

Figure 3-12 shows the page directory and page-table hierarchy when mapping linear addresses
to 4-KByte pages. The entries in the page directory point to page tables, and the entries in a page
table point to pages in physical memory. This paging method can be used to address up to 2%
pages, which spans a linear address space of 2°? bytes (4 GBytes).

Linear Address
31 22 21 12 11 0
Directory Table Offset

12 4-KByte Page

Page Table Physical Address

10 10
Page Directory

\i

Page-Table Entr
g y 20

Directory Entry >

=
’
L
’
*

32
CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary.

1024 PDE * 1024 PTE = 22 Pages

Figure 3-12. Linear Address Translation (4-KByte Pages)

Page-Directory Entry (4-KByte Page Table)

31 1211 9876543210
P|P|U|R
Page-Table Base Address Avail |G g O|A|C|W|/|I|P
D|T|S|W
Available for system programmer’s use J ‘
Global page (Ignored)
Page size (0 indicates 4 KBytes)
Reserved (set to 0)
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present
Page-Table Entry (4-KByte Page)
31 1211 9876543210
P P|P|U|R
Page Base Address Avail |G|A[D|A|C|W|/]|/]|P
T D|T|S|W

Global Page
Page Table Attribute Index
Dirty
Accessed
Cache Disabled
Write-Through
User/Supervisor
Read/Write
Present

Available for system programmer’s use J ‘

Figure 3-14. Format of Page-Directory and Page-Table Entries for 4-KByte Pages
and 32-Bit Physical Addresses

Richard Chang

Richard Chang

Richard Chang

Richard Chang

Richard Chang

Richard Chang

Virtual Memory: Problems Solved

* Not enough physical memory

o Uses disk space to simulate extra memory

> Pages not being used can be swapped out
(how and when you’ll learn in CMSC 421 Operating Systems)

o Thrashing: pages constantly written to and retrieved from disk
(ime to buy more RAM)

* Fragmentation

~ Contiguous blocks of virtual memory do not have to map to
contiguous sections of real memory

* Memory protection

- Each process has its own page table
- Shared pages are read-only

> User processes cannot alter the page table (must be supervisor)

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Memory Protection

* Prevents one process from reading from or writing
to memory used by another process

* Privacy in a multiple user environments
e Operating system stability

> Prevents user processes (applications) from altering memory used by
the operating system

- One application crashing does not cause the entire OS to crash

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Virtual Memory: too slow?

e Address translation is done in hardware

In the middle of the fetch execute cycle for:
MOV EAX, [buffer]

the physical address of buffer is computed in hardware.

e Recently computed page locations are cached in
the translation lookaside buffer (TLB)

e Page faults are very expensive (millions of cycles)

e Operating systems for personal computers have
only-recently added memory protection

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Richard Chang

NEXT TIME

* Review

