
CMSC 313
COMPUTER ORGANIZATION
&
ASSEMBLY LANGUAGE
PROGRAMMING

LECTURE 26, FALL 2012

TOPICS TODAY

•  Homework 5

•  RAM in Circuits

•  Memory Hierarchy

•  Storage Technologies (RAM & Disk)

•  Caching

HOMEWORK 5

RAM IN CIRCUITS

MEMORY HIERARCHY

7

•  This storage organization can be thought of as a pyramid:
6.3 The Memory Hierarchy

STORAGE
TECHNOLOGIES

– 2 –" Dennis Frey, CMSC313-F’09"

Random-Access Memory (RAM)"
Key features"

  RAM is packaged as a chip."
  Basic storage unit is a cell (one bit per cell)."
  Multiple RAM chips form a memory."

Static RAM (SRAM)"
  Each cell stores bit with a six-transistor circuit."
  Retains value indefinitely, as long as it is kept powered."
  Relatively insensitive to disturbances such as electrical noise."
  Faster and more expensive than DRAM."

Dynamic RAM (DRAM)"
  Each cell stores bit with a capacitor and transistor."
  Value must be refreshed every 10-100 ms."
  Sensitive to disturbances."
  Slower and cheaper than SRAM."

– 3 –" Dennis Frey, CMSC313-F’09"

Conventional DRAM Organization"
d x w DRAM:"

  dw total bits organized as d supercells of size w bits"

cols"

rows"

0" 1" 2" 3"

0"

1"

2"

3"

internal row buffer"

16 x 8 DRAM chip"

addr

data

supercell"
(2,1)"

2 bits"
/"

8 bits"
/"

memory"
controller"

(to CPU)"

– 4 –" Dennis Frey, CMSC313-F’09"

Reading DRAM Supercell (2,1)"
Step 1(a): Row access strobe (RAS) selects row 2."

cols"

rows"

RAS = 2
0" 1" 2" 3"

0"

1"

2"

internal row buffer"

16 x 8 DRAM chip"

3"

addr

data

2"
/"

8"
/"

memory"
controller"

Step 1(b): Row 2 copied from DRAM array to row buffer."

– 5 –" Dennis Frey, CMSC313-F’09"

Reading DRAM Supercell (2,1)"
Step 2(a): Column access strobe (CAS) selects column 1."

internal buffer"

cols"

rows"

0" 1" 2" 3"

0"

1"

2"

3"

internal row buffer"

16 x 8 DRAM chip"

CAS = 1

addr

data

2"
/"

8"
/"

memory"
controller"

Step 2(b): Supercell (2,1) copied from buffer to data lines,
and eventually back to the CPU."

supercell "
(2,1)"

supercell "
(2,1)"

To CPU"

– 6 –" Dennis Frey, CMSC313-F’09"

Memory Modules"

: supercell (i,j)"

64 MB "
memory module"
consisting of"
eight 8Mx8 DRAMs"

addr (row = i, col = j)

Memory"
controller"

DRAM 7"

DRAM 0"

0"31" 7"8"15"16"23"24"32"63" 39"40"47"48"55"56"

64-bit doubleword at main memory address A!

bits"
0-7"

bits"
8-15"

bits"
16-23"

bits"
24-31"

bits"
32-39"

bits"
40-47"

bits"
48-55"

bits"
56-63"

64-bit doubleword"

0"31" 7"8"15"16"23"24"32"63" 39"40"47"48"55"56"

64-bit doubleword at main memory address A!

– 7 –" Dennis Frey, CMSC313-F’09"

Nonvolatile Memories"
DRAM and SRAM are volatile memories"

  Lose information if powered off."

Nonvolatile memories retain value even if powered off."
  Generic name is read-only memory (ROM)."
  Misleading because some ROMs can be read and modified."

Types of ROMs"
  Programmable ROM (PROM)"
  Eraseable programmable ROM (EPROM)"
  Electrically eraseable PROM (EEPROM)"
  Flash memory"

Firmware"
  Program stored in a ROM"

  Boot time code, BIOS (basic input/ouput system)"
  graphics cards, disk controllers."

"

– 8 –" Dennis Frey, CMSC313-F’09"

Typical Bus Structure Connecting  
CPU and Memory"
A bus is a collection of parallel wires that carry

address, data, and control signals."
Buses are typically shared by multiple devices."

main"
memory"

I/O "
bridge"bus interface"

ALU"

register file"

CPU chip"

system bus" memory bus"

– 9 –" Dennis Frey, CMSC313-F’09"

Memory Read Transaction (1)"
CPU places address A on the memory bus."

 "
"

ALU"

register file"

bus interface"
A! 0"

A"x"

main memory"
I/O bridge"

%eax"

Load operation: movl A, %eax!
"

– 10 –" Dennis Frey, CMSC313-F’09"

Memory Read Transaction (2)"
Main memory reads A from the memory bus, retrieves

word x, and places it on the bus."

ALU"

register file"

bus interface"

x! 0"

A"x"

main memory"

%eax"

I/O bridge"

Load operation: movl A, %eax!
"

– 11 –" Dennis Frey, CMSC313-F’09"

Memory Read Transaction (3)"
CPU reads word x from the bus and copies it into

register %eax."

x"
ALU"

register file"

bus interface" x"

main memory"
0"

A"

%eax"

I/O bridge"

Load operation: movl A, %eax!
"

– 12 –" Dennis Frey, CMSC313-F’09"

Memory Write Transaction (1)"
 CPU places address A on bus. Main memory reads it

and waits for the corresponding data word to arrive."

y"
ALU"

register file"

bus interface"
A!

main memory"
0"

A"

%eax"

I/O bridge"

Store operation: movl %eax, A!
"

– 13 –" Dennis Frey, CMSC313-F’09"

Memory Write Transaction (2)"
 CPU places data word y on the bus."

y"
ALU"

register file"

bus interface"
y!

main memory"
0"

A"

%eax"

I/O bridge"

Store operation: movl %eax, A!
"

– 14 –" Dennis Frey, CMSC313-F’09"

Memory Write Transaction (3)"
 Main memory reads data word y from the bus and

stores it at address A."

y"
ALU"

register file"

bus interface" y"

main memory"
0"

A"

%eax"

I/O bridge"

Store operation: movl %eax, A!
"

– 15 –" Dennis Frey, CMSC313-F’09"

Disk Geometry"
Disks consist of platters, each with two surfaces."
Each surface consists of concentric rings called tracks."
Each track consists of sectors separated by gaps."

spindle"

surface"
tracks"

track k!

sectors"

gaps"

– 16 –" Dennis Frey, CMSC313-F’09"

Disk Geometry (Muliple-Platter View)"
 Aligned tracks form a cylinder."

surface 0"
surface 1"
surface 2"
surface 3"
surface 4"
surface 5"

cylinder k

spindle"

platter 0"

platter 1"

platter 2"

– 17 –" Dennis Frey, CMSC313-F’09"

Disk Capacity"
Capacity: maximum number of bits that can be stored."

  Vendors express capacity in units of gigabytes (GB),  
where 1 GB = 10^9 bytes. "

Capacity is determined by these technology factors:"
  Recording density (bits/in): number of bits that can be squeezed

into a 1 inch segment of a track."
  Track density (tracks/in): number of tracks that can be squeezed

into a 1 inch radial segment."
  Areal density (bits/in2): product of recording and track density."

Modern disks partition tracks into disjoint subsets called 
recording zones ""
  Each track in a zone has the same number of sectors, determined

by the circumference of innermost track."
  Each zone has a different number of sectors/track " "

""

– 18 –" Dennis Frey, CMSC313-F’09"

 Computing Disk Capacity"
Capacity = "(# bytes/sector) x (avg. # sectors/track) x"
" " "(# tracks/surface) x (# surfaces/platter) x"

 " " "(# platters/disk)"
Example:"

  512 bytes/sector"
  300 sectors/track (on average)"
  20,000 tracks/surface"
  2 surfaces/platter"
  5 platters/disk"

Capacity = 512 x 300 x 20000 x 2 x 5"
" " = 30,720,000,000"

 = 30.72 GB "

– 19 –" Dennis Frey, CMSC313-F’09"

Disk Operation (Single-Platter View)"
 "

The disk
surface "
spins at a fixed"
rotational rate"

spindle"

By moving radially, the arm
can position the read/write
head over any track."

The read/write head!
is attached to the end"
of the arm and flies over"
 the disk surface on"
a thin cushion of air."

spindle"

spindle"

sp
in

dl
e"
spindle"

– 20 –" Dennis Frey, CMSC313-F’09"

Disk Operation (Multi-Platter View)"
 "

arm"

read/write heads "
move in unison"

from cylinder to cylinder"

spindle"

– 21 –" Dennis Frey, CMSC313-F’09"

Disk Access Time"
Average time to access some target sector

approximated by :"
  Taccess = Tavg seek + Tavg rotation + Tavg transfer "

Seek time (Tavg seek)"
  Time to position heads over cylinder containing target

sector."
  Typical Tavg seek = 9 ms"

Rotational latency (Tavg rotation)"
  Time waiting for first bit of target sector to pass under  

read/write head."
  Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min"

Transfer time (Tavg transfer)""
  Time to read the bits in the target sector."
  Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min."

– 22 –" Dennis Frey, CMSC313-F’09"

Disk Access Time Example"
Given:"

  Rotational rate = 7,200 RPM"
  Average seek time = 9 ms."
  Avg # sectors/track = 400."

Derived:"
  Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms."
  Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec =

0.02 ms"
  Taccess = 9 ms + 4 ms + 0.02 ms"

Important points:"
  Access time dominated by seek time and rotational latency."
  First bit in a sector is the most expensive, the rest are free."
  SRAM access time is about 4 ns/doubleword, DRAM about 60 ns"

  Disk is about 40,000 times slower than SRAM, "
  2,500 times slower then DRAM."

– 23 –" Dennis Frey, CMSC313-F’09"

Logical Disk Blocks"
Modern disks present a simpler abstract view of the

complex sector geometry:"
  The set of available sectors is modeled as a sequence of b-

sized logical blocks (0, 1, 2, ...)"

Mapping between logical blocks and actual (physical)
sectors"
  Maintained by hardware/firmware device called disk

controller."
  Converts requests for logical blocks into

(surface,track,sector) triples."

Allows controller to set aside spare cylinders for each
zone."
  Accounts for the difference in “formatted capacity” and

“maximum capacity”. "

"

– 24 –" Dennis Frey, CMSC313-F’09"

I/O Bus"

main"
memory"

I/O "
bridge"bus interface"

ALU"

register file"
CPU chip"

system bus" memory bus"

disk "
controller"

graphics"
adapter"

USB"
controller"

mouse"keyboard" monitor"
disk"

I/O bus" Expansion slots for"
other devices such"
as network adapters."
"

– 25 –" Dennis Frey, CMSC313-F’09"

Reading a Disk Sector (1)"
 "

main"
memory"

ALU"

register file"
CPU chip"

disk "
controller"

graphics"
adapter"

USB"
controller"

mouse"keyboard" monitor"
disk"

I/O bus"

bus interface"

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
(address) associated with disk controller."

– 26 –" Dennis Frey, CMSC313-F’09"

Reading a Disk Sector (2)"

main"
memory"

ALU"

register file"
CPU chip"

disk "
controller"

graphics"
adapter"

USB"
controller"

mouse"keyboard" monitor"
disk"

I/O bus"

bus interface"

Disk controller reads the sector and
performs a direct memory access (DMA)
transfer into main memory."

– 27 –" Dennis Frey, CMSC313-F’09"

Reading a Disk Sector (3)"

main"
memory"

ALU"

register file"
CPU chip"

disk "
controller"

graphics"
adapter"

USB"
controller"

mouse"keyboard" monitor"
disk"

I/O bus"

bus interface"

When the DMA transfer completes, the
disk controller notifies the CPU with an
interrupt (i.e., asserts a special “interrupt”
pin on the CPU)"

CACHING

– 28 –" Dennis Frey, CMSC313-F’09"

Locality"
Principle of Locality:"

  Programs tend to reuse data and instructions near those
they have used recently, or that were recently referenced
themselves."

  Temporal locality: Recently referenced items are likely to be
referenced in the near future."

  Spatial locality: Items with nearby addresses tend to be
referenced close together in time."

Locality Example:"
•  Data"

– Reference array elements in succession
(stride-1 reference pattern):"

– Reference sum each iteration:"
•  Instructions"

– Reference instructions in sequence:"
– Cycle through loop repeatedly: "

sum = 0;
for (i = 0; i < n; i++)

 sum += a[i];
return sum;

Spatial locality"

Spatial locality"
Temporal locality"

Temporal locality"

– 29 –" Dennis Frey, CMSC313-F’09"

Locality Example"
Claim: Being able to look at code and get a qualitative

sense of its locality is a key skill for a professional
programmer."

"
Question: Does this function have good locality?"

int sumarrayrows(int a[M][N])
{
 int i, j, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];
 return sum
}

– 30 –" Dennis Frey, CMSC313-F’09"

Locality Example"
Question: Does this function have good locality?"

int sumarraycols(int a[M][N])
{
 int i, j, sum = 0;

 for (j = 0; j < N; j++)
 for (i = 0; i < M; i++)
 sum += a[i][j];
 return sum
}

– 31 –" Dennis Frey, CMSC313-F’09"

Locality Example"
Question: Can you permute the loops so that the

function scans the 3-d array a[] with a stride-1
reference pattern (and thus has good spatial
locality)?"

int sumarray3d(int a[M][N][N])
{
 int i, j, k, sum = 0;

 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < M; k++)
 sum += a[k][i][j];
 return sum
}

– 32 –" Dennis Frey, CMSC313-F’09"

Memory Hierarchies"
Some fundamental and enduring properties of hardware

and software:"
  Fast storage technologies cost more per byte and have less

capacity. "
  The gap between CPU and main memory speed is widening."
  Well-written programs tend to exhibit good locality."

These fundamental properties complement each other
beautifully."

"

They suggest an approach for organizing memory and
storage systems known as a memory hierarchy."

– 33 –" Dennis Frey, CMSC313-F’09"

An Example Memory Hierarchy"

registers"

on-chip L1"
cache (SRAM)"

main memory"
(DRAM)"

local secondary storage"
(local disks)"

Larger, "
slower, "

and "
cheaper "

(per byte)"
storage"
devices"

remote secondary storage"
(distributed file systems, Web servers)"

Local disks hold files
retrieved from disks on
remote network servers."

Main memory holds disk "
blocks retrieved from local "
disks."

off-chip L2"
cache (SRAM)"

L1 cache holds cache lines retrieved
from the L2 cache memory."

CPU registers hold words retrieved
from L1 cache."

L2 cache holds cache lines
retrieved from main memory."

L0:"

L1:"

L2:"

L3:"

L4:"

L5:"

Smaller,"
faster,"

and "
costlier"

(per byte)"
storage "
devices"

– 34 –" Dennis Frey, CMSC313-F’09"

Caches"
Cache: A smaller, faster storage device that acts as a

staging area for a subset of the data in a larger,
slower device."

Fundamental idea of a memory hierarchy:"
  For each k, the faster, smaller device at level k serves as a

cache for the larger, slower device at level k+1."

Why do memory hierarchies work?"
  Programs tend to access the data at level k more often than

they access the data at level k+1. "
  Thus, the storage at level k+1 can be slower, and thus larger

and cheaper per bit."
  Net effect: A large pool of memory that costs as much as

the cheap storage near the bottom, but that serves data to
programs at the rate of the fast storage near the top."

"

– 35 –" Dennis Frey, CMSC313-F’09"

Caching in a Memory Hierarchy"

0" 1" 2" 3"

4" 5" 6" 7"

8" 9" 10" 11"

12" 13" 14" 15"

Larger, slower, cheaper storage"
device at level k+1 is partitioned"
into blocks."

Data is copied between"
levels in block-sized transfer
units"

8" 9" 14" 3"
Smaller, faster, more expensive"
device at level k caches a "
subset of the blocks from level k+1"

Level k:"

Level k+1:" 4"

4"

4" 10"

10"

10"

– 36 –" Dennis Frey, CMSC313-F’09"

Request"
14"

Request"
12"

General Caching Concepts"
Program needs object d, which is stored

in some block b."
Cache hit"

  Program finds b in the cache at level
k. E.g., block 14."

Cache miss"
  b is not at level k, so level k cache

must fetch it from level k+1.
E.g., block 12."

  If level k cache is full, then some
current block must be replaced
(evicted). Which one is the “victim”? "
  Placement policy: where can the new

block go? E.g., b mod 4"
  Replacement policy: which block

should be evicted? E.g., LRU"

9" 3"

0" 1" 2" 3"
4" 5" 6" 7"
8" 9" 10" 11"

12" 13" 14" 15"

Level"
 k:"

Level "
k+1:"

14"14"

12"

14"

4*"

4*"12"

12"

0" 1" 2" 3"

Request"
12"

4*"4*"12"

– 37 –" Dennis Frey, CMSC313-F’09"

General Caching Concepts"
Types of cache misses:"

  Cold (compulsary) miss"
  Cold misses occur because the cache is empty."

  Conflict miss"
  Most caches limit blocks at level k+1 to a small subset

(sometimes a singleton) of the block positions at level k."
  E.g. Block i at level k+1 must be placed in block (i mod 4) at

level k+1."
  Conflict misses occur when the level k cache is large enough,

but multiple data objects all map to the same level k block."
  E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time."

  Capacity miss"
  Occurs when the set of active cache blocks (working set) is

larger than the cache."

– 38 –" Dennis Frey, CMSC313-F’09"

Examples of Caching in the Hierarchy"

Hardware"0"On-Chip TLB"Address
translations"

TLB"

Web
browser"

10,000,000"Local disk"Web pages"Browser cache"

Web cache"

Network buffer
cache"

Buffer cache"

Virtual Memory"
L2 cache"
L1 cache"

Registers"

Cache Type"

Web pages"

Parts of files"
Parts of files"

4-KB page"
32-byte block"
32-byte block"

4-byte word"

What Cached"

Web proxy
server"

1,000,000,000"Remote server
disks"

OS"100"Main memory"

Hardware"1"On-Chip L1"
Hardware"10"Off-Chip L2"

AFS/NFS
client"

10,000,000"Local disk"

Hardware
+OS"

100"Main memory"

Compiler"0" CPU registers"

Managed
By"

Latency
(cycles)"

Where Cached"

DIRECT MAPPING

12

6.4 Cache Memory

•  The purpose of cache memory is to speed up
accesses by storing recently used data closer to the
CPU, instead of storing it in main memory.

•  Although cache is much smaller than main memory,
its access time is a fraction of that of main memory.

•  Unlike main memory, which is accessed by address,
cache is typically accessed by content; hence, it is
often called content addressable memory.

•  Because of this, a single large cache memory isn�t
always desirable-- it takes longer to search.

13

•  The �content� that is addressed in content addressable
cache memory is a subset of the bits of a main memory
address called a field.
–  Many blocks of main memory map to a single block of

cache. A tag field in the cache block distinguishes one
cached memory block from another.

–  A valid bit indicates whether the cache block is being used.
–  An offset field points to the desired data in the block.

6.4 Cache Memory

14

•  The simplest cache mapping scheme is
direct mapped cache.

•  In a direct mapped cache consisting of N
blocks of cache, block X of main memory
maps to cache block Y = X mod N.

•  Thus, if we have 10 blocks of cache, block 7
of cache may hold blocks 7, 17, 27, 37, . . .
of main memory.

The next slide illustrates this mapping.

6.4 Cache Memory

15

6.4 Cache Memory

•  With direct
mapped cache
consisting of N
blocks of cache,
block X of main
memory maps to
cache block Y =
X mod N.

16

•  EXAMPLE 6.1 Consider a word-addressable main
memory consisting of four blocks, and a cache with
two blocks, where each block is 4 words.

•  This means Block 0 and 2 of main memory map to
Block 0 of cache, and Blocks 1 and 3 of main
memory map to Block 1 of cache.

•  Using the tag, block, and offset fields, we can see
how main memory maps to cache as follows.

6.4 Cache Memory

17

•  EXAMPLE 6.1 Consider a word-addressable main
memory consisting of four blocks, and a cache with two
blocks, where each block is 4 words.
–  First, we need to determine the address format for mapping.

Each block is 4 words, so the offset field must contain 2 bits;
there are 2 blocks in cache, so the block field must contain 1 bit;
this leaves 1 bit for the tag (as a main memory address has 4 bits
because there are a total of 24=16 words).

6.4 Cache Memory

18

•  EXAMPLE 6.1 Cont'd
–  Suppose we need to access

main memory address 316 (0011
in binary). If we partition 0011
using the address format from
Figure a, we get Figure b.

–  Thus, the main memory address
0011 maps to cache block 0.

–  Figure c shows this mapping,
along with the tag that is also
stored with the data.

6.4 Cache Memory

a

b

The next slide illustrates
another mapping.

c

19

6.4 Cache Memory

20

•  EXAMPLE 6.2 Assume a byte-addressable memory
consists of 214 bytes, cache has 16 blocks, and each
block has 8 bytes.
–  The number of memory blocks are:
–  Each main memory address requires14 bits. Of this 14-bit address

field, the rightmost 3 bits reflect the offset field
–  We need 4 bits to select a specific block in cache, so the block

field consists of the middle 4 bits.
–  The remaining 7 bits make up the tag field.

6.4 Cache Memory

21

•  In summary, direct mapped cache maps main
memory blocks in a modular fashion to cache
blocks. The mapping depends on:

•  The number of bits in the main memory address
(how many addresses exist in main memory)

•  The number of blocks are in cache (which
determines the size of the block field)

•  How many addresses (either bytes or words) are
in a block (which determines the size of the
offset field)

6.4 Cache Memory

FULLY ASSOCIATIVE
MAPPING

22

•  Suppose instead of placing memory blocks in
specific cache locations based on memory
address, we could allow a block to go anywhere
in cache.

•  In this way, cache would have to fill up before
any blocks are evicted.

•  This is how fully associative cache works.

•  A memory address is partitioned into only two
fields: the tag and the word.

6.4 Cache Memory

23

•  Suppose, as before, we have 14-bit memory
addresses and a cache with 16 blocks, each block
of size 8. The field format of a memory reference
is:

•  When the cache is searched, all tags are searched
in parallel to retrieve the data quickly.

•  This requires special, costly hardware.

6.4 Cache Memory

SET ASSOCIATIVE
MAPPING

25

•  Set associative cache combines the ideas of direct
mapped cache and fully associative cache.

•  An N-way set associative cache mapping is like
direct mapped cache in that a memory reference
maps to a particular location in cache.

•  Unlike direct mapped cache, a memory reference
maps to a set of several cache blocks, similar to the
way in which fully associative cache works.

•  Instead of mapping anywhere in the entire cache, a
memory reference can map only to the subset of
cache slots.

6.4 Cache Memory

26

•  The number of cache blocks per set in set associative
cache varies according to overall system design.

6.4 Cache Memory

–  For example, a 2-way set associative
cache can be conceptualized as shown in
the schematic below.

–  Each set contains two different memory
blocks.

Logical view Linear view

27

•  In set associative cache mapping, a memory
reference is divided into three fields: tag, set,
and offset.

•  As with direct-mapped cache, the offset field
chooses the word within the cache block, and
the tag field uniquely identifies the memory
address.

•  The set field determines the set to which the
memory block maps.

6.4 Cache Memory

28

•  EXAMPLE 6.5 Suppose we are using 2-way set
associative mapping with a word-addressable main
memory of 214 words and a cache with 16 blocks,
where each block contains 8 words.
–  Cache has a total of 16 blocks, and each set has 2 blocks,

then there are 8 sets in cache.
–  Thus, the set field is 3 bits, the offset field is 3 bits, and

the tag field is 8 bits.

6.4 Cache Memory

CACHING POLICIES

•  Cache replacement policy

•  For fully associative and set associative mapping
•  Which cache block gets kicked out?
•  Some schemes: first-in first-out, least recently used, ...

•  Cache write policy

•  Write through: always write to main memory
•  Write back: write to main memory when replaced

NEXT TIME

•  Virtual Memory

