
CMSC 313
COMPUTER ORGANIZATION
&
ASSEMBLY LANGUAGE
PROGRAMMING

LECTURE 11, FALL 2012

TOPICS TODAY

•  Characters & Strings in C

•  Structures in C

CHARACTERS & STRINGS

char type!

C supports the char data type for storing a single character.!
!
char uses one byte of memory.!
!
char constants are enclosed in single quotes!
!

char myGrade = �A�;!
char yourGrade = �?�;!
!

Adapted from Dennis Frey CMSC 313 Spring 2011

ASCII Character Chart!

Adapted from Dennis Frey CMSC 313 Spring 2011

Special Characters!
Use \ for escape sequences.!
!
For example!

\n is the newline character!
\t is the tab character!
\� is the double quote (necessary since double quotes are used

to enclose strings!
\� is the single quote (necessary since single quotes are used to

enclose chars!
\\ is the backslash (necessary since \ now has special meaning!
\a is beep which is unprintable!

Adapted from Dennis Frey CMSC 313 Spring 2011

Special Char Example Code!

What is the output from these statements?!
!
 printf(�\t\tMove over\n\nWorld, here I come\n");

! !Move over!
!
World, here I come!

!
 printf("I\�ve written \�Hello World\�\n\t many times\n\a�);

I�ve written �Hello World�!
!many times <beep>!

Adapted from Dennis Frey CMSC 313 Spring 2011

Character Library Functions!

int isdigit (int c); !
Determine if c is a decimal digit (�0� - �9�)!

int isxdigit(int c);!
Determines if c is a hexadecimal digit (�0� - �9�, �a� - f�, or �A� - �F�)!

int isalpha (int c);!
Determines if c is an alphabetic character (�a� - �z� or �A- �Z�)!

int isspace (int c);!
Determines if c is a whitespace character (space, tab, etc)!

int isprint (int c); !
Determines if c is a printable character!

int tolower (int c);!
int toupper (int c); !

Returns c changed to lower- or upper-case respectively, if possible!
!

Adapted from Dennis Frey CMSC 313 Spring 2011

Character Library Functions!

Include header file use character library functions:!
!
!!#include <ctype.h> !

!
Technically functions take an int parameter, not char.!
!
Return type is also int . 0 = False, not 0 = True.!

man ctype.h for more functions and complete documentation.!

Adapted from Dennis Frey CMSC 313 Spring 2011

Character Input/Output!

Use %c in printf()and fprintf()to output a single character.!
char yourGrade = �A�;!
printf(�Your grade is %c\n�, yourGrade);!
!

Input char(s) using %c with scanf() or fscanf() !
! !char grade, scores[3];  
!

%c inputs the next character, which may be whitespace  
!scanf(�%c�, &grade);!

%nc inputs the next n characters, which may include whitespace. !
! !scanf(�%3c�, scores); ! // note -- no & needed!

!

Adapted from Dennis Frey CMSC 313 Spring 2011

Strings in C!

•  String = null terminated array of char.!

•  null = '\0'

•  String constants in double quotes are null terminated.!

•  Strings do not "know" their own length.!

•  Initialization:!
char name4[20] = {�B�, �o�, �b�, �b�, �y�, �\0� };

char name5[6] = �Bobby�; // NOT assignment, needs 6 slots

char name6[] = �Bobby�;

Adapted from Dennis Frey CMSC 313 Spring 2011

String Output!
!
!
char name[] = �Bobby Smith�;!
printf(�My name is %s\n�, name);  
!

!
// Right and left justify!
printf (�My favorite books are %12s and %12s\n�, book1, book2);!
printf (�My favorite books are %-12s and %-12s\n�, book1,

book2);!
!
!

Adapted from Dennis Frey CMSC 313 Spring 2011

Dangerous String Input!

!
char name[22];!
printf(� Enter your name: �);!
scanf(�%s�, name); 
!

Why is this dangerous?!
!
Long name will overwrite memory.!

Adapted from Dennis Frey CMSC 313 Spring 2011

Safer String Input!

!
char name[22];!
printf(�Enter your name: �);!
!
scanf(�%21s�, name); !// note 21, not 22, 1 byte for '\0'!

!

Adapted from Dennis Frey CMSC 313 Spring 2011

C String Library!

C provides a library of string functions.
To use the string functions, include <string.h>.
Some of the more common functions are listed here on the next

slides.
 To see all the string functions, type

man string.h at the unix prompt.

Adapted from Dennis Frey CMSC 313 Spring 2011

C String Library (2)!

Must #include <string.h>!
!
strlen(const char string[])!
Returns length of string, not counting '\0'!
!
strcpy(char s1[], const char s2[])!
Copies s2 on top of s1. Must have enough space in s1 !!!!
The order of the parameters mimics the assignment operator!
!
strcmp (const char s1[] , const char s2[])!
Returns < 0, 0, > 0 if s1 < s2, s1 == s2 or s1 > s2 lexigraphically!

!
strcat(char s1[] , const char s2[])!
Appends (concatenates) s2 to s1. Must have enough space in s1 !!!!

!

Adapted from Dennis Frey CMSC 313 Spring 2011

C String Library (3)!

Some safer functions from the C string library:

strncpy(char s1[], const char s2[], int n)
Copies at most n characters of s2 on top of s1.
Does not null terminate s1 if length of s2 >= n !!!
The order of the parameters mimics the assignment operator

strncmp (const char s1[] , const char s2[], int n)
Compares up to n characters of s1 with s2
Returns < 0, 0, > 0 if s1 < s2, s1 == s2 or s1 > s2 lexigraphically

strncat(char s1[], const char s2[] , int n)
Appends at most n characters of s2 to s1.

Adapted from Dennis Frey CMSC 313 Spring 2011

String Code!
char first[10] = �bobby�;!
char last[15] = �smith�;!
char name[30];!
char you[] = �bobo�;!
!
strcpy(name, first);!
strcat(name, last);!
printf(�%d, %s\n�, strlen(name), name);!
!
strncpy(name, last, 2);!
printf(�%d, %s\n�, strlen(name), name);!
!
int result = strcmp(you, first);!
result = strncmp(you, first, 3);!
!
strcat(first, last);!
!
!
!
Adapted from Dennis Frey CMSC 313 Spring 2011

Simple Encryption!
char c, msg[] = "this is a secret message";
int i = 0;
char code[26] = /* Initialize our encryption code */
 {'t','f','h','x','q','j','e','m','u','p','i','d','c',
'k','v','b','a','o','l','r','z','w','g','n','s','y'} ;

printf ("Original phrase: %s\n", msg);

/* Encrypt */
while(msg[i] != '\0�){

if(isalpha(msg[i])) {
c = tolower(msg[i]) ;
msg[i] = code[c - �a�] ;

}
++i;

}
printf("Encrypted: %s\n", msg) ;

Adapted from Dennis Frey CMSC 313 Spring 2011

Arrays of Strings!
An initialized array of string constants!
!

char months[][4] = {"Jan", "Feb", "Mar", "Apr",!
 "May", "Jun", "Jul", "Aug", !
 "Sep", "Oct", "Nov", "Dec" } ;!
int m;!
for (m = 0; m < 12; m++)!

!printf(�%s\n�, months[m]);  
!

Alternative: use typedef!
!

typedef char Acronym[4] ;!
Acronym months[] = {"Jan", "Feb", "Mar", "Apr",!
 "May", "Jun", "Jul", "Aug", !
 "Sep", "Oct", "Nov", "Dec" } ;!

!
Adapted from Dennis Frey CMSC 313 Spring 2011

sprintf()!
!
sprintf() works just like printf() or fprintf(), but puts its �output� into

the specified character array.!
!
The character array must be big enough.!
!

char message[100];!
int myAge = 4;!
!
sprintf(message, �I am %d years old\n�, age);!
printf(�%s\n�, message);!
!

Adapted from Dennis Frey CMSC 313 Spring 2011

STRUCT

Java vs C

•  Suppose you were assigned a write an application about points
and straight lines in a coordinate plane.

•  In Java, you’d correctly design a Point class and a Line class
using composition.

•  What about in C?

Adapted from Dennis Frey CMSC 313 Spring 2011

No Classes in C

•  Because C is not an OOP language, there is no way to combine
data and code into a single entity.

•  Related data and functions are form an "Abstract Data Type."
Accessibility is enforced by a programmer's good judgment and
not by the compiler.

•  C does allow us to combine related data into a structure using the
keyword struct.

•  All data in a struct variable can be accessed by any code.

•  Think of a struct as an OOP class in which all data members are
public, and which has no methods.

Adapted from Dennis Frey CMSC 313 Spring 2011

Struct definition

 struct tag
 {
 member1_declaration;
 member2_declaration;
 member3_declaration;
 . . .
 memberN_declaration;
 };

struct is the keyword
tag names this kind of struct,
member_declarations are variable declarations which define

the data members.

Adapted from Dennis Frey CMSC 313 Spring 2011

semi-colon !!!

C struct Example
•  Defining a struct to represent a point in a coordinate plane

struct point!
{!

!int x;!/* x-coordinate */!
!int y;!/* y-coordinate */!

};!

•  Given the declarations
 struct point p1;!
! !struct point p2; !

!
•  we can access the members of these struct variables:

•  the x-coordinate of p1 is p1.x!
•  the y-coordinate of p1 is p1.y!
•  the x-coordinate of p2 is p2.x!
•  the y-coordinate of p2 is p2.y!

Adapted from Dennis Frey CMSC 313 Spring 2011

point is the struct tag

Using struct members

int main ()
{
 struct point lefEendPt, rightEndPt, newEndPt;

 printf(“Left end point cooridinates “);
 scanf(“%d %d”, &lefEendPt.x, &leftEndPt.y);

 printf(“Right end point’s x-coordinate: “);
 scanf(“%d %d”, &rightEendPt.x, &rightEndPt.y);

 // add the endpoints
 newEndPt.x = leftEndPt.x + rightEndPt.x;
 newEndPt.y = leftEndPt.y + rightEndPt.y;

 // print new end point
 printf(“New endpoint (%2d, %2d)”, newEndPt.x, newEndPt.);

 return 0;

}

Adapted from Dennis Frey CMSC 313 Spring 2011

Initializing a struct

struct point middle = { 6, -3 };!

 is equivalent to

struct point middle ;!
middle.x = 6 ;!
middle.y = -3 ;!
!

Adapted from Dennis Frey CMSC 313 Spring 2011

struct Variants

struct point {!
!int x, y;!
} endpoint, upperLeft ;!

defines the structure named point

AND

the variables endpoint and upperLeft to be of this type.

Adapted from Dennis Frey CMSC 313 Spring 2011

struct + typedef

 typedef struct point {!
! !int x, y;!
!} POINT;!

!
POINT is now a TYPE.

!POINT endpoint ;!

 is equivalent to

!struct point endpoint;!

Adapted from Dennis Frey CMSC 313 Spring 2011

struct assignment

struct point p1;
struct point p2;

p1.x = 42;
p1.y = 59;

p2 = p1; /* structure assignment copies members */

Adapted from Dennis Frey CMSC 313 Spring 2011

struct within a struct

typedef struct line
{
 POINT leftEndPoint;
 POINT rightEndPoint;
} LINE;

LINE line1, line2;

line1.leftEndPoint.x = 3 ;
line1.leftEndPoint.y = 4 ;

Adapted from Dennis Frey CMSC 313 Spring 2011

Arrays of struct

!
LINE lines[5]; // or struct line lines[5];!
!
printf("%d\n", lines[2].leftEndPoint.x);!

Adapted from Dennis Frey CMSC 313 Spring 2011

Arrays within a struct

•  Structs may contain arrays as well as primitive types

struct month!
{!
!int nrDays;!
!char name[3 + 1];!

};!
!
struct month january = { 31, “JAN”};!
!
!

Adapted from Dennis Frey CMSC 313 Spring 2011

A bit more complex

struct month allMonths[12] = {
 {31, “JAN”}, {28, “FEB”}, {31, “MAR”},
 {30, “APR”}, {31, “MAY”}, {30, “JUN”},
 {31, “JUL”}, {31, “AUG”}, {30, “SEP”},
 {31, “OCT”}, {30, “NOV”}, {31, “DEC”}

};

// write the code to print the data for September
printf(“%s has %d days\n”,
 allMonths[8].name, allMonths[8].nrDays);

// what is the value of allMonths[3].name[1]

Adapted from Dennis Frey CMSC 313 Spring 2011

Size of a struct

As with primitive types, we can use sizeof() to determine the number
of bytes in a struct
!

int pointSize = sizeof(POINT);!
int lineSize = sizeof (struct line);!

As we’ll see later, the answers may surprise you!

Adapted from Dennis Frey CMSC 313 Spring 2011

Unions

•  A union is a variable type that may hold different type of members of
different sizes, BUT only one type at a time. All members of the
union share the same memory. The compiler assigns enough
memory for the largest of the member types.

•  The syntax for defining a union and using its members is the same as

the syntax for a struct.

Adapted from Dennis Frey CMSC 313 Spring 2011

Formal Union Definition

 union tag
 {
 member1_declaration;
 member2_declaration;
 member3_declaration;
 . . .
 memberN_declaration;
 };

Adapted from Dennis Frey CMSC 313 Spring 2011

An application of Unions

struct square { int length; };!
struct circle { int radius; };!
struct rectangle { int width; int height; };!
enum shapeType {SQUARE, CIRCLE, RECTANGLE };!
!
union shapes!
{!
!struct square aSquare;!
!struct circle aCircle;!
!struct rectangle aRectangle;!

};!
!
struct shape !
{!
!enum shapeType type;!
!union shapes theShape;!

};!

Adapted from Dennis Frey CMSC 313 Spring 2011

An application of Unions (2)

double area(struct shape s)
{
 switch(s.type) {
 case SQUARE:
 return s.theShape.aSquare.length
 * s.theShape.aSquare.length;
 case CIRCLE:
 return 3.14 * s.theShape.aCircle.radius
 * s.theShape.aCircle.radius;
 case RECTANGLE :
 return s.theShape.aRectangle.height
 * s.theShape.aRectangle.width;
 }

}

Adapted from Dennis Frey CMSC 313 Spring 2011

Union vs. Struct

•  Similarities
–  Definition syntax virtually identical
–  Member access syntax identical

•  Differences
–  Members of a struct each have their own address in memory.
–  The size of a struct is >= the sum of the sizes of the members.
–  Members of a union share the same memory.
–  The size of a union is the size of the largest member.

Adapted from Dennis Frey CMSC 313 Spring 2011

NEXT TIME

•  Parameter passing

•  Separate Compilation

•  Scope & Lifetime

