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TOPICS TODAY 

•  Characters & Strings in C 

•  Structures in C 



CHARACTERS & STRINGS 



char type!

C supports the char data type for storing a single character.!
!
char uses one byte of memory.!
!
char constants are enclosed in single quotes!
!

char myGrade = �A�;!
char yourGrade = �?�;!
!
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ASCII Character Chart!
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Special Characters!
Use  \ for escape sequences.!
!
For example!

\n is the newline character!
\t is the tab character!
\� is the double quote (necessary since double quotes are used 

to enclose strings!
\� is the single quote  (necessary since single quotes are used to 

enclose chars!
\\ is the backslash (necessary since \ now has special meaning!
\a is beep which is unprintable!
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Special Char Example Code!

What is the output from these statements?!
!
 printf(�\t\tMove over\n\nWorld, here I come\n"); 

! !Move over!
!
World, here I come!

!
 printf("I\�ve written \�Hello World\�\n\t many times\n\a�);  

 
I�ve written �Hello World�!
!many times <beep>!
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Character Library Functions!

int isdigit (int c); !
Determine if c is a decimal digit (�0� - �9�)!

int isxdigit(int c);!
Determines if c is a hexadecimal digit (�0� - �9�, �a� - f�, or �A� - �F�)!

int isalpha (int c);!
Determines if c is an alphabetic character (�a� - �z� or �A- �Z�)!

int isspace (int c);!
Determines if c is a whitespace character (space, tab, etc)!

int isprint (int c); !
Determines if c is a printable character!

int tolower (int c);!
int toupper (int c); !

Returns c changed to lower- or upper-case respectively, if possible!
!
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Character Library Functions!

Include header file use character library functions:!
!
!!#include <ctype.h> !

!
Technically functions take an int parameter, not char.!
!
Return type is also int . 0 = False, not 0 = True.!
 
man ctype.h for more functions and complete documentation.!
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Character Input/Output!

Use %c in printf( )and fprintf( )to output a single character.!
char yourGrade = �A�;!
printf( �Your grade is %c\n�, yourGrade);!
!

Input char(s) using %c with scanf( ) or fscanf( ) !
! !char grade, scores[3];  
!

%c inputs the next character, which may be whitespace  
!scanf(�%c�, &grade);!

%nc inputs the next n characters, which may include whitespace. !
! !scanf( �%3c�, scores); !   // note -- no & needed!

!
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Strings in C!

•  String = null terminated array of char.!

•  null = '\0' 

•  String constants in double quotes are null terminated.!

•  Strings do not "know" their own length.!

•  Initialization:!
char name4[ 20 ] = {�B�, �o�, �b�, �b�, �y�, �\0� }; 

char name5[6] = �Bobby�;  // NOT assignment, needs 6 slots 

char name6[ ] = �Bobby�; 
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String Output!
!
!
char name[ ] = �Bobby Smith�;!
printf( �My name is %s\n�, name);  
!

!
// Right and left justify!
printf (�My favorite books are %12s and %12s\n�, book1, book2);!
printf (�My favorite books are %-12s and %-12s\n�, book1, 

book2);!
!
!
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Dangerous String Input!

!
char name[22];!
printf(� Enter your name: �);!
scanf( �%s�, name); 
!

Why is this dangerous?!
!
Long name will overwrite memory.!
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Safer String Input!

!
char name[ 22 ];!
printf( �Enter your name: �);!
!
scanf(�%21s�, name); !// note 21, not 22, 1 byte for '\0'!

!
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C String Library!

C provides a library of string functions.  
To use the string functions, include <string.h>. 
Some of the more common functions are listed here on the next 

slides. 
  To see all the string functions, type  

man string.h at the unix prompt. 
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C String Library (2)!

Must #include <string.h>!
!
strlen( const char string[ ]  )!
Returns length of string, not counting '\0'!
!
strcpy( char s1[ ], const char s2[ ] )!
Copies s2 on top of s1. Must have enough space in s1 !!!!
The order of the parameters mimics the assignment operator!
!
strcmp ( const char s1[ ] , const char s2[ ] )!
Returns < 0, 0, > 0 if s1 < s2, s1  == s2 or s1 > s2 lexigraphically!

!
strcat( char s1[ ] , const char s2[ ])!
Appends (concatenates) s2 to s1. Must have enough space in s1 !!!!

!
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C String Library (3)!

Some safer functions from the C string library: 
 
strncpy( char s1[  ], const char s2[  ], int n ) 
Copies at most n characters of s2 on top of s1. 
Does not null terminate s1 if length of s2 >= n  !!! 
The order of the parameters mimics the assignment operator 
 

strncmp ( const char s1[  ] , const char s2[  ], int n ) 
Compares up to n characters of s1 with s2 
Returns < 0, 0, > 0 if s1 < s2, s1  == s2 or s1 > s2 lexigraphically 
 

strncat( char s1[  ], const char s2[  ] , int n) 
Appends at most n characters of s2 to s1. 
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String Code!
char first[10] = �bobby�;!
char last[15] = �smith�;!
char name[30];!
char you[ ] = �bobo�;!
!
strcpy( name, first );!
strcat( name, last );!
printf( �%d, %s\n�, strlen(name), name );!
!
strncpy( name, last, 2 );!
printf( �%d, %s\n�, strlen(name), name );!
!
int result = strcmp( you, first );!
result = strncmp( you, first, 3 );!
!
strcat( first, last );!
!
!
!
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Simple Encryption!
char c, msg[] = "this is a secret message"; 
int i = 0; 
char code[26] =  /* Initialize our encryption code */  
 {'t','f','h','x','q','j','e','m','u','p','i','d','c', 
'k','v','b','a','o','l','r','z','w','g','n','s','y'} ;  
 
printf ("Original phrase: %s\n", msg); 
 
/* Encrypt */ 
while( msg[i] != '\0� ){ 

if( isalpha( msg[ i ] ) ) { 
c = tolower( msg[ i ] ) ; 
msg[ i ] = code[ c - �a� ] ;  

} 
++i; 

} 
printf("Encrypted: %s\n", msg ) ;  
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Arrays of Strings!
An initialized array of string constants!
!

char months[][4] = {"Jan", "Feb", "Mar", "Apr",!
                    "May", "Jun", "Jul", "Aug", !
                    "Sep", "Oct", "Nov", "Dec" } ;!
int m;!
for ( m = 0; m < 12; m++ )!

!printf( �%s\n�, months[ m ] );  
!

Alternative: use typedef!
!

typedef char Acronym[4] ;!
Acronym months[] = {"Jan", "Feb", "Mar", "Apr",!
                     "May", "Jun", "Jul", "Aug",          !
                     "Sep", "Oct", "Nov", "Dec" } ;!

!
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sprintf( )!
!
sprintf( ) works just like printf( ) or fprintf( ), but puts its �output� into 

the specified character array.!
!
The character array must be big enough.!
!

char message[ 100 ];!
int myAge = 4;!
!
sprintf( message, �I am %d years old\n�, age);!
printf( �%s\n�, message);!
!
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STRUCT 



Java vs C 

•  Suppose you were assigned a write an application about points 
and straight lines in a coordinate plane. 

•  In Java, you’d correctly design a Point class and a Line class 
using composition. 

•  What about in C? 
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No Classes in C 

•  Because C is not an OOP language, there is no way to combine 
data and code into a single entity.  

•  Related data and functions are form an "Abstract Data Type." 
Accessibility is enforced by a programmer's good judgment and 
not by the compiler. 

•  C does allow us to combine related data into a structure using the 
keyword struct.  

•  All data in a struct variable can be accessed by any code. 

•  Think of a struct as an OOP class in which all data members are 
public, and which has no methods. 
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Struct definition 

  struct tag 
  { 
      member1_declaration; 
      member2_declaration; 
      member3_declaration; 
       . . .  
      memberN_declaration; 
   }; 

  
struct is the keyword 
tag names this kind of struct,  
member_declarations are variable declarations which define 

the data members.  
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C struct Example 
•  Defining a struct to represent a point in a coordinate plane 

struct point!
{!

!int x;!/* x-coordinate */!
!int y;!/* y-coordinate */!

};!
 
•  Given the declarations  
  struct point p1;!
! !struct point p2; !

!
•  we can access the members of these struct variables:  

•  the x-coordinate of p1 is p1.x!
•  the y-coordinate of p1 is p1.y!
•  the x-coordinate of p2 is p2.x!
•  the y-coordinate of p2 is p2.y!
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Using struct members 
 
int main ( ) 
{ 
 struct point lefEendPt, rightEndPt, newEndPt; 

 
 printf(“Left end point cooridinates “); 
 scanf( “%d %d”, &lefEendPt.x, &leftEndPt.y); 

 
 printf(“Right end point’s x-coordinate: “); 
 scanf( “%d %d”, &rightEendPt.x, &rightEndPt.y); 

 
 // add the endpoints 
 newEndPt.x = leftEndPt.x + rightEndPt.x; 
 newEndPt.y = leftEndPt.y + rightEndPt.y; 

 
 // print new end point 
 printf(“New endpoint (%2d, %2d)”, newEndPt.x, newEndPt.); 

 
 return 0; 

} 
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Initializing a struct 

 
 
struct point middle = { 6, -3 };!
 
 

 is equivalent to  
 
struct point middle ;!
middle.x = 6 ;!
middle.y = -3 ;!
!
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struct Variants 
 

struct point {!
!int x, y;!
} endpoint, upperLeft ;!
 
defines the structure named point  
 
AND  
 
the variables endpoint and upperLeft to be of this type. 
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struct + typedef 

 
 typedef struct point {!
! !int x, y;!
!} POINT;!

!
POINT is now a TYPE. 

 
!POINT endpoint ;!

 
 is equivalent to 

 
!struct point endpoint;!
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struct assignment 

 
struct point p1; 
struct point p2; 
 
p1.x = 42; 
p1.y = 59; 
 
p2 = p1;  /* structure assignment copies members */ 
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struct within a struct 
 

typedef struct line 
{ 
 POINT leftEndPoint; 
 POINT rightEndPoint; 
} LINE; 
 
LINE line1, line2; 
 
line1.leftEndPoint.x = 3 ; 
line1.leftEndPoint.y = 4 ; 
 

Adapted from Dennis Frey CMSC 313 Spring 2011 



Arrays of struct 

 
!
LINE lines[5];   // or struct line lines[5];!
!
printf("%d\n", lines[2].leftEndPoint.x);!
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Arrays within a struct 

•  Structs may contain arrays as well as primitive types 
 
struct month!
{!
!int nrDays;!
!char name[ 3 + 1 ];!

};!
!
struct month january = { 31, “JAN”};!
!
!
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A bit more complex 

struct month allMonths[ 12 ] = { 
 {31, “JAN”}, {28, “FEB”}, {31, “MAR”}, 
 {30, “APR”}, {31, “MAY”}, {30, “JUN”}, 
 {31, “JUL”}, {31, “AUG”}, {30, “SEP”}, 
 {31, “OCT”}, {30, “NOV”}, {31, “DEC”} 

}; 
 
// write the code to print the data for September 
printf( “%s has %d days\n”, 
 allMonths[8].name, allMonths[8].nrDays); 

 
// what is the value of allMonths[3].name[1] 
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Size of a struct 

As with primitive types, we can use sizeof( ) to determine the number 
of bytes in a struct 
!

int pointSize = sizeof( POINT );!
int lineSize = sizeof (struct line);!

 
As we’ll see later, the answers may surprise you! 
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Unions 

•  A union is a variable type that may hold different type of members of 
different sizes, BUT only one type at a time.  All members of the 
union share the same memory.  The compiler assigns enough 
memory for the largest of the member types. 

 
•  The syntax for defining a union and using its members is the same as 

the syntax for a struct. 
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Formal Union Definition 

  union tag 
  { 
      member1_declaration; 
      member2_declaration; 
      member3_declaration; 
       . . .  
      memberN_declaration; 
   }; 
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An application of Unions 

struct square { int length; };!
struct circle { int radius; };!
struct rectangle { int width; int height; };!
enum shapeType {SQUARE, CIRCLE, RECTANGLE };!
!
union shapes!
{!
!struct square aSquare;!
!struct circle aCircle;!
!struct rectangle aRectangle;!

};!
!
struct shape !
{!
!enum shapeType type;!
!union shapes theShape;!

};!
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An application of Unions (2) 

double area( struct shape s) 
{ 
 switch( s.type ) { 
  case SQUARE: 
   return s.theShape.aSquare.length 
    * s.theShape.aSquare.length; 
  case CIRCLE: 
   return 3.14 * s.theShape.aCircle.radius  
    * s.theShape.aCircle.radius; 
  case RECTANGLE : 
   return s.theShape.aRectangle.height 
    * s.theShape.aRectangle.width; 
 } 

} 
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Union vs. Struct 

•  Similarities 
–  Definition syntax virtually identical 
–  Member access syntax identical 

•  Differences 
–  Members of a struct each have their own address in memory.  
–  The size of a struct is >= the sum of the sizes of the members. 
–  Members of a union share the same memory.  
–   The size of a union is the size of the largest member. 

Adapted from Dennis Frey CMSC 313 Spring 2011 



NEXT TIME 

•  Parameter passing 

•  Separate Compilation 

•  Scope & Lifetime 


