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CMSC 313, Computer Organization & Assembly Language Programming Section 0101
Fall 2004

DigSim Assignment 3: Finite State Machine Simplifications
Due: Tuesday, December 14, 2004

Objective
The objective is to design and simplify a moderately complex a finite state machine.

Assignment
You have already completed the design and simplification steps in Homework 5. Your assignment 

here is to implement the finite state machine you designed in Question #5 of Homework 5. You 
should use the state assignment and flip-flop selection that uses the smallest total number of gates. 
Note that the gates used for the output z might be different for different state assignments.

What to submit
1) If the finite state machine you implemented differs significantly from the one you turned in 

for Homework 5, then submit the transition diagram, truth tables and formulas you used to 
implement this finite state machine in class on Tuesday, December 14.

2) Save your circuit as you did in DigSim Assignment 1. Submit the circuit file using the Unix 
submit command as in previous assignments. The submission name for this assignment is: digsim3. 
The UNIX command to do this should look something like:

submit cs313_0101 digsim3 d3.sim



Last Time

• Memory Organization

• Technological advances in DRAM

• SDRAM allows quick access to successive memory 
locations in the same row.

Why is this helpful??
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The Memory Hierarchy

Registers

Cache

Main memory

Secondary storage (disks)

Off-line storage (tape)

Fast and expensive

Slow and inexpensive

Increasing 
performance and
increasing cost
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Placement of Cache in a Computer
System

CPU
400 MHz

Main
Memory
10 MHz

Bus 66 MHz

Main
Memory
10 MHz

Bus 66 MHz

CPU

Cache

400 MHz

Without cache With cache

• The locality principle : a recently referenced memory location is
likely to be referenced again ( temporal locality ); a neighbor of a
recently referenced memory location is likely to be referenced
(spatial locality ).
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An Associative Mapping Scheme for a
Cache Memory
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Associative Mapping Example
• Consider how an access to memory location (A035F014) 16 is

mapped to the cache for a 2 32 word memory.  The memory is di-
vided into 2 27 blocks of 2 5 = 32 words per block, and the cache
consists of 2 14 slots:

27 bits 5 bits

Tag Word

Tag Word

1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0

• If the addressed word is in the cache, it will be found in word (14) 16
of a slot that has tag (501AF80) 16, which is made up of the 27 most
significant bits of the address. If the addressed word is not in the
cache, then the block corresponding to tag field (501AF80) 16 is
brought into an available slot in the cache from the main memory,
and the memory reference is then satisfied from the cache.
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Replacement Policies
• When there are no available slots in which to place a block, a re-

placement policy is implemented.  The replacement policy gov-
erns the choice of which slot is freed up for the new block.

• Replacement policies are used for associative and set-associative
mapping schemes, and also for virtual memory.

• Least recently used (LRU)

• First-in/first-out (FIFO)

• Least frequently used (LFU)

• Random

• Optimal (used for analysis only – look backward in time and re-
verse-engineer the best possible strategy for a particular se-
quence of memory references.)
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A Direct Mapping Scheme for Cache
Memory
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Direct Mapping Example
• For a direct mapped cache, each main memory block can be

mapped to only one slot, but each slot can receive more than one
block. Consider how an access to memory location (A035F014) 16
is mapped to the cache for a 2 32 word memory.  The memory is di-
vided into 2 27 blocks of 2 5 = 32 words per block, and the cache
consists of 2 14 slots:

• If the addressed word is in the cache, it will be found in word (14) 16
of slot (2F80) 16, which will have a tag of (1406) 16.

13 bits 5 bits14 bits

Tag WordSlot

Tag Word

1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0

Slot
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A Set Associative Mapping Scheme
for a Cache Memory

Slot 0

Slot 1

Slot 2

Slot 214–1

.

.

.

.

.

.

.

.

.

Block 0

Block 1

Block 213

Block 213+1

Block 227–1

Cache

Main Memory

TagValid Dirty

32 words 
per block

Set 0

Set 1

Set 213–1

14



Chapter 7: Memory7-21

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Set-Associative Mapping Example
• Consider how an access to memory location (A035F014) 16 is

mapped to the cache for a 2 32 word memory.  The memory is di-
vided into 2 27 blocks of 2 5 = 32 words per block, there are two
blocks per set, and the cache consists of 2 14 slots:

• The leftmost 14 bits form the tag field, followed by 13 bits for the
set field, followed by five bits for the word field:

Tag WordSet

14 bits 5 bits13 bits

Tag Word

1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0

Set
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Cache Read and Write Policies


Cache


Read


 Cache


Write

Data is

in the

cache

Data is

not in the

cache

Data is

in the

cache

Data is

not in the

cache

Forward

to CPU.

Write Through:

Write data to both

cache and main
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Write Back: Write 
data to cache only. 
Defer main memory 
write until block is 
flushed.

Load Through: 
Forward the word 
as cache line is 
filled,

        -or-

Fill cache line and 
then forward word.

Write Allocate: Bring 
line into cache, then 
update it,

           -or-

Write No-Allocat
Update main memory 
only.

-or-



Virtual Memory + Cache Memory

1. CPU instruction generates a virtual address.

2. Translation Lookaside Buffer (TLB) used to locate recently 
accessed page frames.

3. In case of a TLB miss, use page table(s) to find page frame 
for virtual address. TLB updated.
Note: page frame may have been swapped to disk!

4. Virtual address is now converted into a physical address.

5. Search cache for recently accessed physical addresses.

6. In case of a cache miss, use main memory. Cache updated.
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Input/Output
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Basic Issues in I/O

• Allow many components to communicate.

• Do not want to have n2/2 connections to connect
n components together.

• Devices communicate a different speeds.

• Some devices transfer lots of data, others very few.
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A Magnetic Disk with Three Platters

Direction of
arm (comb) 

motion

Surface 3
Surface 2

Surface 1
Surface 0

Top surface 
not used

Bottom surface 
not used

Spindle

Platter

Head

SurfaceAir cushion

5 µ
m

Comb

Read/write head
(1 per surface)
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Magnetic Tape
• A portion of a magnetic tape (adapted from [Hamacher, 1990]).

File mark

Record

Inter-record 
gap

Record Record

File

Frames
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Mouse and Trackball
• A three-button mouse (left) and a three-button trackball (right).

To host

Mousepad (improves traction) Trackball

Mouse

Buttons

To host

Buttons



System Bus Issues

• Only n connections needed for n components.

• Bus can become a performance bottleneck.

• Synchronous vs asynchronous

• Bus arbitration.
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Simple Bus Architecture
• A simplified motherboard of a personal computer (top view):

Motherboard

I/O Bus

Board traces 
(wires)

Connectors for plug-in cards

Integrated Circuits

Plug-in card

I/O bus connector

Memory

CPU
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Simplified Illustration of a Bus

CPU DiskMemory

Control (C0 – C9)
Address (A0 – A31)
Data (D0 – D31)
Power (GND, +5V, –15V)
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100 MHz Bus Clock

Crystal
Oscillator

1 0 1 0 1 0 1 0

Logical 0 (0V)

Logical 1 (+5V)

10 ns
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The Synchronous Bus
• Timing diagram for a synchronous memory read (adapted from

[Tanenbaum, 1999]).

Φ

Address

Data

MREQ

RD

T1 T2 T3
Leading edge

Trailing edge

Data valid

Time

Address valid
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The Asynchronous Bus
• Timing diagram for asynchronous memory read (adapted from

[Tanenbaum, 1999]).

Address

MSYN

RD

Data

Time

Memory address to be read

MREQ

SSYN

Data valid
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Bridge
Based

Bus Ar-
chitecture

• Bridging with
dual Pentium II
Xeon proces-
sors on Slot 2.

(Source: http://
www.intel.com.)
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Bus Arbitration

• (a)Simple
centralized bus
arbitration; (b)
centralized
arbitration with
priority levels; (c)
decentralized bus
arbitration.
(Adapted from
[Tanenbaum,
1999]).

Arbiter Bus grant

Bus request

0 1 2 n.  .  .

(a)

Arbiter

Bus grant level 0

Bus request level 0

0 1 2 n.  .  .

(b)

Bus grant

Bus request

0 1 2 n.  .  .

(c)
Busy
+5V

Bus grant level k

Bus request level k...



Types of I/O Control

• Programmed I/O = polling

• Interrupt driven.

• DMA = Direct Memory Access.

• Channel I/O: uses dedicated I/O processors.
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Programmed I/O
Flowchart for a
Disk Transfer

Check status of disk

Disk ready?
No

Yes

Send data from 
memory to disk (when 
writing) or from disk 

to memory (when 
reading).

Done?
No

Yes

Continue

Enter
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Interrupt Driven
I/O Flowchart

for a Disk
Transfer

Transfer data between 
disk and memory.

Done?
No

Yes

Continue

Return from interrupt.  
Normal processing 

resumes.

Do other processing, 
until disk issues an 

interrupt.

Interrupt causes current 
processing to stop.

Issue read or write 
request to disk.

Enter
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DMA Transfer from Disk to Memory
Bypasses the CPU

CPU DiskMemory

Without DMA With DMA

Bus
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DMA Flowchart for a Disk Transfer

CPU executes 
another process

Continue

DMA device begins 
transfer independent of 

CPU

DMA device 
interrupts CPU 
when finished

CPU sets up disk for 
DMA transfer

Enter



Buffering

• Many I/O devices have on-board memory.

• Communication can be done at memory-to-
memory speeds.

• More expensive, requires local controller.

• I/O becomes more like networking.
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Next Time

• Performance Metrics

• Trends
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