
CMSC 313 Lecture 26

• DigSim Assignment 3

• Cache Memory
• Virtual Memory + Cache Memory

• I/O Architecture

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

CMSC 313, Computer Organization & Assembly Language Programming Section 0101
Fall 2004

DigSim Assignment 3: Finite State Machine Simplifications
Due: Tuesday, December 14, 2004

Objective
The objective is to design and simplify a moderately complex a finite state machine.

Assignment
You have already completed the design and simplification steps in Homework 5. Your assignment

here is to implement the finite state machine you designed in Question #5 of Homework 5. You
should use the state assignment and flip-flop selection that uses the smallest total number of gates.
Note that the gates used for the output z might be different for different state assignments.

What to submit
1) If the finite state machine you implemented differs significantly from the one you turned in

for Homework 5, then submit the transition diagram, truth tables and formulas you used to
implement this finite state machine in class on Tuesday, December 14.

2) Save your circuit as you did in DigSim Assignment 1. Submit the circuit file using the Unix
submit command as in previous assignments. The submission name for this assignment is: digsim3.
The UNIX command to do this should look something like:

submit cs313_0101 digsim3 d3.sim

Last Time

• Memory Organization

• Technological advances in DRAM

• SDRAM allows quick access to successive memory
locations in the same row.

Why is this helpful??

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Chapter 7: Memory7-3

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

The Memory Hierarchy

Registers

Cache

Main memory

Secondary storage (disks)

Off-line storage (tape)

Fast and expensive

Slow and inexpensive

Increasing
performance and
increasing cost

Chapter 7: Memory7-14

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Placement of Cache in a Computer
System

CPU
400 MHz

Main
Memory
10 MHz

Bus 66 MHz

Main
Memory
10 MHz

Bus 66 MHz

CPU

Cache

400 MHz

Without cache With cache

• The locality principle : a recently referenced memory location is
likely to be referenced again (temporal locality); a neighbor of a
recently referenced memory location is likely to be referenced
(spatial locality).

Chapter 7: Memory7-15

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

An Associative Mapping Scheme for a
Cache Memory

Slot 0

Slot 1

Slot 2

Slot 214–1

.

.

.

.

.

.

Block 0

Block 1

Block 128

Block 129

Block 227–1

Cache Memory

Main Memory

TagValid Dirty

32 words
per block

27

.

.

.

Chapter 7: Memory7-16

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Associative Mapping Example
• Consider how an access to memory location (A035F014) 16 is

mapped to the cache for a 2 32 word memory. The memory is di-
vided into 2 27 blocks of 2 5 = 32 words per block, and the cache
consists of 2 14 slots:

27 bits 5 bits

Tag Word

Tag Word

1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0

• If the addressed word is in the cache, it will be found in word (14) 16
of a slot that has tag (501AF80) 16, which is made up of the 27 most
significant bits of the address. If the addressed word is not in the
cache, then the block corresponding to tag field (501AF80) 16 is
brought into an available slot in the cache from the main memory,
and the memory reference is then satisfied from the cache.

Chapter 7: Memory7-17

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Replacement Policies
• When there are no available slots in which to place a block, a re-

placement policy is implemented. The replacement policy gov-
erns the choice of which slot is freed up for the new block.

• Replacement policies are used for associative and set-associative
mapping schemes, and also for virtual memory.

• Least recently used (LRU)

• First-in/first-out (FIFO)

• Least frequently used (LFU)

• Random

• Optimal (used for analysis only – look backward in time and re-
verse-engineer the best possible strategy for a particular se-
quence of memory references.)

Chapter 7: Memory7-18

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

A Direct Mapping Scheme for Cache
Memory

Slot 0

Slot 1

Slot 2

Slot 214–1

.

.
.

.

.

.

.

.

.

Block 0

Block 1

Block 2

Block 2

Block 227

+1

Cache Memory

Main Memory

TagValid Dirty

32 words
per block

13

14

14

Chapter 7: Memory7-19

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Direct Mapping Example
• For a direct mapped cache, each main memory block can be

mapped to only one slot, but each slot can receive more than one
block. Consider how an access to memory location (A035F014) 16
is mapped to the cache for a 2 32 word memory. The memory is di-
vided into 2 27 blocks of 2 5 = 32 words per block, and the cache
consists of 2 14 slots:

• If the addressed word is in the cache, it will be found in word (14) 16
of slot (2F80) 16, which will have a tag of (1406) 16.

13 bits 5 bits14 bits

Tag WordSlot

Tag Word

1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0

Slot

Chapter 7: Memory7-20

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

A Set Associative Mapping Scheme
for a Cache Memory

Slot 0

Slot 1

Slot 2

Slot 214–1

.

.

.

.

.

.

.

.

.

Block 0

Block 1

Block 213

Block 213+1

Block 227–1

Cache

Main Memory

TagValid Dirty

32 words
per block

Set 0

Set 1

Set 213–1

14

Chapter 7: Memory7-21

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Set-Associative Mapping Example
• Consider how an access to memory location (A035F014) 16 is

mapped to the cache for a 2 32 word memory. The memory is di-
vided into 2 27 blocks of 2 5 = 32 words per block, there are two
blocks per set, and the cache consists of 2 14 slots:

• The leftmost 14 bits form the tag field, followed by 13 bits for the
set field, followed by five bits for the word field:

Tag WordSet

14 bits 5 bits13 bits

Tag Word

1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0

Set

Chapter 7: Memory7-22

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Cache Read and Write Policies

Cache

Read

 Cache

Write

Data is

in the

cache

Data is

not in the

cache

Data is

in the

cache

Data is

not in the

cache

Forward

to CPU.

Write Through:

Write data to both

cache and main

memory,

Write Back: Write
data to cache only.
Defer main memory
write until block is
flushed.

Load Through:
Forward the word
as cache line is
filled,

 -or-

Fill cache line and
then forward word.

Write Allocate: Bring
line into cache, then
update it,

 -or-

Write No-Allocat
Update main memory
only.

-or-

Virtual Memory + Cache Memory

1. CPU instruction generates a virtual address.

2. Translation Lookaside Buffer (TLB) used to locate recently
accessed page frames.

3. In case of a TLB miss, use page table(s) to find page frame
for virtual address. TLB updated.
Note: page frame may have been swapped to disk!

4. Virtual address is now converted into a physical address.

5. Search cache for recently accessed physical addresses.

6. In case of a cache miss, use main memory. Cache updated.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Input/Output

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Basic Issues in I/O

• Allow many components to communicate.

• Do not want to have n2/2 connections to connect
n components together.

• Devices communicate a different speeds.

• Some devices transfer lots of data, others very few.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Chapter 8: Input and Output8-18

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

A Magnetic Disk with Three Platters

Direction of
arm (comb)

motion

Surface 3
Surface 2

Surface 1
Surface 0

Top surface
not used

Bottom surface
not used

Spindle

Platter

Head

SurfaceAir cushion

5 µ
m

Comb

Read/write head
(1 per surface)

Chapter 8: Input and Output8-22

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Magnetic Tape
• A portion of a magnetic tape (adapted from [Hamacher, 1990]).

File mark

Record

Inter-record
gap

Record Record

File

Frames

Chapter 8: Input and Output8-28

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Mouse and Trackball
• A three-button mouse (left) and a three-button trackball (right).

To host

Mousepad (improves traction) Trackball

Mouse

Buttons

To host

Buttons

System Bus Issues

• Only n connections needed for n components.

• Bus can become a performance bottleneck.

• Synchronous vs asynchronous

• Bus arbitration.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Chapter 8: Input and Output8-3

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Simple Bus Architecture
• A simplified motherboard of a personal computer (top view):

Motherboard

I/O Bus

Board traces
(wires)

Connectors for plug-in cards

Integrated Circuits

Plug-in card

I/O bus connector

Memory

CPU

Chapter 8: Input and Output8-4

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Simplified Illustration of a Bus

CPU DiskMemory

Control (C0 – C9)
Address (A0 – A31)
Data (D0 – D31)
Power (GND, +5V, –15V)

Chapter 8: Input and Output8-5

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

100 MHz Bus Clock

Crystal
Oscillator

1 0 1 0 1 0 1 0

Logical 0 (0V)

Logical 1 (+5V)

10 ns

Chapter 8: Input and Output8-6

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

The Synchronous Bus
• Timing diagram for a synchronous memory read (adapted from

[Tanenbaum, 1999]).

Φ

Address

Data

MREQ

RD

T1 T2 T3
Leading edge

Trailing edge

Data valid

Time

Address valid

Chapter 8: Input and Output8-7

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

The Asynchronous Bus
• Timing diagram for asynchronous memory read (adapted from

[Tanenbaum, 1999]).

Address

MSYN

RD

Data

Time

Memory address to be read

MREQ

SSYN

Data valid

Chapter 8: Input and Output8-9

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Bridge
Based

Bus Ar-
chitecture

• Bridging with
dual Pentium II
Xeon proces-
sors on Slot 2.

(Source: http://
www.intel.com.)

3200 MB/sec 3200 MB/sec

800 MB/sec

100-MHz
System Bus

533 MB/sec 800 MB/sec

AGP 100 MHz

133 MB/sec 33-MHz PCI Bus

40
 M

B
/s

ec

16.7 MB/sec

ISA Bus

USB #2
IDE Bus #2

USB #1

S
C

S
I B

u
s

1.5 MB/sec

33 MB/sec

IDE Bus #133 MB/sec

Intel 440GX
AGPset

(Host Bridge)

400-MHz
Core

512KB-2MB
Cache

400-MHz
Core

512KB-2MB
Cache

2GB
100-MHz
SDRAM

AGP 2X
Graphics

PCI to ISA
Bridge

Keyboard Audio

CD-ROM
MouseSnapshot

Camera

Hard
Disk

Hard
Disk

SCSI
Interface

Ethernet
Interface

Chapter 8: Input and Output8-8

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Bus Arbitration

• (a)Simple
centralized bus
arbitration; (b)
centralized
arbitration with
priority levels; (c)
decentralized bus
arbitration.
(Adapted from
[Tanenbaum,
1999]).

Arbiter Bus grant

Bus request

0 1 2 n. . .

(a)

Arbiter

Bus grant level 0

Bus request level 0

0 1 2 n. . .

(b)

Bus grant

Bus request

0 1 2 n. . .

(c)
Busy
+5V

Bus grant level k

Bus request level k...

Types of I/O Control

• Programmed I/O = polling

• Interrupt driven.

• DMA = Direct Memory Access.

• Channel I/O: uses dedicated I/O processors.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Chapter 8: Input and Output8-10

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Programmed I/O
Flowchart for a
Disk Transfer

Check status of disk

Disk ready?
No

Yes

Send data from
memory to disk (when
writing) or from disk

to memory (when
reading).

Done?
No

Yes

Continue

Enter

Chapter 8: Input and Output8-11

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Interrupt Driven
I/O Flowchart

for a Disk
Transfer

Transfer data between
disk and memory.

Done?
No

Yes

Continue

Return from interrupt.
Normal processing

resumes.

Do other processing,
until disk issues an

interrupt.

Interrupt causes current
processing to stop.

Issue read or write
request to disk.

Enter

Chapter 8: Input and Output8-12

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

DMA Transfer from Disk to Memory
Bypasses the CPU

CPU DiskMemory

Without DMA With DMA

Bus

Chapter 8: Input and Output8-13

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

DMA Flowchart for a Disk Transfer

CPU executes
another process

Continue

DMA device begins
transfer independent of

CPU

DMA device
interrupts CPU
when finished

CPU sets up disk for
DMA transfer

Enter

Buffering

• Many I/O devices have on-board memory.

• Communication can be done at memory-to-
memory speeds.

• More expensive, requires local controller.

• I/O becomes more like networking.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Next Time

• Performance Metrics

• Trends

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

