CMSC 313 Lecture 25

- Registers
- Memory Organization
- DRAM

Four-Bit Register

• Makes use of tri-state buffers so that multiple registers can gang their outputs to common output lines.

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

A-75

Principles of Computer Architecture by M. Murdocca and V. Heuring

A Serial Multiplier

Example of Multiplication Using Serial Multiplier

Functional Behavior of a RAM Cell

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

7-4

Principles of Computer Architecture by M. Murdocca and V. Heuring

7-5

A Four-Word Memory with Four Bits per Word in a 2D Organization

Principles of Computer Architecture by M. Murdocca and V. Heuring

A Simplified Representation of the Four-Word by Four-Bit RAM

Principles of Computer Architecture by M. Murdocca and V. Heuring

Principles of Computer Architecture by M. Murdocca and V. Heuring

Decoder

Principles of Computer Architecture by M. Murdocca and V. Heuring

Two Four-Word by Four-Bit RAMs are Used in Creating a Four-Word by Eight-Bit RAM

Principles of Computer Architecture by M. Murdocca and V. Heuring

7-9

Two Four-Word by Four-Bit RAMs Make up an Eight-Word by Four-Bit RAM

Principles of Computer Architecture by M. Murdocca and V. Heuring

7-10

Chapter 7: Memory

Single-In-Line Memory Module

Adapted from(Texas Instruments, MOS Memory: Commercial and Military **Specifications Data** Book, Texas Instruments, Literature **Response Center**, P.O. Box 172228, Denver, Colorado, 1991.)

7-11

PIN NOMENCLATURE	
A0-A9	Address Inputs
CAS	Column-Address Strobe
DQ1-DQ8	Data In/Data Out
NC	No Connection
RAS	Row-Address Strobe
V _{cc}	5-V Supply
V _{ss}	Ground
W	Write Enable

Principles of Computer Architecture by M. Murdocca and V. Heuring

Types of Random Access Memory

Static RAM (SRAM)

- \diamond Each bit is stored in a type of flip-flop
- O Typically takes four or six transistors per bit
- So Faster, but takes up more space in a chip
- \diamond Retains information as long as power is supplied
- Not to be confused with flash memory in digital cameras (EEPROMs)

• Dynamic RAM (DRAM)

- \diamond Each bit is stored in a capacitor
- \diamond Uses one capacitor and one transistor per bit
- Slower, but takes up less space in a chip
- Must be refreshed periodically (milliseconds), since the capacitor leaks

DRAM

• A DRAM memory cell Word Line Capacitor GND Bit Line

- Word line selects cell for reading or writing
- To write, the bit line is charged with logic 1 or 0
- To read, sensitive amplifier circuits detect small changes in bit line.
- Reading discharges the capacitor.

http://www.arstechnica.com/paedia/r/ram_guide/figure4.gif

 $\Theta \Theta \Theta$

DRAM Read Cycle

- 1. Row address placed on the address bus.
- 2. Row Address Strobe (RAS) is asserted, allowing the row address to latch.
- 3. Row address decoder selects proper row.
- 4. Write Enable (WE) disabled.
- 5. Column address placed on the address bus.
- 6. Column Address Strobe (CAS) is activated, allowing the column address to latch.
- 7. Once the CAS signal has stabilized, sensing amplifiers places data from the selected row & column on data bus.
- 8. RAS and CAS deactivated. Cycle begins again.

DRAM Read

 $\Theta \Theta \Theta$

DRAM

• DRAM is asynchronous, ignores system bus clock.

- ◊ tRAC = Row Access Time = delay from RAS assertion until data is ready
- tCAC = Column Access Time = delay from CAS assertion until data is ready
- DRAM access is slooooow
- Each memory access must wait for time it takes to activate and deactivate RAS.
- Fast Page Mode (FPM) DRAM allows successive reads from the same row without deactivating RAS.
- Extended Data Out (EDO) DRAM overlaps CAS assertion and data reads.

Fast Page Mode Read

EDO Read

 $\Theta \Theta \Theta$

Synchronous DRAM (SDRAM)

- Uses system bus clock.
- Current models run at 433MHz (still much slower than CPU).
- Burst mode allows fast successive reads from the same row. (Good way to read in a cache line!)
- Double Data Rate (DDR) SDRAM provides data on the positive and negative edges of the clock.

SDRAM Read

Next Time

Cache Memory

UMBC, CMSC313, Richard Chang <chang@umbc.edu>