
CMSC 313 Lecture 23

• Recap: Mealy vs Moore finite state machines

• Finite state machine design & simplification
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Example: Modulo-4 Counter
• Counter has a clock input (CLK) and  a RESET input.

•  Counter has two output lines, which take on values of 00, 01, 10,
and 11 on subsequent clock cycles.
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Outputs 00 only when reset is high
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Mealy vs Moore Finite State Machines

• Mealy: output depends on input and state bits

Combinational
Logic

Flip
Flops

input output

• Moore: output depends only on state bits

Combinational
Logic

Flip
Flops

input output

Combinational
Logic
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Example: A Vending Machine
Controller

• Example: Design a finite state machine for a vending machine
controller that accepts nickels (5 cents each), dimes (10 cents
each), and quarters (25 cents each). When the value of the money
inserted equals or exceeds twenty cents, the machine vends the
item and returns change if any, and waits for next transaction.

• Implement with PLA and D flip-flops.
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Vending Machine State Transition
Diagram
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Vending Machine State Table and
State Assignment
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PLA Vending Machine Controller
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Simplifying Finite State Machines

• State Reduction: equivalent FSM with fewer states

• State Assignment: choose an assignment of bit 
patterns to states (e.g., B is 010) that results in a 
smaller circuit

• Choice of flip-flops: use D flip-flops, J-K flip-flops or 
a T flip-flops? a good choice could lead to simpler 
circuits.
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Example: A Sequence Detector
• Example: Design a machine that outputs a 1 when exactly two of

the last three inputs are 1.

• e.g. input sequence of 011011100 produces an output sequence
of  001111010.

• Assume input is a 1-bit serial line.

• Use D flip-flops and 8-to-1 Multiplexers.

• Start by constructing a state transition diagram (next slide).
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Sequence Detector State Transition
Diagram

• Design a machine that
outputs a 1 when ex-
actly two of the last
three inputs are 1.
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Sequence Detector State Table
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Sequence Detector State Assignment
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Sequence Detector
s2 s1 s0 x s2' s1' s0' z

0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 0 1 1 0
7 0 1 1 1 1 0 0 0
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1
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Sequence Detector
s2 s1 s0 x s2' s1' s0' z
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Sequence Detector
s2 s1 s0 x s2' s1' s0' z

0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
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Sequence Detector
s2 s1 s0 x s2' s1' s0' z

0 0 0 0 0 0 0 1 0
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State Reduction
• Description of state machine M0 to be reduced.
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State Reduction Algorithm
1. Use a 2-dimensional table — an entry for each pair of states.
2. Two states are "distinguished" if:

a. States X and Y of a finite state machine M are 
distinguished if there exists an input r such that the output of 
M in state X reading input r is different from the output of M 
in state Y reading input r.
b. States X and Y of a finite state machine are distinguished if 
there exists an input r such that M in state X reading input r 
goes to state X', M in state Y reading input r goes to state Y' 
and we already know that X' and Y' are distinguished states.

3. For each pair (X,Y), check if X and Y are distinguished using 
the definition above.

4. At the end of the algorithm, states that are not found to be 
distinguished are in fact equivalent.
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State Reduction Table

• An x entry indicates that the pair of states are 
known to be distinguished.

• A & B are equivalent, C & D are equivalent
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State Reduction Algorithm Performance

• As stated, the algorithm takes O(n4) time for a FSM 
with n states, because each pass takes O(n2) time 
and we make at most O(n2) passes.

• A more clever implementation takes O(n2) time.
• The algorithm produces a FSM with the fewest 

number states possible.

• Performance and correctness can be proven.
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Next Time

• more finite state machine design
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