
CMSC 313 Lecture 23

• Recap: Mealy vs Moore finite state machines

• Finite state machine design & simplification

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Appendix A: Digital LogicA-59

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Example: Modulo-4 Counter
• Counter has a clock input (CLK) and a RESET input.

• Counter has two output lines, which take on values of 00, 01, 10,
and 11 on subsequent clock cycles.

3-bit
Synchronous

Counter

0 0 0 0 1 0 1 1 0 0RESET q0

4 3 2 1 04 3 2 1 0 Time (t)Time (t)

0 1 0 1 0

D

Q

Q

CLK

s0

s1

D

Q

Q

q1

s0

s1

Appendix A: Digital LogicA-60

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

State
Transition

Diagram for
Mod-4

Counter

A B1/00

0/01

1/00

Output 00
state

Output 01
state

RESET

q1

C D

Output 10
state

Output 11
state

q0

0/10
1/00

0/00

0/11

1/00

Mod 4 Counter Timing

Clock

Reset

s1

s0

q1

q0

Outputs 00 only when reset is high

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Mealy vs Moore Finite State Machines

• Mealy: output depends on input and state bits

Combinational
Logic

Flip
Flops

input output

• Moore: output depends only on state bits

Combinational
Logic

Flip
Flops

input output

Combinational
Logic

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Appendix A: Digital LogicA-70

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Example: A Vending Machine
Controller

• Example: Design a finite state machine for a vending machine
controller that accepts nickels (5 cents each), dimes (10 cents
each), and quarters (25 cents each). When the value of the money
inserted equals or exceeds twenty cents, the machine vends the
item and returns change if any, and waits for next transaction.

• Implement with PLA and D flip-flops.

Appendix A: Digital LogicA-71

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Vending Machine State Transition
Diagram

A B D

C

0 ¢ 5 ¢ 15 ¢

10 ¢

N/000

Q/101

Q/110

N = Nickel
D = Dime
Q = Quarter

N/100 D/110

Q/111

D/000

N/000

D/100
Q/111

D/000 N/000

A dime is
inserted

1/0 = Dispense/Do not
dispense merchandise

1/0 = Return/Do not return
a nickel in change

1/0 = Return/Do not
return a dime in change

Appendix A: Digital LogicA-72

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Vending Machine State Table and
State Assignment

N
00 01

A B/000 C/000

P.S.

Input

B
C
D

C/000 D/000
D/000 A/100
A/100 A/110

(a)

D
10

A/110
A/101
A/111
B/111

Q N

00 01

A:00 01/000 10/000

P.S.

Input

10/000 11/000
11/000 00/100
00/100 00/110

(b)

D

10

00/110
00/101
00/111
01/111

Q

B:01
C:10
D:11

s1s0

x1x0 x1x0 x1x0

z2z1z0s1s0 /

Appendix A: Digital LogicA-73

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

PLA Vending Machine Controller
s1 s0 x1 x0

s1 s0 z2 z1 z0

0

1

2

4

5

6

8

9

10

12

13

14

(c)

5 × 5
PLA

z1
z0

x1
x0

(a)

DQ
s0

DQ
s1

CLK

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

1
0
0
d
0
1
0
d
1
0
0
d
0
0
1
d

0
0
1
d
0
0
1
d
0
1
1
d
1
1
1
d

0
0
1
d
0
0
0
d
0
0
1
d
0
1
1
d

0
0
0
d
0
0
1
d
0
0
1
d
0
0
1
d

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

s1 s0 x1 x0

Present
state C oin

0
1
0
d
1
1
0
d
1
0
0
d
0
0
0
d

s1 s0 z2 z1 z0

N ext
state

D ispense
R eturn nickel

Base 10
equivalent

(b)

R eturn dim e

z2

Simplifying Finite State Machines

• State Reduction: equivalent FSM with fewer states

• State Assignment: choose an assignment of bit
patterns to states (e.g., B is 010) that results in a
smaller circuit

• Choice of flip-flops: use D flip-flops, J-K flip-flops or
a T flip-flops? a good choice could lead to simpler
circuits.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Appendix A: Digital LogicA-65

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Example: A Sequence Detector
• Example: Design a machine that outputs a 1 when exactly two of

the last three inputs are 1.

• e.g. input sequence of 011011100 produces an output sequence
of 001111010.

• Assume input is a 1-bit serial line.

• Use D flip-flops and 8-to-1 Multiplexers.

• Start by constructing a state transition diagram (next slide).

Appendix A: Digital LogicA-66

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector State Transition
Diagram

• Design a machine that
outputs a 1 when ex-
actly two of the last
three inputs are 1.

A

B
0/0

1/0

C

D

E

F

G

0/0

1/0

0/0

1/0

0/0

1/0

1/0

1/1

0/01/1

0/0

0/1

Appendix A: Digital LogicA-67

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector State Table

X

0 1

A B/0 C/0

Present state

Input

B
C
D
E

D/0 E/0
F/0 G/0
D/0 E/0
F/0 G/1

F D/0 E/1
G F/1 G/0

Appendix A: Digital LogicA-68

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector State Assignment

X
0 1

A: 000 001/0 010/0

Present state

Input

B: 001
C: 010
D: 011
E: 100

011/0 100/0
101/0 110/0
011/0 100/0
101/0 110/1

F: 101 011/0 100/1

S2S1S0 S2S1S0Z S2S1S0Z

G: 110 101/1 110/0

(a)

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

s0 x

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

s1

0
0
0
1
1
1
0
1
1
1
0
1
1
1
d
d

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

s2

(b)

0
1
1
0
0
1
1
0
0
1
1
0
0
1
d
d

1
0
1
0
1
0
1
0
1
0
1
0
1
0
d
d

0
0
0
0
0
0
0
0
0
1
0
1
1
0
d
d

zs0s1s2

Input and
state at
time t

Next state
and output at

time t+1

Sequence Detector
s2 s1 s0 x s2' s1' s0' z

0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 0 1 1 0
7 0 1 1 1 1 0 0 0
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 1 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d

0d00

1d11

11

11

10

10

00 01 11 10

00

01

11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x

s0

x

 __
s2’= (s0 + x)(s2 + s1 + s0)

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Sequence Detector
s2 s1 s0 x s2' s1' s0' z

0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 0 1 1 0
7 0 1 1 1 1 0 0 0
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 1 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d

1

d

d11

1111

00 01 11 10

00

01

11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x

s0

x

 __ _
s1’= s0 x + s0 x = s0 xor x

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Sequence Detector
s2 s1 s0 x s2' s1' s0' z

0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 0 1 1 0
7 0 1 1 1 1 0 0 0
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 1 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d

1111

1

d

d11

00 01 11 10

00

01

11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x

s0

x

 _
s0’ = x

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Sequence Detector
s2 s1 s0 x s2' s1' s0' z

0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 0 1 1 0
7 0 1 1 1 1 0 0 0
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 1 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d

1

1

1

d

d

00 01 11 10

00

01

11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x

s0

x

 __ _
z = s2 s1 x + s2 s1 x

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Appendix B: Reduction of Digital LogicB-29

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

State Reduction
• Description of state machine M0 to be reduced.

X

0 1

A C/0 E/1

Present state

Input

B

C

D

E

D/0 E/1

C/1 B/0

C/1 A/0

A/0 C/1

State Reduction Algorithm
1. Use a 2-dimensional table — an entry for each pair of states.
2. Two states are "distinguished" if:

a. States X and Y of a finite state machine M are
distinguished if there exists an input r such that the output of
M in state X reading input r is different from the output of M
in state Y reading input r.
b. States X and Y of a finite state machine are distinguished if
there exists an input r such that M in state X reading input r
goes to state X', M in state Y reading input r goes to state Y'
and we already know that X' and Y' are distinguished states.

3. For each pair (X,Y), check if X and Y are distinguished using
the definition above.

4. At the end of the algorithm, states that are not found to be
distinguished are in fact equivalent.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

UMBC, CMSC 313, Richard Chang <chang@umbc.edu>

A

B

C

E

0/1

0/0

0/0

0/0

1/0

1/0

1/1

1/1

State Reduction Example: original transition diagram

D

1/1

0/1

State Reduction Table

• An x entry indicates that the pair of states are
known to be distinguished.

• A & B are equivalent, C & D are equivalent

x

x

xxx

xxx

E

D

C

B

A

EDCBA

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

UMBC, CMSC 313, Richard Chang <chang@umbc.edu>

AB

CD

E

0/1

0/0

0/0

1/1

1/1

State Reduction Example: reduced transition diagram

1/0

State Reduction Algorithm Performance

• As stated, the algorithm takes O(n4) time for a FSM
with n states, because each pass takes O(n2) time
and we make at most O(n2) passes.

• A more clever implementation takes O(n2) time.
• The algorithm produces a FSM with the fewest

number states possible.

• Performance and correctness can be proven.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Next Time

• more finite state machine design

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

