
CMSC 313 Lecture 20

• More Karnaugh Map examples

• Quine-McCluskey (Tabular Reduction)
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Last Time

• Combinational logic components

• Introduction to Karnaugh Maps

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



Notes on K-maps

• Also works for POS

• Takes 2n time for formulas with n variables

• Only optimizes two-level logic
Reduces number of terms, then number of literals in each term

• Assumes inverters are free

• Does not consider minimizations across functions
• Circuit minimization is generally a hard problem

• Quine-McCluskey can be used with more variables

• CAD tools are available if you are serious
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Circuit Minimization is Hard

• Unix systems store passwords in encrypted form.
User types in x, system computes f(x) and looks for f(x) in a file.

• Suppose we us 64-bit passwords and I want to find 
the password x, such that f(x) = y. Let
    gi(x) = 0 if f(x) = y and the ith bit of x is 0
               1 otherwise.

• If the ith bit of x is 1, then gi(x) outputs 1 for every x 
and has a very, very simple circuit.

• If you can simplify every circuit quickly, then you 
can crack passwords quickly.
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Appendix B: Reduction of Digital LogicB-16

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

3-Level Majority Circuit
• K-Map Reduction results in a reduced two-level circuit (that is,

AND followed by OR.  Inverters are not included in the two-level
count). Algebraic reduction can result in multi-level circuits with
even fewer logic gates and fewer inputs to the logic gates.

M
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Karnaugh Maps

Implicant: rectangle with 1, 2, 4, 8, 16 ... 1’s

Prime Implicant: an implicant that cannot be 
extended into a larger implicant

Essential Prime Implicant: the only prime implicant 
that covers some 1

K-map Algorithm (not from M&H): 

1. Find ALL the prime implicants. Be sure to check 
every 1 and to use don’t cares.

2. Include all essential prime implicants.

3. Try all possibilities to find the minimum cover for 
the remaining 1’s.
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CMSC 313 Computer Organization & Assembly Language Programming Section 0101
Fall 2004 Homework 4

Due: Thursday, November 18, 2003

1. (10 points) Question 3.9, page 96, Murdocca & Heuring

2. (10 points) Question 3.14, page 97, Murdocca & Heuring

3. (10 points) Question A.12, page 494, Murdocca & Heuring

4. (50 points) In the following, the notation
∑

m(x1, . . . , xj) indicates a Boolean function
that is the sum of the minterms x1, . . . , xj , where xi is the ith minterm in canonical
ordering — i.e., the ith row of the truth table where the input values are ordered as
binary numbers. Similarly,

∑
m(x1, . . . , xj) + d(y1, . . . , yk)

indicates a Boolean function that is the sum of the minterms x1, . . . , xj and whose
values for rows y1, . . . , yk of the truth table are don’t cares.

Minimize the following functions using Karnaugh maps. Then, write down a Boolean
formula in sum-of-products or product-of-sums form for each function. Show your
work (including the Karnaugh maps).

(a) f(A,B,C,D) =
∑

m(0, 1, 2, 8, 9, 14, 15)

(b) f(A,B,C,D) =
∑

m(0, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 15)

(c) f(A,B,C,D) =
∑

m(2, 3, 4, 5, 6, 7, 8, 9, 10, 13)

(d) f(A,B,C,D) =
∑

m(4, 12, 13, 14, 15) + d(0, 3, 5, 8)

(e) f(A,B,C,D) =
∑

m(0, 2, 4, 8, 10, 12, 13) + d(5, 14, 15)



Appendix B: Reduction of Digital LogicB-14

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Five-Variable K-Map
• Visualize two 4-variable K-maps stacked one on top of the other;

groupings are made in three dimensional cubes.
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Appendix B: Reduction of Digital LogicB-15
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Six-Variable K-Map
• Visualize four 4-variable K-maps stacked one on top of the other;

groupings are made in three dimensional cubes.
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Appendix B: Reduction of Digital LogicB-19
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Truth Table with Don’t Cares

• A truth table repre-
sentation of a single
function with don’t
cares.
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Appendix B: Reduction of Digital LogicB-20
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Tabular (Quine-McCluskey) Reduction
• Tabular reduction be-

gins by grouping
minterms for which F
is nonzero according
to the number of 1’s in
each minterm. Don’t
cares are considered
to be nonzero.

• The next step forms a
consensus (the logical
form of a cross prod-
uct) between each pair
of adjacent groups for
all terms that differ in
only one variable.
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Appendix B: Reduction of Digital LogicB-21
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Table of Choice
• The prime implicants form a set that completely covers the func-

tion, although not necessarily minimally.

• A table of choice is used to obtain a minimal cover set.
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Appendix B: Reduction of Digital LogicB-22
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Reduced Table of Choice
• In a reduced table of choice, the essential prime implicants and

the minterms they cover are removed, producing the eligible set .

• F = ABC + ABC + BD + AD
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Appendix B: Reduction of Digital LogicB-23
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Multiple Output Truth Table
• The power of tabular reduction comes into play for multiple func-

tions, in which minterms can be shared among the functions.
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Appendix B: Reduction of Digital LogicB-24
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Multiple Output Table of Choice
F0(A,B,C) = ABC + BC

F1(A,B,C) = AC + AC + BC

F2(A,B,C) = B
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