CMSC 313 Lecture 19

e Combinational Logic Components
e Programmable Logic Arrays
e Karnaugh Maps

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Last Time & Before

e Returned midterm exam

e Half adders & full adders

e Ripple carry adders vs carry lookahead adders
e Propagation delay

e Multiplexers

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

(A-27 Appendix A: Digital Logic \

Multiplexer

£ Do 700 AB | F

% D; —01 L

S D, —10 00 | b,

0 Dy —11 01 D,
- 10 | D,
B 11 | D,
A B

Control Inputs

F= ABD,+ ABD,+ ABD, + ABD,

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj

[/ A-31

Fo
Fi1

Appendix A: Digital Logic \

Demultiplexer
00— Fo D AB | Fp Fi F, Fg
01— F,

10— F, 0 00| 00O00O
11— F, 001]| 0000
010 0000
N 011 | 0000
A B 1 0 O 1 0 0O
1 01| 0100
DAB F,= DAB 110 0010
- 1 11| 00 01

DAB Fs3 = DAB

\Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuringjj

[(A-32

Gate-Level Implementation of DEMUX

Appendix A: Digital Logic \

AYPAN

A B

\Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuringjj

[[A-33

Decoder

Enable = 1
A B D, D; D, Dj
OO_Do
A 01— D, 00 1 00 O
o w—o |00 010
Enable 1 D 11 000 1
D,= AB D, = AB D, = AB

\Principles of Computer Architecture by M. Murdocca and V. Heuring

Appendix A: Digital Logic \

Enable = 0
A B D, D; D, Dg
0O O 00O
0 1 O 00O
1 O O 00O
1 1 O 00O
Ds; = AB

© 1999 M. Murdocca and V. Heuringjj

Gate-Level Implementation of Decoder

o

AD } D,
> o
Enable j_ ;

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. H

/ A-34 Appendix A: Digital Logic

eurin

~

[/ A-35

* Note that the en-
able input is not
always present.
We use it when
discussing de-
coders for
memory.

Decoder Implementation of Majority

Function

000
001—

010[—

Appendix A: Digital Logic \

011
100

101

110

111

\Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuringjj

[/ A-36

Appendix A: Digital Logic \

* An encoder translates a set of inputs into a binary encoding.
e Can be thought of as the converse of a decoder.
« A priority encoder imposes an order on the inputs.
* A. has a higher priority than A .
! JHer priorty i Ao AL Ay As | Fo Fy
00 00|00
000111
Ay —1 00 00 10|10
A, — 01 — Fy 0011|10
_| | 01 00|01
A7 10 P 010101
A 11 01 10|01
011101
1000|000
—— — — 1001|000
Fo = AAA + AAK 10 10|00
_ AA N 1011[00
Fi = AcAcAs + Aoy 11000 0
110100
1110[00
111100

\Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuringjj

[/ A-37

AND-OR Implementation of Priority

>

Appendix A: Digital Logic \

Encoder

>

Fo

>

— >
— >

Fy

1717

cca and V. Heuringjj

\Principles of Computer Architecture by M. Murdocca and V. Heuring

[/ A-38 A B C Appendix A: Digital Logic \
L L[
Programmable |Y|Y|Y
|
. =5 R
Logic Array =7
o ‘__J .
L. — ﬁ .
« APLAis a i =
customizable AND === \
matrix followed by S —
a customizable =L/) h
OR matrix | ==) < .
* Black box view of = i .
PLA: —
A — | F \/ =/
B — PLA 0 Fuses i il
c— — F ' _ - T
AND matrix

Fo

I:l
© 1999 M. Murdocca and V. Heuringjj

[/ A-39

Simplified

Representation

of PLA

Implementation

of Majority
Function

Appendix A: Digital Logic

—o—@ ® ABC
® ® AB C
® ® ABC
® \ 4 ABC

\Principles of Computer Architecture by M. Murdocca and V. Heuring

JUUUUUUU

Fo F1
(Majority) (Unused)

© 1999 M. Murdocca an

eurin

~

(A-41 Appendix A: Digital Logic \

Full Adder

>
o
O
wm
0
3

-

Full
adder

cue Y
S

R P P, O O0OO0OO0O
P PO OPF FLF OO
R OPF, OF OF O
P OOk OF Fk O
R P, OFLr O OO

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj

[[A-43

PLA Realization
of Full Adder

\Principles of Computer Architecture by M. Murdocca and V. Heuring

Appendix A: Digital Logic \

JUUUUUUU

4
@
4
4
®
L J
®
Sum Cout

© 1999 M. Murdocca and V. Heuringjj

/[B-3

Appendix B: Reduction of Digital Logic \

Reduction (Simplification) of Boolean
Expressions

o It is usually possible to simplify the canonical SOP (or POS)
forms.

» A smaller Boolean equation generally translates to a lower gate
count in the target circuit.

 We cover three methods: algebraic reduction, Karnaugh map re-
duction, and tabular (Quine-McCluskey) reduction.

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj

[B-7 Appendix B: Reduction of Digital Logic \

Karnaugh Maps: Venn Diagram Rep-
resentation of Majority Function

« Each distinct region in the “Universe” represents a minterm.

* This diagram can be transformed intoa Karnaugh Map .

ABC

ABC AB'C
S~

K

\/

A'BC ABC

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring)/

/ B-8 Appendix B: Reduction of Digital Logic \

K-Map for Majority Function

* Place a “1” in each cell that corresponds to that minterm.

* Cells on the outer edge of the map “wrap around”

Minterm| A B C F AB OO Ol 11 10
Index C

Ol 0O O O 0

110 0 1 0

21 0 1 O 0 O 1

310 1 1 1

411 0 O 0

511 0 1 1

6|1 10| 1 1 1 1 1

711 1 1 1

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj

// B-9

- 00 01
C

11

Appendix B: Reduction of Digital Logic \

Adjacency Groupings for Majority
Function

10

8

1 (1

©

1)

«F=BC+AC +AB

\Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuringjj

/ B-10 Appendix B: Reduction of Digital Logic \

Minimized AND-OR Majority Circuit

A B C

=Dt

LT

- F=BC+AC+AB

* The K-map approach yields the same minimal two-level form as
the algebraic approach.

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj

/f B-11

CD
00

01
11

10

00

K-Map Groupings

« Minimal grouping is on the left, non-minimal (but logically equiva-
lent) grouping is on the right.

« To obtain minimal grouping, create smallest groups first. —ﬂ

AB

01 11 10

D

a

©
aDa

F =

ABC + ACD +
ABC + ACD

\Principles of Computer Architecture by M. Murdocca and V. Heuring

Appendix B: Reduction of Digital Logic \

AB
00 01 11 10
CD

00 (1\2

‘Hciab
11 3@ _1> @]
: o

F=BD+ ABC + ACD +
ABC + ACD

© 1999 M. Murdocca and V. Heuringjj

Richard Chang

Example Requiring More Rules

AB —A
o 00 O

11
gok
0o
)
4 0

0
0

00

o)

11

0
1

3
2

7
6

10
0
0
0

B

0
0
10/ O

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

[(B-12

CD

00

01

11

10

Appendix B: Reduction of Digital Logic \

K-Map Corners are Logically Adjacent

AB

00 01 11 10

Y]

ST

F=BCD + BD + AB

\Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuringjj

/ B-13 Appendix B: Reduction of Digital Logic \

K-Maps and Don’t Cares

* There can be more than one minimal grouping, as a result of

don’t cares.
AB AB
00 01 11 10 00 01 11 10
CD CD

0] D ani® ;
NapEREGE
S o[
10| d 10 m

F=BCD + BD F=ABD + BD

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj

Gray Code

e Two bits: 00, 01, 11, 10
 Three bits: 000, 001, 011, 010, 110, 111, 101, 100
e Successive bit patterns only differ at 1 position

e For Karnaugh maps, adjacent 1's represent
minterms that can be simplified using the rule:
ABC’ + A’‘BC’ = (A + A")BC’ = 1BC’ = BC’

AB | A |

c. 00 0 1 10
0 (1 1)

1

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Karnaugh Maps

= Implicant: rectangle with 1, 2, 4, 8, 16 ... I’s

~ Prime Implicant: an implicant that cannot be
extended into a larger implicant

~ Essential Prime Implicant: the only prime implicant
that covers some 1

< K-map Algorithm (not from M&H):

1. Find ALL the prime implicants. Be sure to check
every 1 and to use don’t cares.

2. Include all essential prime implicants.

3. Try all possibilities to find the minimum cover for
the remaining 1's.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

CD
00

o)

11

10

K-map Example

Q)

o | ol o |fa.

11
0
1
q/
0

B

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

AB | A |
cD 00 01 11 10
ool d |1 0“1\
o o | 1](1] 1)

B 3 1 15 11 D
nojdi|ld| O
C 2 [14 1 -
jo 0 !b 0 1

| B |
A’B + AC'D + AB’D’

Notes on K-maps

e Also works for POS

e Takes 21N time for formulas with n variables
e Only optimizes two-level logic

-~ Reduces number of terms, then number of literals in each term

e Assumes inverters are free

* Does not consider minimizations across functions

e Circuit minimization is generally a hard problem

* Quine-McCluskey can be used with more variables
e CAD tools are available if you are serious

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Circuit Minimization is Hard

e Unix systems store passwords in encrypted form.

o User types in x, system computes f(x) and looks for f(x) in a file.

e Suppose we us 64-bit passwords and | want to find
the password x, such that f(x) = y. Let

gi(x) = 0 if f{x) = y and the ith bit of x is 0
1 otherwise.

o |f the ith bit of x is 1, then gj(x) outputs 1 for every x
and has a very, very simple circuit.

e If you can simplify every circuit quickly, then you
can crack passwords quickly.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

/ B-16 Appendix B: Reduction of Digital Logic \

3-Level Majority Circult

« K-Map Reduction results in a reduced two-level circuit (that is,
AND followed by OR. Inverters are not included in the two-level
count). Algebraic reduction can result in multi-level circuits with
even fewer logic gates and fewer inputs to the logic gates.

A B

o Ao

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj

AB
CD

00

01

11

10

00

12

01

13

11

15

11

10

14

10

AB
CD

00

01

11

10

00

12

01

13

11

15

11

10

14

10

AB
CD

00

01

11 10

00

12

01

13

11

15

11

10

14

10

AB
CD

00

01

11 10

00

12

01

13

11

15

11

10

14

10

AB
CD

00

01

11

10

00

12

01

13

11

15

11

10

14

10

AB
CD

00

01

11

10

00

12

01

13

11

15

11

10

14

10

