
CMSC 313 Lecture 19

• Combinational Logic Components

• Programmable Logic Arrays
• Karnaugh Maps

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Last Time & Before

• Returned midterm exam

• Half adders & full adders
• Ripple carry adders vs carry lookahead adders

• Propagation delay

• Multiplexers

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Appendix A: Digital LogicA-27

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Multiplexer

0
0
1
1

0
1
0
1

A B

D0

D1

D2

D3

FD0

A

D1

D2

D3

B

F

00
01

10
11

F = A B D
0

+ A B D
1

+ A B D
2

+ A B D
3

D
at

a
In

pu
ts

Control Inputs

Appendix A: Digital LogicA-31

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Demultiplexer

F0

A

F1

F2

F3

B

00

01
10

11

D

F 0 = D A B

F 1 = D A B

F 2 = D A B

F 3 = D A B

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

A B

0
0
0
0
1
0
0
0

F0

0
0
0
0
0
1
0
0

F1

0
0
0
0
0
0
1
0

F2

0
0
0
0
0
0
0
1

F3

0
0
0
0
1
1
1
1

D

Appendix A: Digital LogicA-32

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Gate-Level Implementation of DEMUX

A B

F0

F1

F2

F3

D

Appendix A: Digital LogicA-33

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Decoder

D0

A D1

D2

D3

B

00
01

10
11

0
0
1
1

0
1
0
1

A B

1
0
0
0

D0

0
1
0
0

D1

0
0
1
0

D2

0
0
0
1

D3

D3 = A BD1 = A B D2 = A BD0 = A B

Enable

Enable = 1

0
0
1
1

0
1
0
1

A B

0
0
0
0

D0

0
0
0
0

D1

0
0
0
0

D2

0
0
0
0

D3

Enable = 0

Appendix A: Digital LogicA-34

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Gate-Level Implementation of Decoder

A

B

D0

D1

D2

D3

Enable

Appendix A: Digital LogicA-35

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Decoder Implementation of Majority
Function

A

C
M

000
001

010
011

B
100
101

110
111

• Note that the en-
able input is not
always present.
We use it when
discussing de-
coders for
memory.

Appendix A: Digital LogicA-36

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Priority Encoder
• An encoder translates a set of inputs into a binary encoding.
• Can be thought of as the converse of a decoder.
• A priority encoder imposes an order on the inputs.
• Ai has a higher priority than A i+1

0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
1
1
1
1
0
0
0
0
0
0
0
0

F0 F1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

A0

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

A1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

A2

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

A3

F0

F1

00
01

10
11

A0

A1

A2

A3

F0 = A0 A1 A3 + A0 A1 A2

F1 = A0 A2 A3 + A0 A1

Appendix A: Digital LogicA-37

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

AND-OR Implementation of Priority
Encoder

F0
A1

A2

A3

F1

A0

Appendix A: Digital LogicA-38

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Programmable
Logic Array

F0

A B C

Fuses

F1

AND matrix

OR matrix

• A PLA is a
customizable AND
matrix followed by
a customizable
OR matrix.

• Black box view of
PLA:

A
B
C

PLA
F0

F1

Appendix A: Digital LogicA-39

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Simplified
Representation

of PLA
Implementation

of Majority
Function

F0

A B C

F1

(Majority)

A B C

A B C

A B C

A B C

(Unused)

Appendix A: Digital LogicA-41

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Full Adder

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Bi Ci

0
0
0
0
1
1
1
1

Ai

0
1
1
0
1
0
0
1

Si

0
0
0
1
0
1
1
1

Ci+1

Full
adder

Bi Ai

Ci

Ci+1

Si

Appendix A: Digital LogicA-43

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

PLA Realization
of Full Adder

Sum

A B Cin

Cout

Appendix B: Reduction of Digital LogicB-3

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Reduction (Simplification) of Boolean
Expressions

• It is usually possible to simplify the canonical SOP (or POS)
forms.

• A smaller Boolean equation generally translates to a lower gate
count in the target circuit.

• We cover three methods: algebraic reduction, Karnaugh map re-
duction, and tabular (Quine-McCluskey) reduction.

Appendix B: Reduction of Digital LogicB-7

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Karnaugh Maps: Venn Diagram Rep-
resentation of Majority Function

• Each distinct region in the “Universe” represents a minterm.

• This diagram can be transformed into a Karnaugh Map .

ABC

ABC’ AB’CAB’C’

A’BC

A’BC’ A’B’C

A’B’C’
B

A

C

Appendix B: Reduction of Digital LogicB-8

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

K-Map for Majority Function
• Place a “1” in each cell that corresponds to that minterm.

• Cells on the outer edge of the map “wrap around”

A B C FMinterm

Index

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

0

1

2

3

4

5

6

7

1

0

0-side 1-side

0

A balance tips to the left or
right depending on whether

there are more 0’s or 1’s.

00 01 11 10

0

1

AB
C

1

11 1

Appendix B: Reduction of Digital LogicB-9

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Adjacency Groupings for Majority
Function

• F = BC + AC + AB

00 01 11 10

0

1

AB
C

1

11 1

Appendix B: Reduction of Digital LogicB-10

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Minimized AND-OR Majority Circuit

• F = BC + AC + AB

• The K-map approach yields the same minimal two-level form as
the algebraic approach.

F

A B C

Appendix B: Reduction of Digital LogicB-11

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

K-Map Groupings
• Minimal grouping is on the left, non-minimal (but logically equiva-

lent) grouping is on the right.

• To obtain minimal grouping, create smallest groups first.

00 01 11

1

01

11

11

10
AB

1

CD

10

00

01 11

01

11

10
CD

10

00

00
AB

1

1

1

1

1

2

3

4

1

11

1

1

1

1

1

2

4

5
1

F = A B C + A C D +
 A B C + A C D

F = B D + A B C + A C D +
 A B C + A C D

3

Richard Chang

Example Requiring More Rules

0000

1100

01

00

10

11

00 01 11 10

00

01

11

10

AB
CD 11

A

B

D

C

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Appendix B: Reduction of Digital LogicB-12

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

K-Map Corners are Logically Adjacent

00 01 11

1

1

1

01

11

1

1

1

1

1

10
AB

1

CD

00

10

F = B C D + B D + A B

Appendix B: Reduction of Digital LogicB-13

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

K-Maps and Don’t Cares
• There can be more than one minimal grouping, as a result of

don’t cares.

00 01 11

1

01

11

11

10
AB

1

CD

10 d

00 d

F = B C D + B D

01 11

1

01

11

11

10

1

CD

10 d

00 d

00
AB

F = A B D + B D

1 1

Gray Code

• Two bits: 00, 01, 11, 10

• Three bits: 000, 001, 011, 010, 110, 111, 101, 100
• Successive bit patterns only differ at 1 position

• For Karnaugh maps, adjacent 1’s represent
minterms that can be simplified using the rule:
 ABC’ + A’BC’ = (A + A’)BC’ = 1 BC’ = BC’

00 01 11 10

0

1

AB
C 11

A

B

1 1

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Karnaugh Maps

Implicant: rectangle with 1, 2, 4, 8, 16 ... 1’s

Prime Implicant: an implicant that cannot be
extended into a larger implicant

Essential Prime Implicant: the only prime implicant
that covers some 1

K-map Algorithm (not from M&H):

1. Find ALL the prime implicants. Be sure to check
every 1 and to use don’t cares.

2. Include all essential prime implicants.

3. Try all possibilities to find the minimum cover for
the remaining 1’s.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

K-map Example

1010

0dd0

11

10

10

1d

00 01 11 10

00

01

11

10

AB
CD 11

A

B

D

C

1010

0dd0

11

10

10

1d

00 01 11 10

00

01

11

10

AB
CD 11

A

B

D

C

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

 A’B + AC’D + AB’D’

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Notes on K-maps

• Also works for POS

• Takes 2n time for formulas with n variables

• Only optimizes two-level logic
Reduces number of terms, then number of literals in each term

• Assumes inverters are free

• Does not consider minimizations across functions
• Circuit minimization is generally a hard problem

• Quine-McCluskey can be used with more variables

• CAD tools are available if you are serious

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Circuit Minimization is Hard

• Unix systems store passwords in encrypted form.
User types in x, system computes f(x) and looks for f(x) in a file.

• Suppose we us 64-bit passwords and I want to find
the password x, such that f(x) = y. Let
 gi(x) = 0 if f(x) = y and the ith bit of x is 0
 1 otherwise.

• If the ith bit of x is 1, then gi(x) outputs 1 for every x
and has a very, very simple circuit.

• If you can simplify every circuit quickly, then you
can crack passwords quickly.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Appendix B: Reduction of Digital LogicB-16

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

3-Level Majority Circuit
• K-Map Reduction results in a reduced two-level circuit (that is,

AND followed by OR. Inverters are not included in the two-level
count). Algebraic reduction can result in multi-level circuits with
even fewer logic gates and fewer inputs to the logic gates.

M

A B C

10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

AB

CD 11

A

B

D

C

10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

AB

CD 11

A

B

D

C

10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

AB

CD 11

A

B

D

C

10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

AB

CD 11

A

B

D

C

10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

AB

CD 11

A

B

D

C

10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

AB

CD 11

A

B

D

C

