
CMSC 313 Lecture 19

• Combinational Logic Components

• Programmable Logic Arrays
• Karnaugh Maps
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Last Time & Before

• Returned midterm exam

• Half adders & full adders
• Ripple carry adders vs carry lookahead adders

• Propagation delay

• Multiplexers
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Demultiplexer
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Gate-Level Implementation of DEMUX
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Decoder
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Gate-Level Implementation of Decoder
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Decoder Implementation of Majority
Function
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• Note that the en-
able input is not
always present.
We use it when
discussing de-
coders for
memory.
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Priority Encoder
• An encoder translates a set of inputs into a binary encoding.
• Can be thought of as the converse of a decoder.
• A priority encoder imposes an order on the inputs.
• Ai has a higher priority than A i+1
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AND-OR Implementation of Priority
Encoder
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Programmable
Logic Array
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• A PLA is a
customizable AND
matrix followed by
a customizable
OR matrix.

• Black box view of
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Simplified
Representation

of PLA
Implementation

of Majority
Function
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Full Adder
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PLA Realization
of Full Adder
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Reduction (Simplification) of Boolean
Expressions

• It is usually possible to simplify the canonical SOP (or POS)
forms.

•  A smaller Boolean equation generally translates to a lower gate
count in the target circuit.

•  We cover three methods: algebraic reduction, Karnaugh map re-
duction, and tabular (Quine-McCluskey) reduction.
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Karnaugh Maps: Venn Diagram Rep-
resentation of Majority Function

• Each distinct region in the “Universe” represents a minterm.

•  This diagram can be transformed into a Karnaugh Map .
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K-Map for Majority Function
• Place a “1” in each cell that corresponds to that minterm.

•  Cells on the outer edge of the map “wrap around”
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Adjacency Groupings for Majority
Function

• F = BC + AC + AB
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Minimized AND-OR Majority Circuit

• F = BC + AC + AB

• The K-map approach yields the same minimal two-level form as
the algebraic approach.
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K-Map Groupings
• Minimal grouping is on the left, non-minimal (but logically equiva-

lent) grouping is on the right.

• To obtain minimal grouping, create smallest groups first.
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Example Requiring More Rules
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K-Map Corners are Logically Adjacent
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K-Maps and Don’t Cares
• There can be more than one minimal grouping, as a result of

don’t cares.
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Gray Code

• Two bits: 00, 01, 11, 10

• Three bits: 000, 001, 011, 010, 110, 111, 101, 100
• Successive bit patterns only differ at 1 position

• For Karnaugh maps, adjacent 1’s represent 
minterms that can be simplified using the rule:
   ABC’ + A’BC’ = (A + A’)BC’ = 1 BC’ = BC’
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Karnaugh Maps

Implicant: rectangle with 1, 2, 4, 8, 16 ... 1’s

Prime Implicant: an implicant that cannot be 
extended into a larger implicant

Essential Prime Implicant: the only prime implicant 
that covers some 1

K-map Algorithm (not from M&H): 

1. Find ALL the prime implicants. Be sure to check 
every 1 and to use don’t cares.

2. Include all essential prime implicants.

3. Try all possibilities to find the minimum cover for 
the remaining 1’s.
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K-map Example
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Notes on K-maps

• Also works for POS

• Takes 2n time for formulas with n variables

• Only optimizes two-level logic
Reduces number of terms, then number of literals in each term

• Assumes inverters are free

• Does not consider minimizations across functions
• Circuit minimization is generally a hard problem

• Quine-McCluskey can be used with more variables

• CAD tools are available if you are serious

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



Circuit Minimization is Hard

• Unix systems store passwords in encrypted form.
User types in x, system computes f(x) and looks for f(x) in a file.

• Suppose we us 64-bit passwords and I want to find 
the password x, such that f(x) = y. Let
    gi(x) = 0 if f(x) = y and the ith bit of x is 0
               1 otherwise.

• If the ith bit of x is 1, then gi(x) outputs 1 for every x 
and has a very, very simple circuit.

• If you can simplify every circuit quickly, then you 
can crack passwords quickly.
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3-Level Majority Circuit
• K-Map Reduction results in a reduced two-level circuit (that is,

AND followed by OR.  Inverters are not included in the two-level
count). Algebraic reduction can result in multi-level circuits with
even fewer logic gates and fewer inputs to the logic gates.
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