
CMSC 313 Lecture 16

• Announcement: no office hours today.

• Good-bye Assembly Language Programming
• Overview of second half on Digital Logic

• DigSim Demo

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Good-bye Assembly Language

• What a pain!

• Understand pointers better
• Execution environment of Unix processes

the stack

virtual memory

• Linking & loading

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Appendix A: Digital LogicA-3

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Some Definitions
• Combinational logic: a digital logic circuit in which logical deci-

sions are made based only on combinations of the inputs. e.g. an
adder.

• Sequential logic: a circuit in which decisions are made based on
combinations of the current inputs as well as the past history of
inputs. e.g. a memory unit.

• Finite state machine: a circuit which has an internal state, and
whose outputs are functions of both current inputs and its inter-
nal state. e.g. a vending machine controller.

Appendix A: Digital LogicA-4

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Combinational
logic unit

. . .

i0
i1

in

. . .

f0
f1

fm

(i0, i1)
(i1, i3, i4)

(i9, in)

The Combinational Logic Unit
• Translates a set of inputs into a set of outputs according to one or

more mapping functions.

• Inputs and outputs for a CLU normally have two distinct (binary)
values: high and low, 1 and 0, 0 and 1, or 5 V and 0 V for example.

• The outputs of a CLU are strictly functions of the inputs, and the
outputs are updated immediately after the inputs change. A set of
inputs i 0 – in are presented to the CLU, which produces a set of
outputs according to mapping functions f 0 – fm.

Chapter 3: Arithmetic3-6

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Ripple Carry Adder
• Two binary numbers A and B are added from right to left, creating

a sum and a carry at the outputs of each full adder for each bit po-
sition.

Full
adder

b0 a0

s0

Full
adder

b1 a1

s1

Full
adder

b2 a2

s2

Full
adder

b3 a3

c4

s3

0
c0c1c2c3

Appendix A: Digital LogicA-45

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Classical Model of a Finite State
Machine

• An FSM is com-
posed of a com-
binational logic
unit and delay
elements (called
flip-flops) in a
feedback path,
which maintains
state informa-
tion.

Synchronization
signal

Combinational
logic unit

. . .

. . .

Inputs Outputs

Delay elements (one per state bit)

. . .

D0Q0

DnQn

. . .

. . .

s0

sn

io

ik

fo

fm

State bits

Appendix A: Digital LogicA-71

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Vending Machine State Transition
Diagram

A B D

C

0 ¢ 5 ¢ 15 ¢

10 ¢

N/000

Q/101

Q/110

N = Nickel
D = Dime
Q = Quarter

N/100 D/110

Q/111

D/000

N/000

D/100
Q/111

D/000 N/000

A dime is
inserted

1/0 = Dispense/Do not
dispense merchandise

1/0 = Return/Do not return
a nickel in change

1/0 = Return/Do not
return a dime in change

Course Syllabus
We will follow two textbooks: Principles of Computer Architecture, by Murdocca and Heuring, and Linux

Assembly Language Programming, by Neveln. The following schedule outlines the material to be covered
during the semester and specifies the corresponding sections in each textbook.

CMSC 313, Computer Organization & Assembly Language Programming, Section 0101 Fall 2004

Date Topic M&H Neveln Assign Due
Th 09/02 Introduction & Overview 1.1-1.8 1.1-1.6
Tu 09/07 Data Representation I 2.1-2.2, 3.1-3.3 2.4-2.7, 3.6-3.8 HW1
Th 09/09 Data Representation II
Tu 09/14 i386 Assembly Language I 3.10-3.13, 4.1-4.8 HW2 HW1
Th 09/16 i386 Assembly Language II 6.1-6.5 Proj1
Tu 09/21 i386 Assembly Language III HW2
Th 09/23 i386 Assembly Language IV Proj2 Proj1
Tu 09/28 Examples
Th 09/30 Machine Language 5.1-5.7 Proj3 Proj2
Tu 10/05 Compiling, Assembling & Linking 5.1-5.3
Th 10/07 Subroutines 7.1-7.4
Tu 10/12 The Stack & C Functions
Th 10/14 Linux Memory Model 7.7 8.1-8.8 Proj4 Proj3
Tu 10/19 Interrupts & System Calls 9.1-9.8
Th 10/21 Cache Memory 7.6 Proj4
Tu 10/26 Midterm Exam
Th 10/28 Introduction to Digital Logic A.1-A.3 3.1-3.3 DigSim1
Tu 11/02 Transistors & Logic Gates A.4-A.7
Th 11/04 Circuits for Addition 3.5 HW3 DigSim1
Tu 11/09 Combinational Logic Components A.10
Th 11/11 Circuit Simplification I B.1-B.2 HW4 HW3
Tu 11/16 Flip Flops I A.11
Th 11/18 Flip Flops II DigSim2 HW4
Tu 11/23 Finite State Machines A.12-A.13
Th 11/25 Thanksgiving break
Tu 11/30 Circuit Simplification II B.3 HW5 DigSim2
Th 12/02 Finite State Machine Design
Tu 12/07 Registers & Memory A.14-15, 7.1-7.5 DigSim3 HW5
Th 12/09 I/O 8.1-8.3
Tu 12/14 TBA DigSim3
Tu 12/21 Final Exam 10:30am-12:30pm

Appendix A: Digital LogicA-5

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

0
0

1

1

0
1

0

1

A B

0
1

1

0

Z

Inputs Output

Switch A Switch B

“Hot”

GND

Light Z

A Truth Table
• Developed in 1854 by George Boole.

• Further developed by Claude Shannon (Bell Labs).

• Outputs are computed for all possible input combinations (how
many input combinations are there?)

• Consider a room with two light switches. How must they work?

Appendix A: Digital LogicA-6

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Alternate Assignment of Outputs to
Switch Settings

• We can make the assignment of output values to input combi-
nations any way that we want to achieve the desired input-out-
put behavior.

0
0
1
1

0
1
0
1

A B

1
0
0
1

Z

Inputs Output

Appendix A: Digital LogicA-7

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Truth Tables Showing All Possible
Functions of Two Binary Variables

• The more fre-
quently used func-
tions have names:
AND, XOR, OR,
NOR, XOR, and
NAND. (Always
use upper case
spelling.)

0

0

1

1

0

1

0

1

0

0

0

0

0

0

0

1

0

0

1

0

0

0

1

1

0

1

0

0

0

1

0

1

0

1

1

0

0

1

1

1

A B False AND A B XOR OR

0

0

1

1

0

1

0

1

1

0

0

0

1

0

0

1

1

0

1

0

1

0

1

1

1

1

0

0

1

1

0

1

1

1

1

0

1

1

1

1

A B NOR XNOR A + B NAND True

AB AB

B A A + B

Inputs Outputs

Inputs Outputs

Appendix A: Digital LogicA-8

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Logic Gates and Their Symbols

• Logic symbols
shown for AND, OR,
buffer, and NOT
Boolean functions.

• Note the use of the
“inversion bubble.”

• (Be careful about
the “nose” of the
gate when drawing
AND vs. OR.)

A

B
F = A B

A
0
0
1
1

B
0
1
0
1

F
0
0
0
1

AND

A
0
0
1
1

B
0
1
0
1

F
0
1
1
1

OR

A

B
F = A + B

A
0
1

F
0
1

Buffer

A
0
1

F
1
0

NOT (Inverter)

A F = A A F = A

Appendix A: Digital LogicA-9

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Logic Gates and their Symbols (cont’)

A

B

A
0
0
1
1

B
0
1
0
1

F
1
1
1
0

NAND

A
0
0
1
1

B
0
1
0
1

F
1
0
0
0

NOR

A

B
F = A B F = A + B

A
0
0
1
1

B
0
1
0
1

F
0
1
1
0

Exclusive-OR (XOR)

A

B
F = A ⊕ B

A
0
0
1
1

B
0
1
0
1

F
1
0
0
1

Exclusive-NOR (XNOR)

A

B
F = A ⊕ B.

Appendix A: Digital LogicA-10

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Variations of Logic Gate Symbols

(a) 3 inputs (b) A Negated input (c) Complementary outputs

A
B
C

F = ABC

(a) (b)

A

B
F = A + B

(c)

A + B

A + BA

B

Appendix A: Digital LogicA-14

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Tri-State Buffers
• Outputs can be 0, 1, or “electrically disconnected.”

C
0
0
1
1

A
0
1
0
1

F
ø
ø
0
1

Tri-state buffer

C
0
0
1
1

A
0
1
0
1

F
0
1
ø
ø

Tri-state buffer, inverted control

A F = A C

C

A

C

F = A C

F = ø F = ø
or or

Appendix A: Digital LogicA-18

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sum-of-Products Form: The Majority
Function

• The SOP form for the 3-input majority function is:

M = ABC + ABC + ABC + ABC = m3 + m5 + m6 + m7 = Σ (3, 5, 6, 7).
• Each of the 2 n terms are called minterms , ranging from 0 to 2 n - 1.
• Note relationship between minterm number and boolean value.

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
0
0
1
1
1
1

A

0
0
0
1
0
1
1
1

F

0
1
2
3
4
5
6
7

A balance tips to the left or
right depending on whether
there are more 0’s or 1’s.

0-side 1-side

1

00

Minterm
Index

Appendix A: Digital LogicA-19

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

AND-OR Implementation of Majority

• Gate count is
8, gate input
count is 19.

F

A B C

A B C

A B C

A B C

A B C

Appendix A: Digital LogicA-20

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Notation Used at Circuit Intersections

No connection

No connection

Connection

Connection

Sum of Products (a.k.a. disjunctive normal form)

• OR (i.e., sum) together rows with output 1

• AND (i.e., product) of variables represents each row

e.g., in row 3 when x1 = 0 AND x2 = 1 AND x3 = 1

or when x1 · x2 · x3 = 1

• MAJ3(x1, x2, x3) = x1x2x3+x1x2x3+x1x2x3+x1x2x3 =
∑

m(3, 5, 6, 7)

x1 x2 x3 MAJ3

0 0 0 0 0

1 0 0 1 0

2 0 1 0 0

3 0 1 1 1

4 1 0 0 0

5 1 0 1 1

6 1 1 0 1

7 1 1 1 1

� � � � 1

Product of Sums (a.k.a. conjunctive normal form)

• AND (i.e., product) of rows with output 0

• OR (i.e., sum) of variables represents negation of each row

e.g., NOT in row 2 when x1 = 1 OR x2 = 0 OR x3 = 1

or when x1 + x2 + x3 = 1

• MAJ3(x1, x2, x3) = (x1+x2+x3)(x1+x2+x3)(x1+x2+x3)(x1+x2+x3)

=
∏

M(0, 1, 2, 4)

x1 x2 x3 MAJ3

0 0 0 0 0

1 0 0 1 0

2 0 1 0 0

3 0 1 1 1

4 1 0 0 0

5 1 0 1 1

6 1 1 0 1

7 1 1 1 1

� � � � 2

Appendix A: Digital LogicA-21

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

OR-AND Implementation of Majority

F

A B C

A + B + C

A + B + C

A + B + C

A + B + C

Equivalences

• Every Boolean function can be written as a truth table

• Every truth table can be written as a Boolean formula (SOP or POS)

• Every Boolean formula can be converted into a combinational circuit

• Every combinational circuit is a Boolean function

• Later you might learn other equivalencies:

finite automata ≡ regular expressions

computable functions ≡ programs

� � � � 3

Universality

• Every Boolean function can be written as a Boolean formula using AND,

OR and NOT operators.

• Every Boolean function can be implemented as a combinational circuit

using AND, OR and NOT gates.

• Since AND, OR and NOT gates can be constructed from NAND gates,

NAND gates are universal.

� � � � 4

Appendix A: Digital LogicA-17

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

All-NAND Implementation of OR
• NAND alone implements all other Boolean logic gates.

A

B
 A + B

A

B

 A + B

Appendix A: Digital LogicA-16

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

DeMorgan’s Theorem

0
0
1
1

0
1
0
1

A B

1
1
1
0

1
1
1
0

1
0
0
0

1
0
0
0

= =A B A + B A + B A B

A

B
F = A + B

A + B = A + B = A BDeMorgan’s theorem:

A

B
F = A B

DigSim

• Java applet/application that simulates digital logic

• Not for industrial use, good enough for us

• Advantages: FREE, runs on most platforms

• Disadvantages: slow, timing issues, saving issues

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

CMSC 313, Computer Organization & Assembly Language Programming Section 0101
Fall 2004

DigSim Assignment 1: Getting Started
Due: Thursday November 4, 2004

Objective
The objective of this assignment is to make sure that everyone has access to DigSim and, most

importantly, can save DigSim circuits for submission.

Assignment
Using DigSim, wire up the following circuit diagram, play with the switches, create a text box with

your name, and save the circuit diagram.

Turning in your program
The file which has your circuit diagram should be a plain text file that starts with something like:

Digsim file
version 1 0
describe component ThreeOrPort
 pos 31 15

Use a text editor to look at the file and make sure that the file is not empty and has some data similar
to the above. Next, use DigSim to load the file and make sure that this still works. If all is well, submit
the circuit file using the Unix submit command as in previous assignments. The submission name for
this assignment is :digsim1.The UNIX command to do this should look something like:

submit cs313_0101 digsim1 majority3.sim

Next time

• Transistors & Gates

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

