
CMSC 313 Lecture 14

• Reminder: Midterm Exam next Tues (10/26)

• Project 4 Questions
• Virtual Memory on Linux/Pentium platform

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

CMSC 313, Computer Organization & Assembly Language Programming Fall 2004

Project 4: An Error-Correcting Code, Part 2 Due: Thursday October 21, 2004

Objective

The objective of this programming exercise is to practice writing assembly language programs that use
the C function call conventions.

Assignment

Modify your assembly language program from Project 3 so that it can be called from a C program as a C
function with the following function prototype:

char *encode(char *A, int n, int *mptr) ;

Here A is a pointer to a sequence of bytes in memory that should be encoded into the Hamming Code format
from Project 3. The parameter n is the number of bytes in A. The result of the codewords must be stored in
a memory location that is dynamically allocated. Your assembly language program must call malloc() to
obtain a block of memory of the correct size. The address of this block of memory is the return value from
encode(). The size of the block must be stored in the location specified by mptr.

Your program must work with the C main program p4main.c which is available in the following
directory in the GL file system:

/afs/umbc.edu/users/c/h/chang/pub/cs313

This C program reads bytes from stdin and stores them in a dynamically allocated memory location. It
then calls your encode() function and writes the resulting codewords to stdout. Thus, if your assembly
language implementation of encode() works correctly, the program resulting from compiling it with
p4main.c behaves exactly like the encoding program in Project 3.

If you cannot convert your assembly language program from Project 3 (e.g., if your program for Project
3 does not work), then you must implement a similar encode() function that copies the bytes in A, but
inserts the byte 0xFF after every three bytes. It must also pad the resulting memory block with 0xFF so
the total length is divisible by 4. Implementing this version of the project will incur a 10% penalty.

Implementation Notes

• Look up malloc() if you haven't used it in a while. Remember that calling malloc() from your
assembly language program will clobber the EAX, ECX and EDX registers.

• You should check for the possibility that malloc() returns 0 because the system does not have as
much memory as you have requested.

• You will most likely need to use the EBX, ESI and EDI registers. You should push them on the stack
to save them. Remember that when you pop them off the stack, you must pop them off in the
opposite order.

• You will need to pre-compute the size of the memory block that holds the resulting codewords. Look
up the DIV instruction. Note that it does not support many addressing modes.

• Your program should not alter the sequence of bytes given to you. This might change the way you
handle the "extra bytes" at the end.

• As in Project 3, you can use decode, corrupt and diff to check if your program produced the
correct results.

Turning in your program

Use the UNIX submit command on the GL system to turn in your project. You should submit two files:
1) the assembly language program and 2) the typescript file of sample runs of your program. The class name
for submit is cs313_0101. The name of the assignment name is proj4. The UNIX command to do this
should look something like:

submit cs313_0101 proj4 p4encode.asm typescript

Last Time: Virtual Memory

• Not enough physical memory
Uses disk space to simulate extra memory

Pages not being used can be swapped out
(how and when you’ll learn in CMSC 421 Operating Systems)

Thrashing: pages constantly written to and retrieved from disk
(time to buy more RAM)

• Fragmentation
Contiguous blocks of virtual memory do not have to map to
contiguous sections of real memory

• Memory protection
Each process has its own page table

Shared pages are read-only

User processes cannot alter the page table (must be supervisor)

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 9

3 2 1 011 10 9 815 14 13 1231 30 29 28 27

Page offsetVirtual page number

Virtual address

3 2 1 011 10 9 815 14 13 1229 28 27

Page offsetPhysical page number

Physical address

Translation

Virtual Addressing

❑ Page faults are costly and take millions of cycles to process (disks are slow)
❑ 80386 Page attributes:

➨ RW: read and write permission
➨ US: User mode or kernel mode only access
➨ PP: present bit to indicate where the page is

Address of Page

31 12 11 0

P
P

W
R

U
S

12

Richard Chang
12 bit offset => 4k pages
20 bits virtual page #
 => 2^20 = 1 M of pages

4 bytes per entry in the page table => 4 MB to store the complete page table.

That's 4MB per process (!!!), since each process has its own page table.

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 10

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not
present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

Page Table

Page table:
★ Resides in main memory
★ One entry per virtual page
★ No tag is required since it

covers all virtual pages
★ Point directly to physical page
★ Table can be very large
★ Operating sys. may maintain

one page table per process
★ A dirty bit is used to track

modified pages for copy back

Hardware supported

Indicates whether the
virtual page is in
main memory or not

Richard Chang

Richard Chang
12 bit page offset => 4 kbyte page size
20 bit virtual page number
 => 2^20 = 1 MB of pages

4 bytes per entry in the table
 => 4 MB to store the page table

That's 4MB per process (!!!), since each process has its own page table.

This is silly since most processes won't use 4GigB of memory, so do not need 1M page table entries.

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 11

Page Table
Table

1024 Page Tables. . .
. . .

1024
pages

. . .

1024
pages

. . .

1024
pages

Linux 2-Level Page Table

Index into
Page Table Table

Index into
Page Table Index into Page

31 22 21 12 11 0

CR3 register

"The CR3 register is designated for pointing to the first level page table
"The CR3 is part of the task state that needs to be saved at preemption

Richard Chang
The Page Table Table uses 4kbytes of memory. It has 1024 entries, each taking 4 bytes.

The page tables also take 4kbytes.

This is convenient, why??

Ans: unused page tables can be swapped out to disk.

3-20

PROTECTED-MODE MEMORY MANAGEMENT

3.7.1. Linear Address Translation (4-KByte Pages)

Figure 3-12 shows the page directory and page-table hierarchy when mapping linear addresses
to 4-KByte pages. The entries in the page directory point to page tables, and the entries in a page
table point to pages in physical memory. This paging method can be used to address up to 220

pages, which spans a linear address space of 232 bytes (4 GBytes).

To select the various table entries, the linear address is divided into three sections:

• Page-directory entry—Bits 22 through 31 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a page table.

Table 3-3. Page Sizes and Physical Address Sizes

PG Flag,
CR0

PAE Flag,
CR4

PSE Flag,
CR4

PS Flag,
PDE

PSE-36 CPUID
Feature Flag Page Size

Physical
Address Size

0 X X X X — Paging Disabled

1 0 0 X X 4 KBytes 32 Bits

1 0 1 0 X 4 KBytes 32 Bits

1 0 1 1 0 4 MBytes 32 Bits

1 0 1 1 1 4 MBytes 36 Bits

1 1 X 0 X 4 KBytes 36 Bits

1 1 X 1 X 2 MBytes 36 Bits

Figure 3-12. Linear Address Translation (4-KByte Pages)

0

Directory Table Offset

Page Directory

Directory Entry

CR3 (PDBR)

Page Table

Page-Table Entry

4-KByte Page

Physical Address

31 21 111222
Linear Address

1024 PDE * 1024 PTE = 220 Pages32*

10

12

10

*32 bits aligned onto a 4-KByte boundary.

20

3-23

PROTECTED-MODE MEMORY MANAGEMENT

page-directory entries when 4-MByte pages and 32-bit physical addresses are being used. The
functions of the flags and fields in the entries in Figures 3-14 and 3-15 are as follows:

Page base address, bits 12 through 32
(Page-table entries for 4-KByte pages.) Specifies the physical address of the
first byte of a 4-KByte page. The bits in this field are interpreted as the 20 most-
significant bits of the physical address, which forces pages to be aligned on
4-KByte boundaries.

(Page-directory entries for 4-KByte page tables.) Specifies the physical
address of the first byte of a page table. The bits in this field are interpreted as
the 20 most-significant bits of the physical address, which forces page tables to
be aligned on 4-KByte boundaries.

Figure 3-14. Format of Page-Directory and Page-Table Entries for 4-KByte Pages
and 32-Bit Physical Addresses

31

Available for system programmer’s use
Global page (Ignored)
Page size (0 indicates 4 KBytes)
Reserved (set to 0)

12 11 9 8 7 6 5 4 3 2 1 0

P
S

P
CA0

Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

D
P

P
W
T

U
/
S

R
/

W
GAvailPage-Table Base Address

31

Available for system programmer’s use
Global Page
Page Table Attribute Index
Dirty

12 11 9 8 7 6 5 4 3 2 1 0

P
CAD

Accessed
Cache Disabled
Write-Through
User/Supervisor
Read/Write
Present

D
P

P
W
T

U
/
S

R
/

W
AvailPage Base Address

Page-Directory Entry (4-KByte Page Table)

Page-Table Entry (4-KByte Page)

P
A
T

G

Richard Chang
Use User/Supervisor

Richard Chang
Read/ Writ ite

Richard Chang
Present

Richard Chang
Us User/ er/Superv upervisor

Richard Chang
Read/Wr /Write

Richard Chang
Present

Chapter 7: Memory7-33

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Segmentation
• A segmented memory allows two users to share the same word

processor code, with different data spaces:

Address space for
code segment of
word processor

Data space
for user #0

Data space
for user #1

Used

Used

Used

Free

Free

Unused

Segment #0
Execute only

Segment #1
Read/write by

user #0

Segment #2
Read/write by

user #1

Chapter 7: Memory7-35

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Translation Lookaside Buffer
• An example TLB holds 8 entries for a system with 32 virtual

pages and 16 page frames.

Valid
Virtual page

number
Physical

page number

1

1

0

0

1

0

1

0

0 1 0 0 1 1 1 0 0

1 0 1 1 1 1 0 0 1

- - - - - - - - -

- - - - - - - - -

0 1 1 1 0 0 0 0 0

- - - - - - - - -

0 0 1 1 0 0 1 1 1

- - - - - - - - -

Virtual Memory: Problems Solved

• Not enough physical memory
Uses disk space to simulate extra memory

Pages not being used can be swapped out
(how and when you’ll learn in CMSC 421 Operating Systems)

Thrashing: pages constantly written to and retrieved from disk
(time to buy more RAM)

• Fragmentation
Contiguous blocks of virtual memory do not have to map to
contiguous sections of real memory

• Memory protection
Each process has its own page table

Shared pages are read-only

User processes cannot alter the page table (must be supervisor)

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Virtual Memory: too slow?

• Address translation is done in hardware
In the middle of the fetch execute cycle for:

MOV EAX, [buffer]

the physical address of buffer is computed in hardware.

• Recently computed page locations are cached in
the translation lookaside buffer (TLB)

• Page faults are very expensive (millions of cycles)

• Operating systems for personal computers have
only recently added memory protection

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Next

• Interrupts

• Cache Memory

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

