
CMSC 313 Lecture 13

• Project 3 Questions

• Project 4
• C functions continued

• Virtual Memory

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

CMSC 313, Computer Organization & Assembly Language Programming Fall 2004

Project 3: An Error-Correcting Code Due: Thursday October 14, 2004

Objective

The objectives of this programming project are 1) for you to gain familiarity with data manipulation at the bit
level and 2) for you to write more complex assembly language programs.

Background

In Project 2, we saw that checksums can be used detect corrupted files. However, there is not much we can do
after we have detected the corruption. An error-correcting code is able to fix errors, not just detect them.

In this project, we will use a 31-bit Hamming code that can correct a 1-bit error in each 32-bit codeword. Each
32-bit codeword encodes 3 bytes of the original data. The format of the codeword is shown on the next page.

Assignment

Write an assembly language program that encodes the input file using the codeword format described below. As in
Project 2, use Unix input and output redirection:

./a.out <ifile >ifile.ham

Some details:

• Your program must read a block of bytes from the input. You should not read from the input one byte at a
time or three bytes at a time. (That would be terribly inefficient.)

• You may assume that when the operating system returns with 0 bytes read that the end of the input file has
been reached. On the other hand, you may not assume that the end of the file has been reached when the
operating system gives you fewer bytes than your block size. Similarly, you may not assume that the
operating system will comply with your request for a number of input bytes that is divisible by 3.

• The 32-bit codewords must be written out in little-endian format.

The C source code for two programs decode.c and corrupt.c are provided in the GL file system in the
directory: /afs/umbc.edu/users/c/h/chang/pub/cs313. These two programs can be used to decode an
encoded file and to corrupt an encoded file. You can use these programs to check if your program is working
correctly. Both programs use I/O redirection.

Record some sample runs of your program using the Unix script command. You should show that you can
encode a file using your program, then decode it and obtain a file that is identical to the original. Use the Unix diff
command to compare the original file with the decoded file. You should also show that this works when the file is
corrupted.

Implementation Notes

• The parity flag PF is set to 1 if the result of an instruction contains an even number of 1's. Unfortunately,
PF only looks at the lowest 8 bits of the result. For this project, you will need to compute 32-bit parities.
Here's a simple way to comput the parity of the EAX register.

 mov ebx,eax
 shr eax,16
 xor ax,bx
 xor al,ah
 jp even_label

Note that the EAX and EBX registers are modified in this process, so you may need to use different registers.

• A main issue in this project is handling the "extra characters" at the end of a block of input after you have
processed all the 3-byte "groups". E.g., if your block size 128, then you will have 2 characters left over after
processing 42 three-byte groups (42 x 3 = 126). These 2 extra characters must be grouped with the first
character of the next block (if there is a next block). Think about this situation before you begin coding.

• Another main issue is the last 32-bit word output by your program. Note that the bits m1 and m0 must be set
before you compute the parity bits p4, p3, p2, p1 and p0.

Turning in your program

Use the UNIX submit command on the GL system to turn in your project. You should submit two files: 1) the
assembly language program and 2) the typescript file of sample runs of your program. The class name for submit is
cs313_0101. The name of the assignment name is proj3. The UNIX command to do this should look something
like:

submit cs313_0101 proj3 encode.asm typescript

Codeword format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

a7 a6 a5 a4 a3 a2 a1 a0 b7 b6 b5 b4 b3 b2 b1 p4 b0 c7 c6 c5 c4 c3 c2 p3 c1 c0 m1 p2 m0 p1 p0 0

bit 0 is not used and always holds a 0.

1st byte of data = a7 a6 a5 a4 a3 a2 a1 a0

2nd byte of data = b7 b6 b5 b4 b3 b2 b1 b0

3rd byte of data = c7 c6 c5 c4 c3 c2 c1 c0

p4, p3, p2, p1 and p0 are used to ensure that these bit positions have an even number of 1’s:

p0: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

p1: 2 3 6 7 10 11 14 15 18 19 22 23 26 27 30 31

p2: 4 5 6 7 12 13 14 15 20 21 22 23 28 29 30 31

p3: 8 9 10 11 12 13 14 15 24 25 26 27 28 29 30 31

p4: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

m1 and m0 are only used in the last word of the encoded file. They depend on the original
file size (in number of bytes).

m1 m0 = 00 if the file size mod 3 is 0
m1 m0 = 01 if the file size mod 3 is 1
m1 m0 = 10 if the file size mod 3 is 2

CMSC 313, Computer Organization & Assembly Language Programming Fall 2004

Project 4: An Error-Correcting Code, Part 2 Due: Thursday October 21, 2004

Objective

The objective of this programming exercise is to practice writing assembly language programs that use
the C function call conventions.

Assignment

Modify your assembly language program from Project 3 so that it can be called from a C program as a C
function with the following function prototype:

char *encode(char *A, int n, int *mptr) ;

Here A is a pointer to a sequence of bytes in memory that should be encoded into the Hamming Code format
from Project 3. The parameter n is the number of bytes in A. The result of the codewords must be stored in
a memory location that is dynamically allocated. Your assembly language program must call malloc() to
obtain a block of memory of the correct size. The address of this block of memory is the return value from
encode(). The size of the block must be stored in the location specified by mptr.

Your program must work with the C main program p4main.c which is available in the following
directory in the GL file system:

/afs/umbc.edu/users/c/h/chang/pub/cs313

This C program reads bytes from stdin and stores them in a dynamically allocated memory location. It
then calls your encode() function and writes the resulting codewords to stdout. Thus, if your assembly
language implementation of encode() works correctly, the program resulting from compiling it with
p4main.c behaves exactly like the encoding program in Project 3.

If you cannot convert your assembly language program from Project 3 (e.g., if your program for Project
3 does not work), then you must implement a similar encode() function that copies the bytes in A, but
inserts the byte 0xFF after every three bytes. It must also pad the resulting memory block with 0xFF so
the total length is divisible by 4. Implementing this version of the project will incur a 10% penalty.

Implementation Notes

• Look up malloc() if you haven't used it in a while. Remember that calling malloc() from your
assembly language program will clobber the EAX, ECX and EDX registers.

• You should check for the possibility that malloc() returns 0 because the system does not have as
much memory as you have requested.

• You will most likely need to use the EBX, ESI and EDI registers. You should push them on the stack
to save them. Remember that when you pop them off the stack, you must pop them off in the
opposite order.

• You will need to pre-compute the size of the memory block that holds the resulting codewords. Look
up the DIV instruction. Note that it does not support many addressing modes.

• Your program should not alter the sequence of bytes given to you. This might change the way you
handle the "extra bytes" at the end.

• As in Project 3, you can use decode, corrupt and diff to check if your program produced the
correct results.

Turning in your program

Use the UNIX submit command on the GL system to turn in your project. You should submit two files:
1) the assembly language program and 2) the typescript file of sample runs of your program. The class name
for submit is cs313_0101. The name of the assignment name is proj4. The UNIX command to do this
should look something like:

submit cs313_0101 proj4 p4encode.asm typescript

Linux/gcc/i386 Function Call Convention

• Parameters pushed right to left on the stack
first parameter on top of the stack

• Caller saves EAX, ECX, EDX if needed
these registers will probably be used by the callee

• Callee saves EBX, ESI, EDI
there is a good chance that the callee does not need these

• EBP used as index register for parameters, local
variables, and temporary storage

• Callee must restore caller’s ESP and EBP

• Return value placed in EAX

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

A typical stack frame for the
function call:

 int foo (int arg1, int arg2, int arg3) ;

ESP ==> .
.
.

Callee saved registers
EBX, ESI & EDI

(as needed)

temporary storage

local variable #2 [EBP - 8]

local variable #1 [EBP - 4]

EBP ==> Caller's EBP

Return Address

Argument #1 [EBP + 8]

Argument #2 [EBP + 12]

Argument #3 [EBP + 16]

Caller saved registers
EAX, ECX & EDX

(as needed)

.

.

.

Fig. 1

 int foo (int arg1, int arg2, int arg3) ;

; File: printf1.asm
;
; Using C printf function to print
;
; Assemble using NASM: nasm -f elf printf1.asm
;
; C-style main function.
; Link with gcc: gcc printf1.o
;

; Declare some external functions
;
 extern printf ; the C function, we'll call

 SECTION .data ; Data section

msg: db "Hello, world: %c", 10, 0 ; The string to print.

 SECTION .text ; Code section.

 global main
main:
 push ebp ; set up stack frame
 mov ebp,esp

 push dword 97 ; an 'a'
 push dword msg ; address of ctrl string
 call printf ; Call C function
 add esp, 8 ; pop stack

 mov esp, ebp ; takedown stack frame
 pop ebp ; same as "leave" op

 ret

linux3% nasm -f elf printf1.asm
linux3% gcc printf1.o

linux3% a.out
Hello, world: a
linux3% exit

; File: printf2.asm
;
; Using C printf function to print
;
; Assemble using NASM: nasm -f elf printf2.asm
;
; Assembler style main function.
; Link with gcc: gcc -nostartfiles printf2.asm
;

%define SYSCALL_EXIT 1

; Declare some external functions
;
 extern printf ; the C function, we'll call

 SECTION .data ; Data section

msg: db "Hello, world: %c", 10, 0 ; The string to print.

 SECTION .text ; Code section.

 global _start
_start:
 push dword 97 ; an 'a'
 push dword msg ; address of ctrl string
 call printf ; Call C function
 add esp, 8 ; pop stack

 mov eax, SYSCALL_EXIT ; Exit.
 mov ebx, 0 ; exit code, 0=normal
 int 080H ; ask kernel to take over

linux3% nasm -f elf printf2.asm
linux3% gcc -nostartfiles printf2.o
linux3%

linux3% a.out
Hello, world: a
linux3%

// File: arraytest.c
//
// C program to test arrayinc.asm
//

void arrayinc(int A[], int n) ;

main() {

int A[7] = {2, 7, 19, 45, 3, 42, 9} ;
int i ;

 printf ("sizeof(int) = %d\n", sizeof(int)) ;

 printf("\nOriginal array:\n") ;
 for (i = 0 ; i < 7 ; i++) {
 printf("A[%d] = %d ", i, A[i]) ;
 }
 printf("\n") ;

 arrayinc(A,7) ;

 printf("\nModified array:\n") ;
 for (i = 0 ; i < 7 ; i++) {
 printf("A[%d] = %d ", i, A[i]) ;
 }
 printf("\n") ;

}

linux3% gcc -c arraytest.c
linux3% nasm -f elf arrayinc.asm
linux3% gcc arraytest.o arrayinc.o
linux3%
linux3% a.out
sizeof(int) = 4

Original array:
A[0] = 2 A[1] = 7 A[2] = 19 A[3] = 45 A[4] = 3 A[5] = 42 A[6] = 9

Modified array:
A[0] = 3 A[1] = 8 A[2] = 20 A[3] = 46 A[4] = 4 A[5] = 43 A[6] = 10
linux3%

; File: arrayinc.asm
;
; A subroutine to be called from C programs.
; Parameters: int A[], int n
; Result: A[0], ... A[n-1] are each incremented by 1

 SECTION .text
 global arrayinc

arrayinc:
 push ebp ; set up stack frame
 mov ebp, esp

 ; registers ebx, esi and edi must be saved, if used
 push ebx
 push edi

 mov edi, [ebp+8] ; get address of A
 mov ecx, [ebp+12] ; get num of elts
 mov ebx, 0 ; initialize count

for_loop:
 mov eax, [edi+4*ebx] ; get array element
 inc eax ; add 1
 mov [edi+4*ebx], eax ; put it back
 inc ebx ; update counter
 loop for_loop

 pop edi ; restore registers
 pop ebx

 mov esp, ebp ; take down stack frame
 pop ebp

 ret

// File: cfunc3.c
//
// Example of C function calls disassembled
// Return values with more than 4 bytes
//

#include <stdio.h>

typedef struct {
 int part1, part2 ;
} stype ;

// a silly function
//
stype foo(stype r) {

 r.part1 += 4;
 r.part2 += 3 ;
 return r ;
}

int main () {
 stype r1, r2, r3 ;
 int n ;

 n = 17 ;
 r1.part1 = 74 ;
 r1.part2 = 75 ;
 r2.part1 = 84 ;
 r2.part2 = 85 ;
 r3.part1 = 93 ;
 r3.part2 = 99 ;

 r2 = foo(r1) ;

 printf ("r2.part1 = %d, r2.part2 = %d\n",
 r1.part1, r2.part2) ;

 n = foo(r3).part2 ;
}

 ;FILE "cfunc3.c"
gcc2_compiled.:
SECTION .text
 ALIGN 4
GLOBAL foo
 GLOBAL foo:function
foo: ; comments & spacing added
 push ebp ; set up stack frame
 mov ebp,esp

 mov eax, [ebp+8] ; addr to store return value
 add dword [ebp+12],4 ; r.part1 = [ebp+12]
 add dword [ebp+16],3 ; r.part2 = [ebp+16]

 ; return value
 ;
 mov edx, [ebp+12] ; get r.part1
 mov ecx, [ebp+16] ; get r.part2
 mov [eax],edx ; put r.part1 in return value
 mov [eax+4],ecx ; put r.part2 in return value
 jmp L1
L1:
 mov eax,eax ; does nothing
 leave ; bye-bye
 ret 4 ; pop 4 bytes after return
.Lfe1:

 GLOBAL foo:function (.Lfe1-foo)
SECTION .rodata
.LC0:
 db 'r2.part1 = %d, r2.part2 = %d',10,''
SECTION .text
 ALIGN 4
GLOBAL main
 GLOBAL main:function
main: ; comments & spacing added
 push ebp ; set up stack frame
 mov ebp,esp
 sub esp,36 ; space for local variables

 ; initialize variables
 ;
 mov dword [ebp-28],17 ; n = [ebp-28]
 mov dword [ebp-8],74 ; r1 = [ebp-8]
 mov dword [ebp-4],75
 mov dword [ebp-16],84 ; r2 = [ebp-16]
 mov dword [ebp-12],85
 mov dword [ebp-24],93 ; r3 = [ebp-24]
 mov dword [ebp-20],99

 ; call foo
 ;
 lea eax, [ebp-16] ; get addr of r2
 mov edx, [ebp-8] ; get r1.part1
 mov ecx, [ebp-4] ; get r1.part2
 push ecx ; push r1.part2
 push edx ; push r1.part1
 push eax ; push addr of r2
 call foo
 add esp,8 ; pop r1
 ; ret 4 popped r2's addr

 ; call printf
 ;
 mov eax, [ebp-12] ; get r2.part2
 push eax ; push it
 mov eax, [ebp-8] ; get r2.part1
 push eax ; push it
 push dword .LC0 ; string constant's addr
 call printf
 add esp,12 ; pop off arguments

 ; call foo again
 ;
 lea eax, [ebp-36] ; addr of temp variable
 mov edx, [ebp-24] ; get r3.part1
 mov ecx, [ebp-20] ; get r3.part2
 push ecx ; push r3.part2
 push edx ; push r3.part1
 push eax ; push addr of temp var
 call foo
 add esp,8 ; pop off arguments

 ; assign to n
 ;
 mov eax, [ebp-32] ; get part2 of temp var
 mov [ebp-28],eax ; store in n

L2:
 leave ; bye-bye
 ret
.Lfe2:
 GLOBAL main:function (.Lfe2-main)
 ;IDENT "GCC: (GNU) egcs-2.91.66 19990314/Linux (egcs-1.1.2
release)"

Memory Map

• Linux/gcc/i386 Function Call Convention

• Now we know where our C programs store their
data, right???

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

int global ;

int main() {

 int *ptr, n ;

 printf ("Address of main: %08x\n", &main) ;
 printf ("Address of global variable: %08x\n", &global) ;
 printf ("Address of local variable: %08x\n", &n) ;

 ptr = (int *) malloc(4) ;
 printf ("Address of allocated memory: %08x\n", ptr) ;
}

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 7

Linux
Kernel

3 Gig

4 Gig

Paging
System

Task
#2

0

3 Gig

Task
#3

0

3 Gig

Task
#n

0

3 Gig

RAM

Disk...

Linux Virtual Memory Space
" Linux reserves 1 Gig

memory in the virtual
address space

" The size of the Linux
kernel significantly affects
its performance
(swapping is expensive)

" Linux kernel can be
customized by including
only relevant modules

"Designating kernel space
facilitates protection of

"The portion of disk used
for paging is called the
swap space

Chapter 7: Memory7-3

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

The Memory Hierarchy

Registers

Cache

Main memory

Secondary storage (disks)

Off-line storage (tape)

Fast and expensive

Slow and inexpensive

Increasing
performance and
increasing cost

Chapter 7: Memory7-28

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Overlays
• A partition graph for a program with a main routine and three sub-

routines:

Main Routine

Subroutine A

Subroutine B

Subroutine C

Compiled program

Main A

BC

Partition graph

Partition #0

Partition #1

Physical Memory

Smaller
than

program

Richard Chang
This is what you do when you don't have enough memory to run a large program on ancient operating systems.

Chapter 7: Memory7-34

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Fragmentation

• (a) Free area
of memory
after initial-
ization; (b)
after frag-
mentation;
(c) after coa-
lescing.

(a) (b) (c)

Operating
System

Free Area

I/O Space

Dead Zone

Operating
System

I/O Space

Dead Zone

Free Area

Free Area

Free Area

Free Area

Program A

Program B

Program C

Operating
System

I/O Space

Dead Zone

Free Area

Free Area

Free Area

Program A

Program B

Program C

Memory Protection

• Prevents one process from reading from or writing
to memory used by another process

• Privacy in a multiple user environments
• Operating system stability

Prevents user processes (applications) from altering memory used by
the operating system

One application crashing does not cause the entire OS to crash

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Chapter 7: Memory7-29

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Virtual Memory
• Virtual memory is stored in a hard disk image. The physical

memory holds a small number of virtual pages in physical page
frames .

• A mapping between a virtual and a physical memory:

Virtual memory

Physical memory

Page frame 0

Page frame 1

Page frame 2

Page frame 3

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

Virtual
addresses

Physical
addresses

0 - 1023

1024 - 2047

2048 - 3071

3072 - 4095

4096 - 5119

5120 - 6143

6144 - 7167

7168 - 8191

0 - 1023

1024 - 2047

2048 - 3071

3072 - 4095

Chapter 7: Memory7-30

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Page Table
• The page table maps between virtual memory and physical

memory.

Present bit:
0: Page is not in
	
physical memory
1: Page is in physical
	
memory

Present bit

Page #

0

1

2

3

4

5

6

7

1

0

1

0

1

0

0

1

00

xx

01

xx

11

xx

xx

10

Disk address

Page frame

01001011100

11101110010

10110010111

00001001111

01011100101

10100111001

00110101100

01010001011

Chapter 7: Memory7-31

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Using the Page Table
• A virtual address is translated into a physical address:

0

1

2

3

4

5

6

7

1

0

1

0

1

0

0

1

00

xx

01

xx

11

xx

xx

10

01001011100

11101110010

10110010111

00001001111

01011100101

10100111001

00110101100

01010001011

1 0 0 1 1 0 1 0 0 0 1 0 1 Virtual address

Page table

1 1 1 1 0 1 0 0 0 1 0 1

Physical address

Page Offset

Chapter 7: Memory7-32

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Using
the Page

Table
(cont’)

• The configura-
tion of a page
table changes
as a program
executes.

• Initially, the
page table is
empty. In the
final configura-
tion, four pages
are in physical
memory.

0

1

2

3

4

5

6

7

0

1

0

0

0

0

0

0

xx

00

xx

xx

xx

xx

xx

xx

01001011100

11101110010

10110010111

00001001111

01011100101

10100111001

00110101100

01010001011

After
fault on
page #1

0

1

2

3

4

5

6

7

0

1

1

1

0

0

0

0

xx

00

01

10

xx

xx

xx

xx

01001011100

11101110010

10110010111

00001001111

01011100101

10100111001

00110101100

01010001011

0

1

2

3

4

5

6

7

0

1

1

0

0

0

0

0

xx

00

01

xx

xx

xx

xx

xx

01001011100

11101110010

10110010111

00001001111

01011100101

10100111001

00110101100

01010001011

0

1

2

3

4

5

6

7

0

0

1

1

1

1

0

0

xx

xx

01

10

11

00

xx

xx

01001011100

11101110010

10110010111

00001001111

01011100101

10100111001

00110101100

01010001011

Final

After
fault on
page #2

After
fault on
page #3

Next Time

• Linux page tables

• Interrupts & System Calls

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

