
CMSC 313 Lecture 08

• Project 2 Questions

• Recap Indexed Addressing Examples
• Some i386 string instructions

• A Bigger Example: Escape Sequence Project

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

CMSC 313, Computer Organization & Assembly Language Programming Fall 2004

Project 2: BSD Checksum Due: Thursday September 30, 2004

Objective

The objective of this programming project is to practice designing your own loops and branching code in
assembly language and to gain greater familiarity with the i386 instructions set.

Background

Checksums can be used to detect corrupted files. A file might be corrupted during transmission through a
network or because the disk drive where the file is stored is damaged.

The BSD Checksum algorithm uses a 16-bit checksum. Initially, the value of the checksum is zero. For
each byte of the file (in sequential order), the checksum is rotated 1 bit to the right and the byte is added to
the checksum. The value of the checksum after the last byte of the file has been processed is the checksum
of the file.

 If the checksum of a file changes, then you know that its contents have been altered. However, it is
possible for two different files to have the same checksum (since there are only 64K different values for a
16-bit checksum but many more possible files). So, having the same checksum does not guarantee that the
file has not been corrupted. A well-designed checksum algorithm should be able to indicate the most common
types of file corruption (e.g., transposed bits, single bits flipped).

Assignment

Write an assembly language program that computes the BSD checksum (algorithm given above) of the
stdin file. You should output the checksum as a 16-bit binary number to stdout. The intention is for you
to use Unix input/output redirection:

./a.out <ifile >ifile.checksum

The value of the checksum can be examined using the hexdump command.:

hexdump ifile.checksum
hexdump -e '1/2 "%u\n"' ifile.checksum

The first hexdump command gives the result in hexadecimal. The second hexdump command gives the value
in decimal. (It is a challenge to alias the second command in Unix.)

Some details:

• Your program must read a block of bytes from the input. You should not read from the input one
byte at a time. (It would be terribly inefficient).

• You may assume that when the operating system returns with 0 bytes read that the end of the input
file has been reached.

• On the other hand, you may not assume that the end of the file has been reached when the operating
system gives you fewer bytes than your block size.

Implementation Notes

• You can check your program using the sum command which prints out the BSD checksum of the file
in decimal. (No, you may not call the Unix sum command from your program.)

• Look up the rotate right instruction in the Intel manual to make sure that you are using the correct
rotate instruction.

• The BSD checksum algorithm involves adding an 8-bit value to a 16-bit value. Make sure you are
doing this correctly.

• You will have two nested loops. The outer loop reads blocks from the input until the end of the file.
The inner loop processes one character at a time. Decide ahead of time how the loops are controlled,
which value is stored in which register or memory location.

• Record some sample runs of your program using the Unix script command.

Turning in your program

Use the UNIX submit command on the GL system to turn in your project. You should submit two files:
1) the assembly language program and 2) the typescript file of sample runs of your program. The class name
for submit is cs313_0101. The name of the assignment name is proj2. The UNIX command to do this
should look something like:

submit cs313_0101 proj2 checksum.asm typescript

Indexed Addressing

• Operands of the form: [ESI + ECX*4 + DISP]

• ESI = Base Register

• ECX = Index Register

• 4 = Scale factor

• DISP = Displacement

• The operand is in memory

• The address of the memory location is
ESI + ECX*4 + DISP

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

MOV EAX, [EDI + ECX*4 + 20]

Data

Code

.

.

.

MOV…
20

Base + Index*Scale + Displacement

+

2

08A94068

08A940901734

08A94068

*4

Typical Uses for Indexed Addressing

• Base + Displacement
access character in a string or field of a record

access a local variable in function call stack

• Index*Scale + Displacement
access items in an array where size of item is 2, 4 or 8 bytes

• Base + Index + Displacement
access two dimensional array (displacement has address of array)

access an array of records (displacement has offset of field in a record)

• Base + (Index*Scale) + Displacement
access two dimensional array where size of item is 2, 4 or 8 bytes

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

; File: index1.asm
;
; This program demonstrates the use of an indexed addressing mode
; to access array elements.
;
; This program has no I/O. Use the debugger to examine its effects.
;
 SECTION .data ; Data section

arr: dd 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ; ten 32-bit words
base: equ arr - 4

 SECTION .text ; Code section.
 global _start
_start: nop ; Entry point.

 ; Add 5 to each element of the array stored in arr.
 ; Simulate:
 ;
 ; for (i = 0 ; i < 10 ; i++) {
 ; arr[i] += 5 ;
 ; }

init1: mov ecx, 0 ; ecx simulates i
loop1: cmp ecx, 10 ; i < 10 ?
 jge done1
 add [ecx*4+arr], dword 5 ; arr[i] += 5
 inc ecx ; i++
 jmp loop1
done1:

 ; more idiomatic for an assembly language program
init2: mov ecx, 9 ; last array elt's index
loop2: add [ecx*4+arr], dword 5
 dec ecx
 jge loop2 ; again if ecx >= 0

 ; another way
init3: mov edi, base ; base computed by ld
 mov ecx, 10 ; for(i=10 ; i>0 ; i--)
loop3: add [edi+ecx*4], dword 5
 loop loop3 ; loop = dec ecx, jne

alldone:
 mov ebx, 0 ; exit code, 0=normal
 mov eax, 1 ; Exit.
 int 80H ; Call kernel.

Script started on Fri Sep 19 13:06:02 2003
linux3% nasm -f elf index1.asm
linux3% ld index1.o

linux3% gdb a.out
GNU gdb Red Hat Linux (5.2-2)
...
(gdb) break *init1
Breakpoint 1 at 0x8048081
(gdb) break *init2
Breakpoint 2 at 0x8048099
(gdb) break *init3
Breakpoint 3 at 0x80480ac
(gdb) break * alldone
Breakpoint 4 at 0x80480bf
(gdb) run
Starting program: /afs/umbc.edu/users/c/h/chang/home/asm/a.out

Breakpoint 1, 0x08048081 in init1 ()
(gdb) x/10wd &arr
0x80490cc <arr>: 0 1 2 3
0x80490dc <arr+16>: 4 5 6 7
0x80490ec <arr+32>: 8 9
(gdb) cont
Continuing.

Breakpoint 2, 0x08048099 in init2 ()
(gdb) x/10wd &arr
0x80490cc <arr>: 5 6 7 8
0x80490dc <arr+16>: 9 10 11 12
0x80490ec <arr+32>: 13 14
(gdb) cont
Continuing.

Breakpoint 3, 0x080480ac in init3 ()
(gdb) x/10wd &arr
0x80490cc <arr>: 10 11 12 13
0x80490dc <arr+16>: 14 15 16 17
0x80490ec <arr+32>: 18 19
(gdb) cont
Continuing.

Breakpoint 4, 0x080480bf in alldone ()
(gdb) x/10wd &arr
0x80490cc <arr>: 15 16 17 18
0x80490dc <arr+16>: 19 20 21 22
0x80490ec <arr+32>: 23 24
(gdb) cont
Continuing.

Program exited normally.
(gdb) quit
linux3% exit
exit

Script done on Fri Sep 19 13:07:41 2003

; File: index2.asm
;
; This program demonstrates the use of an indexed addressing mode
; to access 2 dimensional array elements.
;
; This program has no I/O. Use the debugger to examine its effects.
;
 SECTION .data ; Data section

 ; simulates a 2-dim array
twodim:
row1: dd 00, 01, 02, 03, 04, 05, 06, 07, 08, 09
row2: dd 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
 dd 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
 dd 30, 31, 32, 33, 34, 35, 36, 37, 38, 39
 dd 40, 41, 42, 43, 44, 45, 46, 47, 48, 49
 dd 50, 51, 52, 53, 54, 55, 56, 57, 58, 59
 dd 60, 61, 62, 63, 64, 65, 66, 67, 68, 69
 dd 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
 dd 80, 81, 82, 83, 84, 85, 86, 87, 88, 89
 dd 90, 91, 92, 93, 94, 95, 96, 97, 98, 99

rowlen: equ row2 - row1

 SECTION .text ; Code section.
 global _start
_start: nop ; Entry point.

 ; Add 5 to each element of row 7. Simulate:
 ;
 ; for (i = 0 ; i < 10 ; i++) {
 ; towdim[7][i] += 5 ;
 ; }

init1: mov ecx, 0 ; ecx simulates i
 mov eax, rowlen ; offset of twodim[7][0]
 mov edx, 7
 mul edx ; eax := eax * edx
 jc alldone ; 64-bit product is bad

loop1: cmp ecx, 10 ; i < 10 ?
 jge done1
 add [eax+4*ecx+twodim], dword 5
 inc ecx ; i++
 jmp loop1
done1:

alldone:
 mov ebx, 0 ; exit code, 0=normal
 mov eax, 1 ; Exit.
 int 80H ; Call kernel.

Script started on Fri Sep 19 13:19:22 2003
linux3% nasm -f elf index2.asm
linux3% ld index2.o
linux3%
linux3% gdb a.out
GNU gdb Red Hat Linux (5.2-2)
...
(gdb) break *init1
Breakpoint 1 at 0x8048081
(gdb) break *alldone
Breakpoint 2 at 0x80480a7
(gdb) run
Starting program: /afs/umbc.edu/users/c/h/chang/home/asm/a.out

Breakpoint 1, 0x08048081 in init1 ()
(gdb) x/10wd &twodim
0x80490b4 <twodim>: 0 1 2 3
0x80490c4 <twodim+16>: 4 5 6 7
0x80490d4 <twodim+32>: 8 9
(gdb) x/10wd &twodim+60
0x80491a4 <row2+200>: 60 61 62 63
0x80491b4 <row2+216>: 64 65 66 67
0x80491c4 <row2+232>: 68 69
(gdb)
0x80491cc <row2+240>: 70 71 72 73
0x80491dc <row2+256>: 74 75 76 77
0x80491ec <row2+272>: 78 79
(gdb)
0x80491f4 <row2+280>: 80 81 82 83
0x8049204 <row2+296>: 84 85 86 87
0x8049214 <row2+312>: 88 89
(gdb) cont
Continuing.

Breakpoint 2, 0x080480a7 in done1 ()
(gdb) x/10wd &twodim+60
0x80491a4 <row2+200>: 60 61 62 63
0x80491b4 <row2+216>: 64 65 66 67
0x80491c4 <row2+232>: 68 69
(gdb)
0x80491cc <row2+240>: 75 76 77 78
0x80491dc <row2+256>: 79 80 81 82
0x80491ec <row2+272>: 83 84
(gdb)
0x80491f4 <row2+280>: 80 81 82 83
0x8049204 <row2+296>: 84 85 86 87
0x8049214 <row2+312>: 88 89
(gdb) cont
Continuing.

Program exited normally.
(gdb) quit
linux3% exit
exit

Script done on Fri Sep 19 13:20:35 2003

i386 String Instructions

• Special instructions for searching & copying strings

• Assumes that AL holds the data
• Assumes that ECX holds the “count”

• Assumes that ESI and/or EDI point to the string(s)

• Some examples (there are many others):
LODS: loads AL with [ESI], then increments or decrements ESI

STOS: stores AL in [EDI], then increments or decrements EDI

CLD/STD: clears/sets direction flag DF. Makes LODS & STOS auto-inc/dec.

LOOP: decrements ECX. Jumps to label if ECX != 0 after decrement.

SCAS: compares AL with [EDI], sets status flags, auto-inc/dec EDI.

REP: Repeats a string instruction

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

CMSC 313, Computer Organization & Assembly Language Programming Section 0101
Fall 2001

Project 1: Escape Sequences

Due: Tuesday October 9, 2001 <--- !!!!!! OLD PROJECT !!!!!

Objective

The objectives of the programming assignment are 1) to gain experience writing larger assembly
language programs, and 2) to gain familiarity with various branching operations.

Background

String constants in UNIX and in C/C++ are allowed to contain control characters and other hard-
to-type characters. The most familiar of these is ‘\n’ for a newline or linefeed character (ASCII
code 10). The ‘\n’ is called an escape sequence. For this project, we will consider the following
escape sequences:

Sequence Name ASCII code
\a alert(bell) 07
\b backspace 08
\t horizontal tab 09
\n newline 10
\v vertical tab 11
\f formfeed 12
\r carriage return 13
\\ backslash 92

In addition, strings can have octal escape sequences. An octal escape sequence is a ‘\’ followed by
one, two or three octal digits. For example, ‘\a’ is equivalent to ‘\7’ and ‘\\’ is equivalent to
‘\134’. Note that in this scheme, the null character can be represented as ‘\0’. The octal escape
sequence ends at the third octal digit, before the end of the string, or before the first non-octal digit,
whichever comes first. For example "abc\439xyz" is equivalent to "abc#9xyz" because the
ASCII code for ‘#’ is 438 and 9 is not an octal digit.

Assignment

For this project, you will write a program in assembly language which takes a string input by the
user, convert the escape sequences in the string as described above and print out the converted string.
In addition, your program should be robust enough to handle user input that might include malformed
escape sequences. Examples of malformed escape sequences include: a ‘\’ followed by an invalid
character, a ‘\’ as the last character of the string and a ‘\’ followed an octal number that exceeds
25510.

All the invalid escape sequences should be reported to the user (i.e., your program should not just
quit after detecting the first invalid escape sequence). When the user input has malformed escape
sequences, your program should still convert and print out the rest of the string (which might contain
some valid escape sequences). In this case, a ‘\’ should be printed at the location of malformed escape
sequence. For example, if the user types in “abc \A def \43 ghi \411” your program should have
output:

Error: unknown escape sequence \A
Error: octal value overflow in \411
Original: abc \A def \43 ghi \411
Convert: abc \ def # ghi \

Turning in your program

Before you submit your program, record some sample runs of your program using the UNIX
script command. You should select sample runs that demonstrate the features supported by your
program. Picking good test cases is your responsibility.

Use the UNIX ‘submit’ command on the GL system to turn in your project. You should submit
two files: 1) your assembly language program and 2) the typescript file of your sample runs. The class
name for submit is ‘cs313’ and the project name is ‘proj1’.

Implementation Issues:

1. You should think carefully about how you will keep track of the number of characters you
have already processed in the source string. Since you will process more than one character
per iteration of the main loop, you will need a consistent way to update the character count
and the pointer into the source string.

2. Your program will have numerous branches. You should think about the layout of your
program and how to make it more readable. Avoid spaghetti code. Related parts of your
program should be placed near each other.

3. Do take into account the fact that the output string might be shorter than the input string.

Notes:

Recall that the project policy states that programming projects must be the result of individual
effort. You are not allowed to work together. Also, your projects will be graded on five criteria:
correctness, design, style, documentation and efficiency. So, it is not sufficient to turn in programs
that assemble and run. Assembly language programming can be a messy affair --- neatness counts.

Next Time

• Machine Language

• Project 3

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

References

• Some figures and diagrams from IA-32 Intel
Architecture Software Developer's Manual, Vols 1-3

<http://developer.intel.com/design/Pentium4/manuals/>

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

