CMSC 313 Lecture 06

* Project 1, gdb debugger demo
e |[ntel Instruction Set Overview
e Recap Addressing Modes

¢ Basic Instructions
~ ADD, SUB, INC, DEC, MOV, NOP

e More on Jump Instructions

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

CMSC 313, Computer Organization & Assembly Language Programming Fall 2004

Project 1: ROT13 Due Thursday, September 23, 2004

Objective

This project is a finger-warming exercise to make sure that everyone can compile an assembly language
program, run it through the debugger and submit the requisite files using the systems in place for the
programming projects.

Background

The ROTI13 format is used on USENET newsgroups to mask potentially offensive postings, movie
spoilers, etc. The idea is that readers who think they might be offended by a controversial remark will simply
not “decode” the posting and thus not be offended. Many news readers and email clients support ROT13.

b

The encoding is very simple. The characters ‘a’—‘m’ are mapped to ‘n’—‘z’ and vice versa. Upper case
letters are transformed analogously. All other characters (e.g., digits and punctuation marks) are left alone.
For example, “There was a man from Nantucket” becomes “Gurer jnf n zna sebz Anaghpxrg” after ROT13
transformation. To decode a message in ROT13, you simply apply the ROT13 transformation again.

Assignment
For this project, you must do the following:

1. Write an assembly language program that prompts the user for an input string and prints out the
ROT13 encoding of the the string. A good starting point for your project is the program
toupper.asm (shown in class) which converts lower case characters in the user’s input string to
upper case. The source code is available on the GL file system at:

/afs/umbc.edu/users/c/h/chang/pub/cs313/

2. Using the UNIX script command, record some sample runs of your program and a debugging
session using gdb. In this session, you should fully exercise the debugger. You must set several
breakpoints, single step through some instructions, use the automatic display function and examine
the contents of memory before and after processing. The script command is initiated by typing
script at the UNIX prompt. This puts you in a new UNIX shell which records every character
typed or printed to the screen. You exit from this shell by typing exit at the UNIX prompt. A file
named typescript is placed in the current directory. You must exit from the script command
before submitting your project. Also, remember not to record yourself editing your programs — this
makes the typescript file very large.

Turning in your program

Use the UNIX submit command on the GL system to turn in your project. You should submit two files:
1) the modified assembly language program and 2) the typescript file of your debugging session. The class
name for submit is cs313 0101, the project name is projl. The UNIX command to do this should look
something like:

submit ¢s313 0101 projl rotl3.asm typescript

Notes

Additional help on running NASM, gdb and making system calls in Linux are available on the assembly
language programming web page for this course:

<http://www.csee.umbc.edu/~chang/cs313.f04/assembly.shtml>

Recall that the project policy states that programming assignments must be the result of individual
effort. You are not allowed to work together. Also, your projects will be graded on five criteria: correctness,
design, style, documentation and efficiency. So, it is not sufficient to turn in programs that assemble and run.
Assembly language programming can be a messy affair — neatness counts.

Debugging Assembly Language Programs

e Cannot just put print statements everywhere.
e Use gdb to:

- examine contents of registers
- exmaine contents of memory
 set breakpoints

o single-step through program

e READ THE GDB SUMMARY ONLINE!

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

gdb ommand Summary

Command Example Description

run start program

quit quit out of gdb

cont continue execution after a break

break [addr] break *_start+5 sets a breakpoint

delete [n] delete 4 removes nth breakpoint

delete removes all breakpoints

info break lists all breakpoints

stepi execute next instruction

stepi [n] stepi 4 execute next n instructions

nexti execute next instruction, stepping over function calls

nexti [n] nexti 4 execute next n instructions, stepping over function calls

where show where execution halted

disas [addr] disas _start disassemble instructions at given address

info registers dump contents of all registers

print/d [expr] print/d $ecx print expression in decimal

print/x [expr] print/x $ecx print expression in hex

print/t [expr] print/t $ecx print expression in binary

x/NFU [addr] || x/12xw &msg Examine contents of memory in given format

display [expr] display $eax automatically print the expression each time the program is halted
display/i $eip print machine instruction each time the program is halted

info display show list of automatically displays

undisplay [n] undisplay 1 remove an automatic display

1386 Instruction Set Overview

e General Purpose Instructions

- works with data in the general purpose registers

* Floating Point Instructions

< floating point arithmetic

- data stored in separate floating point registers

* Single Instruction Multiple Data (SIMD) Extensions
o MMX, SSE, SSE2

e System Instructions

- Sets up control registers at boot time

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

INSTRUCTION SET SUMMARY I ntel ®

5.1. GENERAL-PURPOSE INSTRUCTIONS

The general-purpose instructions preform basic data movement, arithmetic, logic, program flow,
and string operations that programmers commonly use to write application and system software
to run on IA-32 processors. They operate on data contained in memory, in the general-purpose
registers (EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP) and in the EFLAGS register. They
also operate on address information contained in memory, the general-purpose registers, and the
segment registers (CS, DS, SS, ES, FS, and GS). This group of instructions includes the
following subgroups: data transfer, binary integer arithmetic, decimal arithmetic, logic opera-
tions, shift and rotate, bit and byte operations, program control, string, flag control, segment
register operations, and miscellaneous.

5.1.1. Data Transfer Instructions

The data transfer instructions move data between memory and the general-purpose and segment
registers. They also perform specific operations such as conditional moves, stack access, and
data conversion.

MOV Move data between general-purpose registers; move data between
memory and general-purpose or segment registers; move immediates
to general-purpose registers

CMOVE/CMOVZ Conditional move if equal/Conditional move if zero
CMOVNE/CMOVNZ Conditional move if not equal/Conditional move if not zero
CMOVA/CMOVNBE Conditional move if above/Conditional move if not below

or equal

CMOVAE/CMOVNB Conditional move if above or equal/Conditional move if
not below

CMOVB/CMOVNAE Conditional move if below/Conditional move if not above
or equal

CMOVBE/CMOVNA Conditional move if below or equal/Conditional move if
not above

CMOVG/CMOVNLE Conditional move if greater/Conditional move if not less
or equal

CMOVGE/CMOVNL Conditional move if greater or equal/Conditional move if
not less

CMOVL/CMOVNGE Conditional move if less/Conditional move if not greater
or equal

CMOVLE/CMOVNG Conditional move if less or equal/Conditional move if
not greater

CMOVC Conditional move if carry

5-2 I

intel.

CMOVNC
CMOVO
CMOVNO
CMOVS
CMOVNS
CMOVP/CMOVPE
CMOVNP/CMOVPO
XCHG

BSWAP

XADD
CMPXCHG
CMPXCHGSB
PUSH

POP
PUSHA/PUSHAD
POPA/POPAD

IN

OUT

CWD/CDQ
CBW/CWDE
MOVSX

MOVZX

5.1.2.

The binary arithmetic instructions perform basic binary integer computations on byte, word, and

INSTRUCTION SET SUMMARY

Conditional move if not carry

Conditional move if overflow

Conditional move if not overflow

Conditional move if sign (negative)

Conditional move if not sign (non-negative)

Conditional move if parity/Conditional move if parity even
Conditional move if not parity/Conditional move if parity odd
Exchange

Byte swap

Exchange and add

Compare and exchange

Compare and exchange 8 bytes

Push onto stack

Pop off of stack

Push general-purpose registers onto stack

Pop general-purpose registers from stack

Read from a port

Write to a port

Convert word to doubleword/Convert doubleword to quadword

Convert byte to word/Convert word to doubleword in EAX register

Move and sign extend

Move and zero extend

Binary Arithmetic Instructions

doubleword integers located in memory and/or the general purpose registers.

ADD
ADC
SUB
SBB
IMUL

Integer add

Add with carry
Subtract

Subtract with borrow

Signed multiply

INSTRUCTION SET SUMMARY I ntel ®

MUL Unsigned multiply
IDIV Signed divide
DIV Unsigned divide
INC Increment

DEC Decrement

NEG Negate

CMP Compare

5.1.3. Decimal Arithmetic

The decimal arithmetic instructions perform decimal arithmetic on binary coded decimal (BCD)
data.

DAA Decimal adjust after addition
DAS Decimal adjust after subtraction
AAA ASCII adjust after addition

AAS ASCII adjust after subtraction
AAM ASCII adjust after multiplication
AAD ASCII adjust before division

5.1.4. Logical Instructions

The logical instructions perform basic AND, OR, XOR, and NOT logical operations on byte,
word, and doubleword values.

AND Perform bitwise logical AND

OR Perform bitwise logical OR

XOR Perform bitwise logical exclusive OR
NOT Perform bitwise logical NOT

5.1.5. Shift and Rotate Instructions

The shift and rotate instructions shift and rotate the bits in word and doubleword operands

SAR Shift arithmetic right
SHR Shift logical right
SAL/SHL Shift arithmetic left/Shift logical left

5-4 I

intel.

SHRD
SHLD
ROR
ROL
RCR
RCL

INSTRUCTION SET SUMMARY

Shift right double

Shift left double

Rotate right

Rotate left

Rotate through carry right
Rotate through carry left

5.1.6. Bit and Byte Instructions

The bit and instructions test and modify individual bits in the bits in word and doubleword oper-
ands. The byte instructions set the value of a byte operand to indicate the status of flags in the

EFLAGS register.
BT

BTS

BTR

BTC

BSF

BSR

SETE/SETZ
SETNE/SETNZ
SETA/SETNBE
SETAE/SETNB/SETNC

SETB/SETNAE/SETC

SETBE/SETNA
SETG/SETNLE
SETGE/SETNL
SETL/SETNGE
SETLE/SETNG
SETS

SETNS

SETO

Bit test

Bit test and set

Bit test and reset

Bit test and complement

Bit scan forward

Bit scan reverse

Set byte if equal/Set byte if zero

Set byte if not equal/Set byte if not zero

Set byte if above/Set byte if not below or equal

Set byte if above or equal/Set byte if not below/Set byte
if not carry

Set byte if below/Set byte if not above or equal/Set byte
if carry

Set byte if below or equal/Set byte if not above
Set byte if greater/Set byte if not less or equal
Set byte if greater or equal/Set byte if not less
Set byte if less/Set byte if not greater or equal
Set byte if less or equal/Set byte if not greater
Set byte if sign (negative)

Set byte if not sign (non-negative)

Set byte if overflow

5-5

INSTRUCTION SET SUMMARY

SETNO
SETPE/SETP
SETPO/SETNP
TEST

5.1.7.

Set byte if not overflow
Set byte if parity even/Set byte if parity
Set byte if parity odd/Set byte if not parity

Logical compare

Control Transfer Instructions

The control transfer instructions provide jump, conditional jump, loop, and call and return oper-
ations to control program flow.

IMP

JENZ
INE/JNZ
JA/INBE
JAE/INB
JB/JNAE
JBE/INA
JG/JNLE
JGE/JNL
JL/INGE
JLE/JNG

IC

INC

JO

INO

JS

INS

JPO/INP
JPE/JP
JCXZ/JECXZ
LOOP
LOOPZ/LOOPE
LOOPNZ/LOOPNE

5-6

Jump

Jump if equal/Jump if zero

Jump if not equal/Jump if not zero

Jump if above/Jump if not below or equal
Jump if above or equal/Jump if not below
Jump if below/Jump if not above or equal
Jump if below or equal/Jump if not above
Jump if greater/Jump if not less or equal

Jump if greater or equal/Jump if not less

Jump if less/Jump if not greater or equal

Jump if less or equal/Jump if not greater

Jump if carry

Jump if not carry

Jump if overflow

Jump if not overflow

Jump if sign (negative)

Jump if not sign (non-negative)

Jump if parity odd/Jump if not parity

Jump if parity even/Jump if parity

Jump register CX zero/Jump register ECX zero
Loop with ECX counter

Loop with ECX and zero/Loop with ECX and equal
Loop with ECX and not zero/Loop with ECX and not equal

CALL
RET
IRET
INT
INTO
BOUND
ENTER
LEAVE

INSTRUCTION SET SUMMARY

Call procedure

Return

Return from interrupt
Software interrupt
Interrupt on overflow
Detect value out of range
High-level procedure entry

High-level procedure exit

5.1.8. String Instructions

The string instructions operate on strings of bytes, allowing them to be moved to and from

memory.
MOVS/MOVSB
MOVS/MOVSW
MOVS/MOVSD
CMPS/CMPSB
CMPS/CMPSW
CMPS/CMPSD
SCAS/SCASB
SCAS/SCASW
SCAS/SCASD
LODS/LODSB
LODS/LODSW
LODS/LODSD
STOS/STOSB
STOS/STOSW
STOS/STOSD
REP
REPE/REPZ
REPNE/REPNZ
INS/INSB

Move string/Move byte string

Move string/Move word string

Move string/Move doubleword string
Compare string/Compare byte string
Compare string/Compare word string
Compare string/Compare doubleword string
Scan string/Scan byte string

Scan string/Scan word string

Scan string/Scan doubleword string
Load string/Load byte string

Load string/Load word string

Load string/Load doubleword string
Store string/Store byte string

Store string/Store word string

Store string/Store doubleword string
Repeat while ECX not zero

Repeat while equal/Repeat while zero

Repeat while not equal/Repeat while not zero

Input string from port/Input byte string from port

INSTRUCTION SET SUMMARY I ntel ®

INS/INSW
INS/INSD
OUTS/OUTSB
OUTS/OUTSW
OUTS/OUTSD

Input string from port/Input word string from port

Input string from port/Input doubleword string from port
Output string to port/Output byte string to port

Output string to port/Output word string to port

Output string to port/Output doubleword string to port

5.1.9. Flag Control Instructions

The flag control instructions operate on the flags in the EFLAGS register.

STC

CLC

CMC

CLD

STD

LAHF

SAHF
PUSHF/PUSHFD
POPF/POPFD
STI

CLI

Set carry flag

Clear the carry flag
Complement the carry flag
Clear the direction flag

Set direction flag

Load flags into AH register
Store AH register into flags
Push EFLAGS onto stack
Pop EFLAGS from stack
Set interrupt flag

Clear the interrupt flag

5.1.10. Segment Register Instructions

The segment register instructions allow far pointers (segment addresses) to be loaded into the

segment registers.
LDS
LES
LFS
LGS
LSS

5-8

Load far pointer using DS
Load far pointer using ES
Load far pointer using FS
Load far pointer using GS
Load far pointer using SS

Intel ® INSTRUCTION SET SUMMARY

5.1.11. Miscellaneous Instructions

The miscellaneous instructions provide such functions as loading an effective address,
executing a ‘“no-operation,” and retrieving processor identification information.

LEA Load effective address
NOP No operation

UD2 Undefined instruction
XLAT/XLATB Table lookup translation
CPUID Processor Identification

5.2. X87 FPU INSTRUCTIONS

The x87 FPU instructions are executed by the processor’s x87 FPU. These instructions operate
on floating-point, integer, and binary-coded decimal (BCD) operands.

5.2.1. Data Transfer

The data transfer instructions move floating-point, integer, and BCD values between memory
and the x87 FPU registers. They also perform conditional move operations on floating-point
operands.

FLD Load floating-point value

FST Store floating-point value

FSTP Store floating-point value and pop

FILD Load integer

FIST Store integer

FISTP Store integer and pop

FBLD Load BCD

FBSTP Store BCD and pop

FXCH Exchange registers

FCMOVE Floating-point conditional move if equal
FCMOVNE Floating-point conditional move if not equal
FCMOVB Floating-point conditional move if below
FCMOVBE Floating-point conditional move if below or equal
FCMOVNB Floating-point conditional move if not below
FCMOVNBE Floating-point conditional move if not below or equal

I 5-9

Common Instructions

¢ Basic Instructions
~ ADD, SUB, INC, DEC, MOV, NOP

* Branching Instructions
> JMP, CMP, Jcc

e More Arithmetic Instructions
- NEG, MUL, IMUL, DIV, IDIV

e Logical (bit manipulation) Instructions
<~ AND, OR, NOT, SHL, SHR, SAL, SAR, ROL, ROR, RCL, RCR

e Subroutine Instructions
- PUSH, POP, CALL, RET

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

RISC vs CISC

* CISC = Complex Instruction Set Computer
< Pro: instructions closer to constructs in higher-level languages

o Con: complex instructions used infrequently

* RISC = Reduced Instruction Set Computer

> Pro: simpler instructions allow design efficiencies (e.g., pipelining)

<~ Con: more instructions needed to achieve same task

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

intel.

INSTRUCTION SET REFERENCE

ADD—Add
Opcode Instruction Description
04 ib ADD AL,imm8 Add imm8 to AL
05 iw ADD AX,imm16 Add imm16 to AX
05 id ADD EAX,imm32 Add imm32 to EAX
80/0ib ADD r/m8,imm8 Add imm8 to rim8
81 /0 iw ADD rim16,imm16 Add imm16to rim16
81 /0 id ADD r/m32,imm32 Add imm32 to ’m32
83/0ib ADD rim16,imm8 Add sign-extended imm8to rim16
83/0ib ADD rim32,imm8 Add sign-extended imm8to rim32
00 /r ADD r/m8,r8 Add r8to rim8
011/r ADD rim16,r16 Add r16to rim16
011/r ADD rim32,r32 Add r32 to ’im32
021/r ADD r8,r/m8 Add rim8to r8
03/r ADD r16,rim16 Add rim16to r16
03/r ADD r32,rim32 Add r/m32 to r32
Description

Adds the first operand (destination operand) and the second operand (source operand) and stores
the result in the destination operand. The destination operand can be a register or a memory
location; the source operand can be an immediate, a register, or a memory location. (However,
two memory operands cannot be used in one instruction.) When an immediate value is used as
an operand, it is sign-extended to the length of the destination operand format.

The ADD instruction performs integer addition. It evaluates the result for both signed and
unsigned integer operands and sets the OF and CF flags to indicate a carry (overflow) in the
signed or unsigned result, respectively. The SF flag indicates the sign of the signed result.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation
DEST « DEST + SRC;

Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

I 3-21

Intel Manual’s Addressing Mode Notation

- r8: One of the 8-bit registers AL, CL, DL, BL, AH, CH, DH, or BH.

= r16: One of the 16-bit registers AX, CX, DX, BX, SP, BP, SI, or DI.

- r32: One of the 32-bit registers EAX, ECX, EDX, EBX, ESP, EBP, ESI, or EDI.
~imma8: An immediate 8-bit value.

~imm16: An immediate 16-bit value.

~imm32: An immediate 32-bit value.

- r/m8: An 8-bit operand that is either the contents of an 8-bit register (AL, BL,
CL, DL, AH, BH, CH, and DH), or a byte from memory.

- r/m16: A 16-bit register (AX, BX, CX, DX, SP, BP, S|, and DIl) or memory
operand used for instructions whose operand-size attribute is 16 bits.

- r/m32: A 32-bit register (EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI) or
memory operand used for instructions whose operand-size attribute is 32
bits.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Recap 80x86 Addressing Modes

We want to store the value 1734h.

The value 1734h may be located in a register
Or 1IN Memory.

The location in memory might be specitied
by the code, by a register, ...

Assembly language syntax for MOV

MOV DEST, SOURCE

Addressing Modes Code

EAX
EBX
ECX
EDX
EBP
ESI

EDI

ESP

Data

Register from Register

MOV EAX, ECX

Addressing Modes

EAX
EBX
ECX
EDX
EBP
ESI

EDI

ESP

08A94068

Register from Register Indirect

MOV EAX, [ECX]

Code

Data

Addressing Modes Code

EP ——> MOV...
08A94068

EAX
EBX
ECX
EDX
EBP
ESI

EDI

ESP

Register from Memory
MOV EAX, [08 A94068]
MOV EAX, [Xx]

Addressing Modes Code

MOV...
EBX

ECX
EDX
EBP
ESI
EDI

ESP Data

Register from Immediate

MOV EAX, 1734

Addressing Modes Code

EAX| 08A94068

EBX
ECX
EDX
EBP
ESI

EDI

ESP

Register Indirect from Immediate

MOV [EAX], DWORD 1734

Addressing Modes

EAX
EBX
ECX
EDX
EBP
ESI

EDI

ESP

Memory from Immediate

MOV [08A94068], DWORD 1734

MOV [x], DWORD 1734

EIP —)

MOV...

08A94068

Code

The EFLAGS Register

e A special 32-bit register that contains “results” of
previous instructions

- OF = overflow flag, indicates two’s complement overflow.
- SF = sign flag, indicates a negative result.
~ ZF = zero flag, indicates the result was zero.

- CF = carry flag, indicates unsigned overflow, also used in shifting

e An operation may set, clear, modify or test a flag.
e Some operations leave a flag undefined.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

BASIC EXECUTION ENVIRONMENT

XOW VOVOVNNXXXXXXXXXXXX

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

IVV
|
DPFCM

A|V|R N
FO

|
o |o|p

T| P |F|F
L

S
F

A
F

P
F

ID Flag (ID) ‘
Virtual Interrupt Pending (VIP)

Virtual Interrupt Flag (VIF)
Alignment Check (AC)
Virtual-8086 Mode (VM)
Resume Flag (RF)
Nested Task (NT)
1/0 Privilege Level (IOPL)
Overflow Flag (OF)
Direction Flag (DF)

Interrupt Enable Flag (IF)

Trap Flag (TF)
Sign Flag (SF)

Zero Flag (ZF)

Auxiliary Carry Flag (AF)

Parity Flag (PF)
Carry Flag (CF)

Indicates a Status Flag
Indicates a Control Flag
Indicates a System Flag

Reserved bit positions. DO NOT USE.
Always set to values previously read.

Figure 3-7. EFLAGS Register

Richard Chang
Ov Overfl flow Flag (OF)

Richard Chang
Sign F Flag ag (SF SF)

Richard Chang
Zero Fl Flag (ZF)

Richard Chang
Carry F Flag (CF)

Summary of ADD Instruction

¢ Basic Function:

- Adds source operand to destination operand.

- Both signed and unsigned addition performed.

e Addressing Modes:
> Source operand can be immediate, a register or memory.
- Destination operand can be a register or memory.

- Source and destination cannot both be memory.

* Flags Affected:

- OF = 1if two’s complement overflow occurred
o SF = 1if result in two’s complement is negative (MSbit = 1)
o ZF = 1if result is zero

- CF = 1if unsigned overflow occurred

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Intel ® INSTRUCTION SET REFERENCE

SUB—Subtract

Opcode Instruction Description
2Cib SUB AL,imm8 Subtract imm8 from AL
2D iw SUB AX,imm16 Subtract imm16 from AX
2Did SUB EAX,imm32 Subtract imm32 from EAX
80/5ib SUB r/m8,imm8 Subtract imm8 from r/m8
81/5iw SUB r/m16,imm16 Subtract imm16 from r/m16
81/5id SUB r/m32,imm32 Subtract imm32 from r/m32
83/5ib SUB r/m16,imm8 Subtract sign-extended imm8 from r/m16
83/5ib SUB r/m32,imm8 Subtract sign-extended imm8 from r/m32
28 Ir SUB r/m8,r8 Subtract r8 from r/m8
29 Ir SUB r/m16,r16 Subtract r16 from r/m16
29 Ir SUB r/m32,r32 Subtract r32 from r/m32
2A Ir SUB r8,r/m8 Subtract r/m8 from r8
2B Ir SUB r16,r/m16 Subtract /m16 from r16
2B Ir SUB r32,r/m32 Subtract r/m32 from r32
Description

Subtracts the second operand (source operand) from the first operand (destination operand) and
stores the result in the destination operand. The destination operand can be a register or a
memory location; the source operand can be an immediate, register, or memory location.
(However, two memory operands cannot be used in one instruction.) When an immediate value
is used as an operand, it is sign-extended to the length of the destination operand format.

The SUB instruction performs integer subtraction. It evaluates the result for both signed and
unsigned integer operands and sets the OF and CF flags to indicate a borrow in the signed or
unsigned result, respectively. The SF flag indicates the sign of the signed result.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation
DEST DEST - SRC;

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

I 3-739

INSTRUCTION SET REFERENCE Intel ®

INC—Increment by 1

Opcode Instruction Description

FE /0 INC r/m8 Increment r/m byte by 1

FF /0 INC r/m16 Increment r/m word by 1

FF /0 INC r/m32 Increment r/m doubleword by 1

40+ rw INC r16 Increment word register by 1

40+ rd INC r32 Increment doubleword register by 1
Description

Adds 1 to the destination operand, while preserving the state of the CF flag. The destination
operand can be a register or a memory location. This instruction allows a loop counter to be
updated without disturbing the CF flag. (Use a ADD instruction with an immediate operand of
1 to perform an increment operation that does updates the CF flag.)

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation
DEST DEST +1;

Flags Affected
The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination operand is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

3-326 I

Richard Chang
The CF flag is not t affected.

Intel ® INSTRUCTION SET REFERENCE

DEC—Decrement by 1

Opcode Instruction Description

FE /1 DEC r/m8 Decrement r/m8 by 1

FF /1 DEC r/m16 Decrement r/m16 by 1

FF /1 DEC r/m32 Decrement r/m32 by 1

48+rw DECr16 Decrement r16 by 1

48+rd DEC r32 Decrement r32 by 1
Description

Subtracts 1 from the destination operand, while preserving the state of the CF flag. The destina-
tion operand can be a register or a memory location. This instruction allows a loop counter to be
updated without disturbing the CF flag. (To perform a decrement operation that updates the CF
flag, use a SUB instruction with an immediate operand of 1.)

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation
DEST DEST-1;

Flags Affected
The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination operand is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF (fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

I 3-177

Richard Chang
The C CF flag is no not af t affected.

INSTRUCTION SET REFERENCE

MOV—Move
Opcode Instruction Description
88 /r MOV r/m8,r8 Move r8 to r/m8
89 /r MOV r/m16,r16 Move r16 to r/m16
89 /r MOV r/m32,r32 Move r32 to r/m32
8A Ir MOV r8,r/m8 Move r/m8 to r8
8B /r MOV r16,r/m16 Move r/m16 to r16
8B /r MOV r32,r/m32 Move r/m32 to r32
8C/r MOV r/m16,Sreg** Move segment register to r/m16
8E Ir MOV Sreg,r/m16** Move r/m16 to segment register
A0 MOV AL, moffs8* Move byte at (seg:offset) to AL
A1 MOV AX,moffs16* Move word at (seg:offset) to AX
A1 MOV EAX,moffs32* Move doubleword at (seg:offset) to EAX
A2 MOV moffs8*,AL Move AL to (seg:offset)
A3 MOV moffs16*,AX Move AX to (seg:offset)
A3 MOV moffs32* EAX Move EAX to (seg:offset)
BO+ rb MOV r8,imm8 Move imm8 to r8
B8+ rw MOV r16,imm16 Move imm16 to r16
B8+ rd MOV r32,imm32 Move imm32 to r32
C6 /0 MOV r/m8,imm8 Move imm8 to r/m8
C71/0 MOV r/m16,imm16 Move imm16 to r/m16
C71/0 MOV r/m32,imm32 Move imm32 to r/m32
NOTES:

* The moffs8, moffs16, and moffs32 operands specify a simple offset relative to the segment base, where
8, 16, and 32 refer to the size of the data. The address-size attribute of the instruction determines the size
of the offset, either 16 or 32 bits.

** In 32-bit mode, the assembler may insert the 16-bit operand-size prefix with this instruction (see the fol-
lowing “Description” section for further information).

Description

Copies the second operand (source operand) to the first operand (destination operand). The
source operand can be an immediate value, general-purpose register, segment register, or
memory location; the destination register can be a general-purpose register, segment register, or
memory location. Both operands must be the same size, which can be a byte, a word, or a
doubleword.

The MOV instruction cannot be used to load the CS register. Attempting to do so results in an
invalid opcode exception (#UD). To load the CS register, use the far JIMP, CALL, or RET
instruction.

3-432 I

Intel ® INSTRUCTION SET REFERENCE

MOV—Move (Continued)

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source operand must
be a valid segment selector. In protected mode, moving a segment selector into a segment
register automatically causes the segment descriptor information associated with that segment
selector to be loaded into the hidden (shadow) part of the segment register. While loading this
information, the segment selector and segment descriptor information is validated (see the
“Operation” algorithm below). The segment descriptor data is obtained from the GDT or LDT
entry for the specified segment selector.

A null segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and GS registers
without causing a protection exception. However, any subsequent attempt to reference a
segment whose corresponding segment register is loaded with a null value causes a general
protection exception (#GP) and no memory reference occurs.

Loading the SS register with a MOV instruction inhibits all interrupts until after the execution
of the next instruction. This operation allows a stack pointer to be loaded into the ESP register
with the next instruction (MOV ESP, stack-pointer value) before an interrupt occurs'. The LSS
instruction offers a more efficient method of loading the SS and ESP registers.

When operating in 32-bit mode and moving data between a segment register and a general-
purpose register, the 32-bit IA-32 processors do not require the use of the 16-bit operand-size
prefix (a byte with the value 66H) with this instruction, but most assemblers will insert it if the
standard form of the instruction is used (for example, MOV DS, AX). The processor will
execute this instruction correctly, but it will usually require an extra clock. With most assem-
blers, using the instruction form MOV DS, EAX will avoid this unneeded 66H prefix. When the
processor executes the instruction with a 32-bit general-purpose register, it assumes that the 16
least-significant bits of the general-purpose register are the destination or source operand. If the
register is a destination operand, the resulting value in the two high-order bytes of the register
is implementation dependent. For the Pentium Pro processor, the two high-order bytes are filled
with zeros; for earlier 32-bit IA-32 processors, the two high order bytes are undefined.

Operation
DEST SRC;

Loading a segment register while in protected mode results in special checks and actions, as
described in the following listing. These checks are performed on the segment selector and the
segment descriptor it points to.

IF SS is loaded;

1. Note that in a sequence of instructions that individually delay interrupts past the following instruction, only
the first instruction in the sequence is guaranteed to delay the interrupt, but subsequent interrupt-delaying
instructions may not delay the interrupt. Thus, in the following instruction sequence:

STI

MOV SS, EAX

MOV ESP, EBP

interrupts may be recognized before MOV ESP, EBP executes, because STI also delays interrupts for
one instruction.

I 3-433

INSTRUCTION SET REFERENCE Intel ®

MOV—Move (Continued)

THEN
IF segment selector is null
THEN #GP(0);
Fl;
IF segment selector index is outside descriptor table limits
OR segment selector's RPL CPL

OR segment is not a writable data segment
ORDPL CPL

THEN #GP(selector);
Fl;
IF segment not marked present
THEN #SS(selector);
ELSE
SS segment selector;
SS segment descriptor;

Fl;
Fl;
IF DS, ES, FS, or GS is loaded with non-null selector;
THEN
IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)
AND (both RPL and CPL > DPL))
THEN #GP(selector);
IF segment not marked present
THEN #NP(selector);
ELSE
SegmentRegister segment selector;
SegmentRegister segment descriptor;
Fl;
Fl;
IF DS, ES, FS, or GS is loaded with a null selector;
THEN
SegmentRegister segment selector;
SegmentRegister segment descriptor;
Fl;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If attempt is made to load SS register with null segment selector.

If the destination operand is in a nonwritable segment.

3-434 I

Richard Chang
Flag ags Af Affect cted ed
No None.

INSTRUCTION SET REFERENCE Intel ®

NOP—No Operation

Opcode Instruction Description
20 NOP No operation
Description

Performs no operation. This instruction is a one-byte instruction that takes up space in the
instruction stream but does not affect the machine context, except the EIP register.

The NOP instruction is an alias mnemonic for the XCHG (E)AX, (E)AX instruction.

Flags Affected

None.

Exceptions (All Operating Modes)

None.

3-508 I

Recap Conditional Jumps

e Uses flags to determine whether to jump

- Example: JAE (jump above or equal) jumps when the Carry Flag =0

CMP EAX, 1492
JAE OceanBlue

e Unsigned vs signed jumps

o Example: use JAE for unsigned data JGE (greater than or equal) for
signed data

CMP EAX, 1492 CMP EAX, -42
JAE OceanBlue JGE Somewhere

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Table 7-4. Conditional Jump Instructions

Instruction Mnemonic

Condition (Flag States)

Description

Unsigned Conditional Jumps
JA/JNBE
JAE/JNB
JB/JNAE
JBE/UNA
JC
JENZ
JNC
JNE/JNZ
JNP/JPO
JP/JPE
JCXZ
JECXZ

(CF or ZF)=0
CF=0

CF=1

(CF or ZF)=1
CF=1

ZF=1

CF=0

ZF=0

PF=0

PF=1

CX=0
ECX=0

Above/not below or equal
Above or equal/not below
Below/not above or equal
Below or equal/not above
Carry

Equal/zero

Not carry

Not equal/not zero

Not parity/parity odd
Parity/parity even
Register CX is zero

Register ECX is zero

Signed Conditional Jumps

JG/INLE

JGE/INL

JL/IINGE

JLE/UNG

JNO

JINS

JO

JS

((SF xor OF) or ZF) =0
(SF xor OF)=0

(SF xor OF)=1

((SF xor OF) or ZF)=1
OF=0

SF=0

OF=1

SF=1

Greater/not less or equal
Greater or equal/not less
Less/not greater or equal
Less or equal/not greater
Not overflow

Not sign (non-negative)
Overflow

Sign (negative)

INSTRUCTION SET REFERENCE Intel ®

Jecc—Jump if Condition Is Met

Opcode Instruction Description

77 cb JArel8 Jump short if above (CF=0 and ZF=0)

73 cb JAE rel8 Jump short if above or equal (CF=0)

72 cb JB rel8 Jump short if below (CF=1)

76 cb JBE rel8 Jump short if below or equal (CF=1 or ZF=1)
72 cb JCrel8 Jump short if carry (CF=1)

E3 cb JCXZ rel8 Jump short if CX register is 0

E3 cb JECXZ rel8 Jump short if ECX register is 0

74 cb JE rel8 Jump short if equal (ZF=1)

7F cb JG rel8 Jump short if greater (ZF=0 and SF=0F)
7D cb JGE rel8 Jump short if greater or equal (SF=0F)
7Ccb JL rel8 Jump short if less (SF<>OF)

7E cb JLE rel8 Jump short if less or equal (ZF=1 or SF<>OF)
76 cb JNA rel8 Jump short if not above (CF=1 or ZF=1)

72 cb JNAE rel8 Jump short if not above or equal (CF=1)

73 cb JNB rel8 Jump short if not below (CF=0)

77 cb JNBE rel8 Jump short if not below or equal (CF=0 and ZF=0)
73 cb JNC rel8 Jump short if not carry (CF=0)

75cb JNE rel8 Jump short if not equal (ZF=0)

7E cb JNG rel8 Jump short if not greater (ZF=1 or SF<>OF)
7Ccb JNGE rel8 Jump short if not greater or equal (SF<>OF)
7D cb JNL rel8 Jump short if not less (SF=OF)

7F cb JNLE rel8 Jump short if not less or equal (ZF=0 and SF=0F)
71cb JNO rel8 Jump short if not overflow (OF=0)

7B cb JNP rel8 Jump short if not parity (PF=0)

79 cb JNS rel8 Jump short if not sign (SF=0)

75cb JNZ rel8 Jump short if not zero (ZF=0)

70 cb JO rel8 Jump short if overflow (OF=1)

7A cb JP rel8 Jump short if parity (PF=1)

7A cb JPE rel8 Jump short if parity even (PF=1)

7B cb JPO rel8 Jump short if parity odd (PF=0)

78 cb JS rel8 Jump short if sign (SF=1)

74 cb JZ rel8 Jump short if zero (ZF 1)

OF 87 cw/cd JA rell6/32 Jump near if above (CF=0 and ZF=0)

OF 83 cw/cd JAE rell16/32 Jump near if above or equal (CF=0)

OF 82 cw/cd JB rell16/32 Jump near if below (CF=1)

OF 86 cw/cd JBE rel16/32 Jump near if below or equal (CF=1 or ZF=1)
OF 82 cw/cd JC rel16/32 Jump near if carry (CF=1)

OF 84 cw/cd JE rell16/32 Jump near if equal (ZF=1)

OF 84 cw/cd JZ rel16/32 Jump near if 0 (ZF=1)

OF 8F cwi/cd JG rel16/32 Jump near if greater (ZF=0 and SF=0F)

3-354

Richard Chang
JG JGE rel8 Jum Jump short hort if great greater o er or equal (SF SF=OF)

intel.

INSTRUCTION SET REFERENCE

Jecc—Jump if Condition Is Met (Continued)

Opcode Instruction Description
OF 8D cw/cd JGE rell6/32 Jump near if greater or equal (SF=OF)
OF 8C cw/cd JL rel16/32 Jump near if less (SF<>OF)
OF 8E cw/cd JLE rel16/32 Jump near if less or equal (ZF=1 or SF<>OF)
OF 86 cw/cd JNA rel16/32 Jump near if not above (CF=1 or ZF=1)
OF 82 cw/cd JNAE rel16/32 Jump near if not above or equal (CF=1)
OF 83 cw/cd JNB rel16/32 Jump near if not below (CF=0)
OF 87 cw/cd JNBE rel16/32 Jump near if not below or equal (CF=0 and ZF=0)
OF 83 cw/cd JNC rel16/32 Jump near if not carry (CF=0)
OF 85 cw/cd JNE rel16/32 Jump near if not equal (ZF=0)
OF 8E cw/cd JNG rel16/32 Jump near if not greater (ZF=1 or SF<>OF)
OF 8C cw/cd JNGE rel16/32 Jump near if not greater or equal (SF<>OF)
OF 8D cw/cd JNL rel16/32 Jump near if not less (SF=OF)
OF 8F cwi/cd JNLE rel16/32 Jump near if not less or equal (ZF=0 and SF=0F)
OF 81 cw/cd JNO rel16/32 Jump near if not overflow (OF=0)
OF 8B cw/cd JNP rel16/32 Jump near if not parity (PF=0)
OF 89 cw/cd JNS rel16/32 Jump near if not sign (SF=0)
OF 85 cw/cd JNZ rel16/32 Jump near if not zero (ZF=0)
OF 80 cw/cd JO rel16/32 Jump near if overflow (OF=1)
OF 8A cw/cd JP rel16/32 Jump near if parity (PF=1)
OF 8A cw/cd JPE rel16/32 Jump near if parity even (PF=1)
OF 8B cw/cd JPO rell6/32 Jump near if parity odd (PF=0)
OF 88 cw/cd JS rel16/32 Jump near if sign (SF=1)
OF 84 cw/cd JZ rel16/32 Jump near if 0 (ZF=1)
Description

Checks the state of one or more of the status flags in the EFLAGS register (CF, OF, PF, SF, and
ZF) and, if the flags are in the specified state (condition), performs a jump to the target instruc-
tion specified by the destination operand. A condition code (cc) is associated with each instruc-
tion to indicate the condition being tested for. If the condition is not satisfied, the jump is not
performed and execution continues with the instruction following the Jcc instruction.

The target instruction is specified with a relative offset (a signed offset relative to the current
value of the instruction pointer in the EIP register). A relative offset (relS, rell6, or rel32) is
generally specified as a label in assembly code, but at the machine code level, it is encoded as a
signed, 8-bit or 32-bit immediate value, which is added to the instruction pointer. Instruction
coding is most efficient for offsets of —128 to +127. If the operand-size attribute is 16, the upper
two bytes of the EIP register are cleared to Os, resulting in a maximum instruction pointer size
of 16 bits.

I 3-355

INSTRUCTION SET REFERENCE Intel ®

Jecc—Jump if Condition Is Met (Continued)

The conditions for each Jcc mnemonic are given in the “Description” column of the table on the
preceding page. The terms “less” and “greater” are used for comparisons of signed integers and
the terms “above” and “below” are used for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two ways, two
mnemonics are defined for some opcodes. For example, the JA (jump if above) instruction and
the JNBE (jump if not below or equal) instruction are alternate mnemonics for the opcode 77H.

The Jcc instruction does not support far jumps (jumps to other code segments). When the target
for the conditional jump is in a different segment, use the opposite condition from the condition
being tested for the Jcc instruction, and then access the target with an unconditional far jump
(JMP instruction) to the other segment. For example, the following conditional far jump is
illegal:

JZ FARLABEL;

To accomplish this far jump, use the following two instructions:

JNZ BEYOND;
JMP FARLABEL;
BEYOND:

The JECXZ and JCXZ instructions differs from the other Jcc instructions because they do not
check the status flags. Instead they check the contents of the ECX and CX registers, respectively,
for 0. Either the CX or ECX register is chosen according to the address-size attribute. These
instructions are useful at the beginning of a conditional loop that terminates with a conditional
loop instruction (such as LOOPNE). They prevent entering the loop when the ECX or CX
register is equal to 0, which would cause the loop to execute 2°? or 64K times, respectively,
instead of zero times.

All conditional jumps are converted to code fetches of one or two cache lines, regardless
of jump address or cacheability.

Operation

IF condition
THEN
EIP EIP + SignExtend(DEST);
IF OperandSize 16
THEN
EIP EIP AND 0000FFFFH;

Fl;
ELSE (* OperandSize = 32 *)
IF EIP < CS.Base OR EIP > CS.Limit
#GP
Fl;

Fl;

3-356 I

Intel ® INSTRUCTION SET REFERENCE

Jecc—Jump if Condition Is Met (Continued)

Flags Affecied

None.

Protected Mode Exceptions
#GP(0) If the offset being jumped to is beyond the limits of the CS segment.

Real-Address Mode Exceptions

#GP If the offset being jumped to is beyond the limits of the CS segment or is
outside of the effective address space from 0 to FFFFH. This condition can
occur if a 32-bit address size override prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

I 3-357

Richard Chang
None. one.

Richard Chang
Flags Af s Affect ected ed

Closer look at JGE

 JGE jumps if and only if SF = OF

o Examples using 8-bit registers. Which of these result in a jump?

1. MOV AL 96 2. MOV Al -64
CMP AL, 80 CMP AL, 80
JGE Somewhere JGE Somewhere
3. MOV AL 64 4, MOV AL 64
CMP AL, -80 CMP AL, 80
JGE Somewhere JGE Somewhere

o if OF=0, then use SF to check whether A-B >= 0.
e if OF=1, then do opposite of SF.

e JGE works after a CMP instruction, even when
subtracting the operands result in an overflow!

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Next Time

* Indexed addressing: [ESI + 4*ECX + 1024]
e Example: a complex i386 instruction

e More NASM assembler directives

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

References

e Some figures and diagrams from /A-32 Intel
Architecture Software Developer's Manual, Vols 1-3

<http://developer.intel.com/design/Pentium4/manuals/>

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

